
Transportation Safety and Environment, 2022, 4: tdac026

DOI: 10.1093/tse/tdac026
Review

Computer vision for road imaging and pothole detection:
a state-of-the-art review of systems and algorithms

Nachuan Ma 1, Jiahe Fan 1, Wenshuo Wang 2, Jin Wu 3, Yu Jiang 4, Lihua Xie 5 and Rui Fan 1,*

1Department of Control Science and Engineering, Frontiers Science Center for Intelligent Autonomous Systems, and State Key Laboratory of Intelligent
Autonomous Systems, Tongji University, Shanghai 201804, P. R. China;
2Department of Civil Engineering, McGill University, Montréal, QC H3A 0C3, Canada;
3Department of Electronics and Computer Engineering, the Hong Kong University of Science and Technology, Hong Kong SAR 999077, P. R. China;
4CTO Office, ClearMotion Inc., Billerica, MA 01821, USA;
5School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore.
∗Corresponding author. E-mail: rui.fan@ieee.org

Abstract

Computer vision algorithms have been utilized for 3-D road imaging and pothole detection for over two decades. Nonetheless, there is
a lack of systematic survey articles on state-of-the-art (SoTA) computer vision techniques, especially deep learningmodels, developed
to tackle these problems. This article first introduces the sensing systems employed for 2-D and 3-D road data acquisition, including
camera(s), laser scanners and Microsoft Kinect. It then comprehensively reviews the SoTA computer vision algorithms, including
(1) classical 2-D image processing, (2) 3-D point cloud modelling and segmentation and (3) machine/deep learning, developed for
road pothole detection. The article also discusses the existing challenges and future development trends of computer vision-based
road pothole detection approaches: classical 2-D image processing-based and 3-D point cloud modelling and segmentation-based
approaches have already become history; and convolutional neural networks (CNNs) have demonstrated compelling road pothole
detection results and are promising to break the bottleneck with future advances in self/un-supervised learning for multi-modal
semantic segmentation.We believe that this survey can serve as practical guidance for developing the next-generation road condition
assessment systems.

Keywords: Computer vision, road imaging, pothole detection, deep learning, image processing, point cloud modelling, convolutional
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1. Introduction
A pothole is a considerably sizeable structural road failure [1]. It
is formed by the combined presence of water and traffic [2]. Wa-
ter permeates the ground and weakens the soil under the road
surface, and the traffic subsequently breaks the affected road sur-
face, resulting in the removal of road surface chunks.

Road potholes are not just an inconvenience, they are also a
significant threat to vehicle conditions and traffic safety [3]. For
instance, the Chicago Sun-Times reported that drivers filed 11,706
complaints about road potholes in the first twomonths of 2018 [4].
According to The Pothole Facts, approximately one-third of 33,000
traffic fatalities in the United States involve poor road conditions.
It is, therefore, necessary and crucial to frequently inspect roads
and repair potholes [5].

Manual visual inspection is currently still the main form of
road pothole detection [6]. Structural engineers and certified in-
spectors regularly detect road potholes and report their locations.
This process is inefficient, expensive and dangerous. City councils
in New Zealand, for example, spent millions of dollars in 2017 de-
tecting and repairing potholes (Christchurch alone spent 525,000
USD) [7]. Additionally, it has been reported that more than 30,000
potholes are repaired in San Diego, the United States each year.
San Diego residents were encouraged to report road potholes so
as to relieve the burden of detection from the local road main-
tenance department [8]. Further, manual road pothole detection

results produced by inspectors and engineers are always subjec-
tive, as the decisions depend entirely on an individual’s experience
and judgement [9]. For these reasons, researchers have been ded-
icated to developing automated road condition assessment sys-
tems that can reconstruct, recognize and localize road potholes
efficiently, accurately and objectively [10]. Specifically, in recent
years, road pothole detection has become more than just an in-
frastructure maintenance problem because it is also a function of
advanced driver-assistance systems (ADAS) embedded into L3/L4
self-driving cars by many automotive companies, and emerging
autonomous driving systems call for a higher road maintenance
standard [11]. Jaguar Land Rover has experimented with data-
driven technologies to inform drivers of pothole locations and is-
sue warnings to slow down the car [12], while ClearMotion built
an intelligent suspension system that uses a combination of hard-
ware and software to anticipate, absorb and counteract the shocks
and vibrations caused by road potholes [13].

Since the turn of the millennium, computer vision tech-
niques have been extensively employed to acquire 3-D road data
and/or detect road potholes. However, the latest survey on this
research topic rarely discusses cutting-edge computer vision
techniques, such as 3-D point cloud modelling and segmentation,
machine/deep learning, etc. This article provides a comprehen-
sive and thorough review of the state-of-the-art (SoTA) road
imaging systems and computer vision-based pothole detection
algorithms. An overview of the existing systems and algorithms
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Fig. 1. An overview of road imaging systems and computer vision-based pothole detection algorithms.

is shown in Fig. 1. Laser scanners, Microsoft Kinect sensors
and camera(s) are the three most prevalently used sensors
for road data acquisition. The existing road pothole detection
approaches are categorized into four groups: (1) classical 2-D
image processing-based [14], (2) 3-D point cloud modelling and
segmentation-based [15], (3) machine/deep learning-based [16]
and (4) hybrid [3]. This article systematically reviews the prior
arts (see Sections 2 and 3) and the open-access datasets (see Sec-
tion 4), and discusses the existing challenges and their possible
solutions (see Section 5). We believe that this article can provide
readers with guidance when developing the next-generation 3-D
road imaging and pothole detection algorithms.

2. Road imaging systems
Road imaging (or road data acquisition) is typically the first step of
intelligent road inspection [10]. Cameras and range sensors have

been extensively used to acquire visual road data. The use of 2-
D imaging technology for this task began as early as 1991 [17].
However, the geometric structure of a road surface cannot be il-
lustrated from unrelated 2-D road images (without overlapping
areas) [18]. Additionally, the image segmentation algorithms per-
forming on either grey-scale or colour road images can be severely
affected by various environmental factors, most notably by poor
illumination conditions [19]. Many researchers [5,18,20,21] have
thus resorted to 3-D imaging technologies, which are more fea-
sible for overcoming these two drawbacks. The most commonly
used sensors for 3-D road data acquisition include laser scan-
ners [22], Microsoft Kinect sensors [23] and stereo cameras [24],
as shown in Fig. 2.

Laser scanning is a well-established imaging technology for ac-
curate 3-D road data acquisition [1]. This technology is developed
based on trigonometric triangulation [25]. The sensor (receiver) is

Fig. 2. Commonly used sensors for 3-D road data acquisition: (a) laser scanner [22]; (b) Microsoft Kinect [23]; (c) stereo camera [24].
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Fig. 3. 3-D road imaging with camera(s): (a) multi-view geometry; (b) reconstructed dense 3-D road point cloud.

located at a position with a known distance from the laser illumi-
nation source [26]. Accurate point measurements can, therefore,
bemade by calculating the reflection angle of the laser light. How-
ever, laser scanners have to be mounted on specific road inspec-
tion vehicles (see Fig. 2(a)) [27] for 3-D road data acquisition. Such
vehicles are not widely used because of high equipment purchase
and long-term maintenance costs.

Microsoft Kinect sensors [19] were initially designed for the
Xbox-360 motion-sensing games, and are typically equipped with
an RGB camera, an infrared sensor/camera, an infrared emitter,

microphones, accelerometers and a tilt motor for motion tracking
[1]. There have been three reported attempts [19,27,28] at 3-D road
data acquisition using Microsoft Kinect sensors. Although such
sensors are cost-effective and convenient to use, they greatly suf-
fer from infra-red saturation in direct sunlight, and the 3-D road
surface reconstruction accuracy is unsatisfactory [3].

3-D road data can also be obtained using multiple 2-D road
images captured from different views, e.g. using either a single
movable camera [29] or an array of synchronized cameras [20],
as illustrated in Fig. 3. The theory behind this technique is gener-

Fig. 4. The most representative road pothole detection algorithms developed between 2011 and 2021.
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ally known as multi-view geometry [30]. The essential task of 3-D
geometry reconstruction from multiple views is sparse or dense
correspondence matching. A typical monocular sparse road sur-
face 3-D reconstruction approach, as shown in Ref. [31], where the
camera poses and sparse 3-D road point clouds are obtained us-
ing a structure from motion (SfM) [32] algorithm and are refined
using a bundle adjustment (BA) [33] algorithm.

The use of stereo cameras for dense 3-D road point cloud
acquisition was pioneered by researchers from Bristol Visual
Information Laboratory [18,34,35]. In this case, depth informa-
tion is acquired by finding the horizontal positional differences
(disparities) of the visual feature correspondence pairs between
two synchronously captured road images [36]. This process is
commonly referred to as disparity estimation or stereo matching,
which mimics human binocular vision. Ref. [34] proposed a seed-
and-grow disparity estimation algorithm to acquire 3-D road
data efficiently. Ref. [35] introduced a more adaptive disparity
search range propagation strategy to improve the accuracy of
the estimated road disparities. Refs. [5,18] utilized a perspective
transformation algorithm to transform the target image into
the reference view, which significantly minimizes the trade-off
between stereo matching speed and disparity accuracy. Addi-

tionally, the bottleneck problems existing in Refs. [34,35] were
also tackled with the use of efficient and adaptive cost volume
processing algorithms. It is reported in Refs. [5,18] that the ac-
curacy of the reconstructed 3-D road geometry models is over
3 mm (an example is given in Fig. 3). Compared to laser scanners
and Microsoft Kinect sensors, stereo cameras are cheaper and
more reliable for 3-D road imaging. With the recent advances
in deep learning, convolutional neural networks (CNNs) have
demonstrated greater disparity estimation results than tradi-
tional explicit programming methods. Their limitations and
future development trends will be discussed in Section 5.

3. Road pothole detection approaches
The taxonomy of SoTA computer vision-based road pothole de-
tection algorithms is illustrated in Fig. 1. The classical 2-D im-
age processing-based algorithms process (e.g. enhance, compress,
transform, segment) road RGB or disparity/depth images with ex-
plicit programming [9]. Machine/deep learning-based algorithms
address the road pothole detection problem using image classifi-
cation, object recognition or semantic segmentation algorithms,
solvable with SoTA CNNs [37]. 3-D road point cloud modelling
and segmentation-based algorithms fit a specific geometry model

Table 1. Representative classical 2-D image processing-based approaches.

Reference Input Details

Koch and Brilakis [14] (2011) Colour image A road image is segmented into damaged and undamaged road regions using a
histogram-based thresholding method. The damaged road areas are processed with
morphological operations and elliptic regression. The road potholes are detected by
comparing the road textures inside and outside the ellipse.

Buza et al. [38] (2013) Colour image Otsu’s thresholding method is adopted to segment road images. Spectral clustering is
utilized to extract damaged road areas (potholes).

Ryu et al. [39] (2015) Colour image Road images are processed with morphological filters and segmented using a
histogram-based thresholding method. A potential road pothole contour is extracted
based on geometric properties. An ordered histogram intersection method is used to
determine whether the extracted area contains a road pothole.

Schiopu et al. [40] (2016) Colour image A histogram-based thresholding method is utilized to generate a set of road pothole
candidates. The candidates with specific geometric properties are determined to be
road potholes.

Jakštys et al. [41] (2016) Colour image Triangle thresholding and adaptive thresholding methods are used to segment road
images. A heuristic edge detection approach is designed for road pothole contour
extraction.

Akagic et al. [42] (2017) Colour image Road pothole regions of interest (RoIs) are detected by (1) manipulating the B
component in the RGB colour space and (2) performing two-level dynamic road pixel
selection. The search for road potholes is conducted only in the RoIs. The road
potholes are detected by comparing two cropped road images based on the method
proposed in Ref. [38].

Wang et al. [43] (2017) Grey-scale image The wavelet energy field of a road image is constructed to highlight road potholes.
Damaged road areas are processed with morphological filters. A Markov random
fields-based image segmentation method is used to segment the damaged road areas
for pothole detection. Morphological filters are used again to refine the road pothole
detection results.

Chung and Khan [44] (2019) Grey-scale image Otsu’s thresholding method is used to segment road images. The segmented images
are processed with morphological filters before performing distance transform. The
watershed algorithm is applied to the distance transform images for road pothole
detection.

Moazzam et al. [28] (2013) Depth images The road potholes are detected by analysing road depth distribution with respect to
different azimuth and elevation angles. The approximate volume of each road pothole
is calculated using the trapezoidal rule with unit spacing on the area-depth curves.

Fan et al. [6] (2019) Transformed disparity image A dense road disparity image is transformed to better distinguish the damaged and
undamaged road areas. The transformed disparity image is segmented using Otus’s
thresholding method for road pothole detection.

Fan et al. [5] (2021) Transformed disparity image SLIC is utilized to group the transformed disparities into a collection of superpixels.
The road potholes are then detected by finding the superpixels, whose values are
lower than an adaptively determined threshold.
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Fig. 5. Semantic segmentation for road pothole detection [37]. (The disparity transformation algorithm was introduced in Refs. [3,6].)

(typically a planar or quadratic surface) to the observed road point
cloud and segment the road point cloud by comparing the ob-
served and fitted surfaces [3]. Hybrid methods combine two or
more categories of algorithms mentioned above to improve the
overall road pothole detection performance. The most represen-
tative road pothole detection algorithms (from classical 2-D im-
age processing-based to deep learning-based) developed between
2011 and 2021 are shown in Fig. 4.

3.1 Classical 2-D image processing
Classical 2-D image processing-based road pothole detection is a
well-researched topic. As shown in Fig. 1, such approaches gen-
erally have a four-stage pipeline: (1) image pre-processing, (2) im-
age segmentation, (3) damaged area extraction and (4) detection
result post-processing [9]. The representative prior arts are sum-
marized in Table 1.

Image pre-processing algorithms, such as median filtering [42],
Gaussian filtering [45], bilateral filtering [46] and morphological
filtering [47], are first utilized to reduce redundant information
and highlight the damaged road areas. For instance, an adaptive
histogram equalization algorithm is used in Ref. [45] to adjust
the image brightness before binarizing the road images, and a
Leung-Malik filter [48] and Schmid filter [49] are used in Ref. [14] to
emphasize structural texture characteristics in colour road im-
ages. Recently, many researchers have resorted to 2-D spatial vi-
sual information (typically road depth/disparity images) for pot-
hole detection [3,5,6,28,50]. For example, Refs. [3,50] transformed
a road disparity image with a stereo rig roll angle and road
disparity projection model, which were estimated by minimiz-
ing a global energy function using golden section search [51]
and dynamic programming algorithms [52]. Disparity transfor-
mation makes the damaged road areas highly distinguishable,
as illustrated in Fig. 5. Ref. [6] yields the closed-form solution
of the above energy minimization problem, and therefore avoids
the intensive computations in the iterative optimization pro-
cess. As depth/disparity images can depict the geometric struc-
ture of road surfaces, they are more informative for pothole
detection.

The pre-processed road images are then segmented to separate
foreground (damaged road areas) and background (undamaged
road areas). Most prior arts [38,41,46] employ histogram-based
thresholding methods, such as Otsu’s thresholding [53], triangle
thresholding [14] and adaptive thresholding [40,46], to segment
colour/grey-scale road images. As discussed in Ref. [38], Otsu’s
thresholding [53] method minimizes the intra-class variance and

achieves better performance than the triangle thresholding [14]
method in terms of segmenting road images. Ref. [41] employs an
adaptive thresholdingmethod to segment road images, and it also
outperforms the commonly used triangle thresholding method.
Recent works demonstrated that such image segmentation algo-
rithms typically work more effectively and accurately on trans-
formed disparity images, depicting the quasi bird’s eye view of the
road scene [3,5,6,50]. For example, Ref. [3] utilizes Otsu’s thresh-
olding [53] method to segment the transformed disparity images
for road pothole detection, and in Ref. [5], a simple linear iterative
clustering (SLIC) algorithm [54] is used to group the transformed
disparities into a collection of superpixels. The road potholes are
then detected by finding the superpixels, whose values are lower
than an adaptively determined threshold.

The third and fourth stages are typically performed in a joint
manner. The damaged road areas (potholes) are first extracted
from the segmented foreground based on geometric and textural
assumptions [5]:

1). Potholes are typically concave holes;
2). The pothole texture is typically grainier and coarser than

that of the surrounding road surface;
3). The intensities of the pothole RoI pixels are typically

lower than those of the surrounding road surface due to
shadows.

For example, in Ref. [14], the contour of a potential pothole is
modelled as an ellipse.The image texturewithin the ellipse is then
compared with that of the undamaged road areas. If the elliptical
RoI has a coarser and grainier texture than that of the surrounding
region, the ellipse is identified as a road pothole. In Ref. [39], the
contour of a potential pothole is extracted by analysing various
geometric features, such as size, compactness, ellipticity and con-
vex hull. An ordered histogram intersection method is then used
to determine whether the extracted region contains a road pot-
hole. Finally, the extracted damaged road areas are post-processed
to further improve the road pothole detection results. This process
is typically similar to the first stage.

Classical 2-D image processing-based road pothole detection
approaches have been researched for almost two decades. These
types of algorithm have been systematically studied [9] and we
refer readers to this paper for more details. However, such ap-
proaches were developed based on early techniques and can be
severely affected by various environmental factors. Fortunately,
modern 3-D computer vision and machine learning algorithms
have greatly overcome these shortcomings.
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Table 2. Representative 3-D point cloud modelling and segmentation-based approaches.

Reference Input Key algorithm(s) Details

Zhang and
Elaksher [31] (2012)

3-D point
cloud

SfM, BA, 3-D feature
extraction

Sparse 3-D road geometry models are reconstructed with SfM and
refined with BA. Road potholes are detected by finding distinguishable
3-D features.

Zhang [34] (2013) 3-D point
cloud

Stereo vision, quadratic
surface fitting, connected
component labelling (CCL)

A quadratic surface is fitted to the observed 3-D road point cloud. The
3-D points under the fitted surface are considered to be part of road
potholes. Different road potholes are labelled using CCL.

Li et al. [55] (2018) 3-D point
cloud

Stereo vision, planar surface
fitting, bi-square weighted

robust least-squares
approximation, CCL

An observed 3-D road point cloud is interpolated into a planar surface
using a bi-square weighted robust least-squares approximation. The
3-D points under the fitted surface are considered to be part of road
potholes. CCL is also used to label different road potholes.

Du et al. [56] (2020) 3-D point
cloud

Stereo vision, planar surface
fitting and segmentation,
K-means clustering, region

growing

The surface normal information is incorporated into the road surface
modelling process. K-means clustering and region growing algorithms
are used to extract road potholes.

Table 3. Image classification-based approaches.

Reference Input Key algorithm(s) Details

Lin and Liu [16] (2010) Grey-scale image NL-SVM Average grey level, contrast, consistency, entropy and three-order
moments of grey-scale road images are computed to create hand-crafted
visual features. An NL-SVM model is trained to learn these features for
road image classification.

Daniel and Preeja [57]
(2014)

Grey-scale image SVM Classical image processing algorithms are utilized to reduce road image
noise and highlight informative visual features; CCL is then employed to
obtain the connected components. The five most prominent components
are selected as training samples to train an SVM model for road image
classification.

Hadjidemetriou et al.
[58] (2016)

Grey-scale image SVM, DCT, GLCM Road image patches are utilized to generate feature vectors using discrete
cosine transform (DCT) [59] and grey-level co-occurrence matrix (GLCM)
algorithms [60]. An SVM model is then trained with such feature vectors
to realize binary road patch classification.

Hoang [61] (2018) Grey-scale image LS-SVM, ANN Classical image processing algorithms are used to generate hand-crafted
visual features. A least-squares SVM (LS-SVM) model and an artificial
neural network (ANN) model are trained with such hand-crafted visual
features to recognize road images containing potholes.

Pan et al. [62] (2018) Colour image,
Multi-spectral image

ANN, RF, SVM Spectral, geometric and textural features are extracted. Three
models—ANN, random forest (RF) and SVM—are trained to learn these
features for road image classification.

Gao et al. [63] (2020) Colour image LIBSVM Classical image processing algorithms, including binarization,
morphology operations and integral projection, are used to generate
hand-crafted visual features. A model based on the library for SVM
(LIBSVM) is trained to detect road potholes and cracks.

Pereira et al. [64] (2018) Colour image Self-designed DCNN A DCNN, consisting of four convolutional-pooling layers and one FC layer,
is developed from scratch to classify road images.

An et al. [65] (2018) Colour image,
grey-scale image

Inception, ResNet, and
MobileNet

Four existing DCNNs are trained to classify colour and grey-scale road
image patches.

Ye et al. [66] (2019) Colour image Self-designed DCNN A DCNN containing a pre-pooling layer (used to reduce the characteristics
unrelated to road potholes) is designed from scratch to classify road
images.

Bhatia et al. [67] (2019) Thermal image Self-designed DCNN A DCNN model (with ResNet as the backbone network) is designed to
classify thermal road images.

3.2 3-D point cloud modelling and segmentation
An example of the reconstructed dense 3-D road point clouds is
given in Fig. 3. The approaches designed to process 3-D road point
clouds generally have a two-stage pipeline [34,68]: (1) interpolat-
ing the observed 3-D road point cloud into an explicit geometric
model (typically a planar or quadratic surface), and (2) segment-
ing the observed 3-D road point cloud by comparing it with the in-

terpolated geometric model. The most representative algorithms
are summarized in Table 2.

Taking Ref. [34] as an example, quadratic surfaces are fitted to
dense 3-D road point clouds using least-squares fitting. By com-
paring the difference (elevation) between the observed and fitted
3-D road surfaces, the damaged road areas (potholes) can be effec-
tively extracted. Different potholes are also labelled using a con-
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nected component labelling (CCL) algorithm. Similarly, Ref. [56]
interpolates the observed 3-D road point clouds into planar sur-
faces. The potential road potholes are roughly detected by finding
the 3-D points under the fitted surface. K-means clustering [69]
and region growing algorithms are subsequently used to refine the
road pothole detection results.

Least-squares fitting, however, can be severely affected by
outliers, often making the modelled road surface inaccurate
[3]. Therefore, Ref. [55] employs the bi-square weighted ro-
bust least-squares approximation for road point cloud mod-
elling. Ref. [50] utilized the random sample consensus (RANSAC)
algorithm [70] to improve the robustness of quadratic sur-
face fitting. Refs. [3,35] incorporated surface normal infor-
mation into the process of quadratic surface fitting, which
greatly enhances the performance of freespace and road pothole
detection.

In addition to the aforementioned camera-based approaches,
Ref. [71] employs high-speed 3-D transverse scanning technol-
ogy for road shoving (abrupt waves across the road surface) and
pothole detection. A subpixel line extraction method (including
point cloud filtering, edge detection and spline interpolation) is
performed on the laser stripe data. The road transverse profile is
then generated from the laser stripe curve and is approximated by
line segments. The second-order derivatives of the segment end-
points are used to identify the feature points of possible shoving
and potholes. Recently, Ref. [72] introduced a LiDAR-based road
pothole detection system,where the 3-D road points are classified
as damaged and undamaged by comparing their distances to the
best-fitting planar 3-D road surface. Unfortunately, Ref. [72] lacks
the algorithm details and necessary quantitative experimental
road damage detection results.

3-D point cloud modelling and segmentation-based methods
are relatively rare compared to other approaches. Nevertheless,
actual roads are always uneven, making such approaches occa-
sionally unfeasible. Furthermore, acquiring 3-D road point clouds
might not be necessary if the objective is only to recognize and
localize road potholes instead of obtaining their geometric de-
tails. With the combination of 2-D image processing algorithms,
the 3-D point cloud modelling performance can be significantly
boosted [3].

3.3 Machine/deep learning
With recent advances in machine/deep learning, deep CNNs (DC-
NNs) have become the mainstream techniques for road pothole
detection. Instead of setting explicit parameters to segment road
images or point clouds for pothole detection, DCNNs are typi-
cally trained through back-propagation with a large amount of
human-annotated road data [73]. Data-driven road pothole detec-
tion approaches are generally developed based on three types of
techniques [26]: (1) image classification networks, (2) object de-
tection networks and (3) semantic segmentation networks. Im-
age classification networks are trained to classify positive (pot-
hole) and negative (non-pothole) road images, object detection
networks are trained to recognize road potholes at the instance
level and semantic segmentation networks are trained to seg-
ment road (colour or disparity/depth) images for pixel-level (or
semantic-level) road pothole detection. The remainder of this sec-
tion details each type of these algorithms.

3.3.1 Image classification-based methods
Before deep learning technology exploded, researchers typi-
cally used classical image processing algorithms to generate

hand-crafted visual features and trained a support vector ma-
chine (SVM) [74] model to classify road image patches. The
most representative SVM-based approaches [16,57,58,61–63,75]
are summarized in Table 3. As such algorithms are already
outdated, we do not present readers with too many details
here.

With the revolution of computational resources and the in-
crease in training data sample size, DCNNs have been exten-
sively used for road pothole detection. Compared to the tradi-
tional SVM-based approaches, DCNNs are capable of learning
more abstract (hierarchical) visual features, and they have signifi-
cantly improved the road pothole detection performance [46]. The
most typical DCNN-based approaches [64–67] are summarized in
Table 3. Refs. [64,66] designed DCNNs from scratch. The DCNN
presented in Ref. [64] consists of four convolutional-pooling layers
and one fully connected (FC) layer. Extensive experiments on the
road data collected in Timor-Leste demonstrated the effectiveness
of such a DCNN in terms of classifying pothole and non-pothole
images. The DCNN introduced in Ref. [66] consists of a pre-pooling
layer, three convolutional-pooling layers, a sigmoid layer and two
FC layers. The pre-pooling layer was designed to reduce the char-
acteristics unrelated to road potholes. The experimental results
suggest that the proposed pre-pooling layer can greatly improve
the performance of road image classification, and that the de-
signed DCNN can effectively detect road potholes under different
illumination conditions.

Refs. [65,67] developed road image classification networks
based on existing DCNNs. Ref. [67] developed a DCNN based on
the popular residual network [76]. Extensive experiments demon-
strated that the proposed model can effectively classify ther-
mal road images collected in the night and/or foggy weather,
and it also outperforms the prior arts [61,65,77]. In Ref. [65], four
well-developed DCNNs—(1) Inception-v4 [78], (2) Inception with
ResNet-v2 [78], (3) ResNet-v2 [79] and (4) MobileNet-v1 [80]—are
trained to classify road images. The experimental results suggest
that these models performed similarly on the test set. Recently,
Ref. [81] compared 30 SoTA image classification DCNNs in terms
of detecting road cracks and found that road crack detection is
a relatively easy task compared to the image classification tasks
in other application domains. Road pothole detection is an eas-
ier task compared to road crack detection. Therefore, we believe
that road pothole detection with image classification networks is
a well-solved problem.

3.3.2 Object detection-based methods
As illustrated in Fig. 1, object detection-based road pothole detec-
tion approaches can be grouped into three types: (1) single shot
multi-box detector (SSD)-based, (2) region-based CNN (R-CNN)
series-based and (3) you only look once (YOLO) series-based. The
most representative object detection-based approaches are sum-
marized in Table 4.

An SSD has two components [82], namely a backbone model
and an SSD head. The former is a deep image classification
network for visual feature extraction, while the latter is one
or more convolutional layers added to the backbone so that
the outputs can be bounding boxes with object classes. Re-
searchers in this field have mainly incorporated different im-
age classification networks into the SSD for road pothole de-
tection. For example, Inception-v2 [83] and MobileNet [80] were
used as the backbone networks in Ref. [84], while ResNet-34 [76]
and RetinaNet [85] were used as the backbone networks in Ref.
[86].
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Table 4. Object detection-based approaches.

Reference Input
Key

algorithm(s) Details

Suong et al. [87] (2018) Colour image YOLO Two object detection networks—F2-Anchor and Den-F2-Anchor—developed based
on YOLOv2, are trained to detect potholes in the colour road images.

Maeda et al. [84] (2018) Colour image SSD Two SSD-based DCNNs (with Inception-v2 and MobileNet as the backbone
networks, respectively) are trained to detect potholes in colour road images.

Wang et al. [88] (2018) Colour image Faster R-CNN Two Faster R-CNNs (with ResNet-101 and ResNet-152 as the backbone networks,
separately) are trained to detect road potholes.

Ukhwah et al. [89] (2019) Grey-scale
image

YOLO YOLOv3, YOLOv3 Tiny and YOLOv3 SPP are trained to detect potholes in grey-scale
road images. YOLOv3 SPP achieves the best overall performance.

Dharneeshkar et al. [90]
(2020)

Colour image YOLO YOLOv2, YOLOv3 and YOLOv3 Tiny are trained to detect road potholes. YOLOv3
Tiny achieves the highest mAP, precision and recall.

Baek and Chung [91] (2020) Colour image YOLO Two YOLOv1 models are trained to detect cars (in the background) and road
potholes (in the foreground).

Kortmann et al. [92] (2020) Colour image Faster R-CNN A classifier is first trained to infer the country where the road image was taken. A
Faster R-CNN is then trained with respect to each country for road crack and
pothole detection.

Yebes et al. [93] (2020) Colour image Faster R-CNN,
SSD

Three Faster R-CNNs (with Inception-ResNet-v2, Inception-v2 and ResNet-101 as
the backbone networks, separately) and one SSD (with MobileNet-v2 as the
backbone network) are trained to detect road potholes. Faster R-CNN (with
ResNet-101 as the backbone network) achieves the best performance.

Gupta et al. [86] (2020) Thermal
image

SSD Two SSDs (with ResNet-34 and ResNet-50 as the backbone networks, separately)
are trained to detect potholes in thermal road images. The latter significantly
outperforms the former.

Javed et al. [94] (2021) Colour image R-CNN, SSD R-CNN and SSD are compared on the road data collected in Bangladesh. They
achieve similar road pothole detection performances.

Fig. 6. Faster R-CNN architecture [96] and road pothole detection results [93]: (a) road image; (b) road pothole detection results.

Compared to SSD, R-CNN and YOLO series are more widely
used for road pothole detection. In Ref. [94], R-CNN was demon-
strated to achieve a similar performance to SSD for road pothole
detection. In Ref. [93], four road pothole detection networks were
developed: (1) Faster R-CNN (with Inception-v2 [83] as the back-
bone network), (2) Faster R-CNN (with ResNet-101 as the back-
bone network [76]), (3) Faster R-CNN (with Inception-ResNet-v2
as the backbone network [78]) and (4) SSD (with MobileNet-v2 [95]
as the backbone network). Extensive experiments demonstrated
that Faster R-CNN (with ResNet-101 as the backbone network)
achieved the best overall performance [93,96]. Their experimen-
tal results are shown in Fig. 6. Ref. [88] compares the performance
of two Faster R-CNNs (with ResNet-101 and ResNet-152 as the
backbone networks, separately) for road damage detection on the
dataset introduced in Ref. [84] with respect to three evaluation
metrics: F1-Score, the harmonic mean of the precision and the

harmonic mean of the recall. The experimental results indicated
that Faster R-CNN (with ResNet-152 as the backbone network)
outperforms Faster R-CNN (with ResNet-101 as the backbone net-
work). This is probably because a deeper backbone can learnmore
abstract representations. Ref. [92] utilizes a Faster R-CNN to detect
both cracks and potholes in the road images captured in Japan,
India and the Czech Republic. A classifier is first trained to infer
the country where the road image was captured. A Faster R-CNN
is then trained with respect to each country (in order to reduce
the effects caused by the regional difference) for road crack and
pothole detection.

Unlike the R-CNN series, which uses region proposals to lo-
calize road potholes within the image, the YOLO series generally
splits the road image into a collection of grids, and within each
grid a collection of bounding boxes is selected. The network out-
puts a class probability and the offset values for each bound-
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Table 5. Semantic segmentation-based approaches.

Reference Input Key algorithm(s) Details

Pereira et al. [97] (2019) Colour image U-Net A conventional U-Net is trained to segment
colour road images for pothole detection.

Chun and Ryu [98]
(2019)

Colour image FCN An FCN is trained to segment colour road
images; a semi-supervised learning strategy is
also employed to produce additional pseudo
labels for network fine-tuning.

Fan et al. [11] (2020) Colour image, transformed
disparity image

AA, GAN An AA framework and a training set
augmentation technique are developed to
enhance both single-modal and data-fusion
semantic segmentation networks. The
developed networks outperform all other SoTA
networks.

Masihullah et al. [99]
(2021)

Colour image DeepLabv3+ An attention-based feature refinement module
is incorporated into DeepLabv3+ for road
pothole detection; the effectiveness of few-shot
learning for road pothole detection is also
validated.

Fan et al. [100] (2021) Colour image, transformed
disparity image

DeepLabv3+ An MSFFM is proposed to refine the learning
representations in single-modal semantic
segmentation networks for road pothole
detection.

Fan et al. [37] (2021) Colour image, disparity
image, transformed disparity

image

DCNNs with GAL A GNN-inspired GAL is designed;
GAL-DeepLabv3+ achieves the best road
pothole detection performance over all other
SoTA single-modal DCNNs on colour images,
disparity images and transformed disparity
images.

ing box. The bounding boxes with the class probability above a
threshold value are used to locate the road potholes within the
image. Thanks to its accuracy and efficiency, the YOLO series has
become the first choice for object detection-based road pothole
detection. For example, in Ref. [87], two object detection DCNNs,
referred to as F2-Anchor and Den-F2-Anchor, were developed for
road pothole detection. F2-Anchor, a variant of YOLOv2, is capa-
ble of generating five new anchor boxes (obtained using the K-
means clustering algorithm [69]). The experimental results sug-
gest that F2-Anchor outperforms the original YOLOv2 in detect-
ing road potholes with different shapes and sizes. Compared to
F2-Anchor, Den-F2-Anchor densifies the grid and achieves better
road pothole detection performance than YOLOv2 and F2-Anchor.
Additionally, Ref. [90] trained three YOLO architectures—YOLOv3
[101], YOLOv2 [102] and YOLOv3 tiny [101]—for road pothole
detection. YOLOv3 tiny achieved the best overall road pothole
detection accuracy. Similarly, Ref. [89] compared three differ-
ent YOLOv3 architectures—YOLOv3 [101], YOLOv3 Tiny [101]
and YOLOv3 SPP [101]—for road pothole detection. YOLOv3 SPP
demonstrated the highest road pothole detection accuracy. Re-
cently, Ref. [91] designed a hierarchical road pothole detection ap-
proach with two YOLOv1 networks [103]. One pre-trained YOLOv1
model was used to detect cars (background), while the other
YOLOv1 was used to detect road potholes from the foreground.
Nevertheless, the aforementioned object detection approaches
can only recognize road potholes at the instance level, and they
are unfeasible when pixel-level road pothole detection results are
desired.

3.3.3 Semantic segmentation-based methods
As shown in Fig. 1, the SoTA semantic segmentation networks
are grouped into two major categories: (1) single-modal and (2)

data-fusion. Single-modal networks generally segment RGB im-
ages with encoder-decoder architectures [100]. Data-fusion net-
works typically learn visual features from two different types of
vision sensor data (colour images and depth maps were used in
FuseNet [104], colour images and surface normal maps were used
in SNE-RoadSeg series [105,106] and colour images and trans-
formed disparity images were used in AA-RTFNet [11]) and fuse
the learned visual features to provide a better semantic under-
standing of the environment. The most representative prior arts
are summarized in Table 5.

Ref. [98] proposes a road pothole detection approach based on
fully convolutional network (FCN). To mitigate the difficulty in
providing pixel-level annotations required by supervised learn-
ing, Ref. [98] exploits a semi-supervised learning technique to
generate pseudo labels and fine-tune the pre-trained FCN au-
tomatically. Compared to supervised learning, semi-supervised
learning can greatly improve the overall F-score. Additionally,
Ref. [100] incorporates an attention-based multi-scale feature
fusion module (MSFFM) into DeepLabv3+ [107] for road pot-
hole detection. Similarly, Ref. [99] proposes an attention-based
coupled framework for road pothole detection. This framework
leverages an attention-based feature fusion module to improve
the image segmentation performance. The work also demon-
strates the effectiveness of few-shot learning for road pothole
detection.

We have conducted extensive research in this field. Ref. [11] in-
troduces an attention aggregation (AA) framework, which takes
the advantages of three types of attention modules: (1) chan-
nel attention module (CAM), (2) position attention module (PAM)
and (3) dual attention module (DAM). Additionally, Ref. [11] de-
velops an effective training set augmentation technique based
on generative adversarial network (GAN), where fake colour road

D
ow

nloaded from
 https://academ

ic.oup.com
/tse/article/4/4/tdac026/6835624 by guest on 14 M

arch 2023



10 | Transportation Safety and Environment, 2022, Vol. 4: No. 4

images and transformed road disparity images are generated to
enhance the training of semantic segmentation networks. The
experimental results demonstrated that (1) AA-UNet (single-
modal network) outperforms all other SoTA single-modal for road
pothole detection, (2) AA-RTFNet (data-fusion network) outper-
forms all other SoTA data-fusion networks for road pothole detec-
tion and (3) the training set augmentation technique not only im-
proves the accuracy of the SoTA semantic segmentation networks
but also accelerates their convergence during training. Recently,
we developed a graph attention layer (GAL) based on graph neu-
ral network (GNN) to further optimize image feature representa-
tions for single-modal semantic segmentation [37]. As illustrated
in Fig. 5, GAL-DeepLabv3+, the best performing implementation,
outperforms all other SoTA single-modal semantic segmentation
DCNNs for road pothole detection.

It should be noted here that road pothole detection can be
jointly solved with other driving scene understanding problems,
notably freespace and road anomaly detection [105,106,108–110].

Unfortunately, the SoTA semantic segmentation networks are
strong data-driven algorithms that require a considerable amount
of data. Therefore, road pothole detection with unsupervised or
self-supervised learning is a popular area of research that requires
more attention.

3.4 Hybrid methods
Hybrid road pothole detection approaches typically leverage at
least two categories of algorithms mentioned above, as shown in
Fig. 1. They have been extensively studied for over a decade. Such
approaches, as summarized in Tables 6, have brought the SoTA
results to this task.

A decade ago, Ref. [111] developed a hybrid road pothole de-
tection approach based on classical 2-D image processing as well
as 3-D point cloud modelling and segmentation. An image gra-
dient filter was first performed on the road videos (collected
by a high-speed camera) to select keyframes that were consid-
ered to contain road potholes. The keyframes’ 3-D road point

Table 6. Hybrid approaches.

Type Reference Input Details

Classical 2-D image
processing & 3-D point
cloud modelling and
segmentation.

Joubert et al. [111] (2011) 3-D point cloud, colour
image

The keyframes (potentially containing road potholes) are
selected using 2-D image processing algorithms; road potholes
in the keyframes are detected by comparing the observed and
modelled 3-D road point clouds.

Jog et al. [29] (2012) 3-D point cloud, colour
image

The road videos are analysed with 2-D image processing
algorithms to produce keyframes; the road videos are also
used to reconstruct 3-D road geometry for road pothole
detection.

Jahanshahi et al. [19]
(2013)

3-D point cloud, depth
image

A planar surface is fitted to the depth image; a normalized
depth-difference image, reflecting the difference between the
observed the fitted depth images, is created; Otsu’s
thresholding method is used to segment the normalized
depth-difference image for road pothole detection.

Fan et al. [3] (2019) 3-D point cloud,
transformed disparity

image

A disparity image is transformed into a quasi bird’s eye view.
Otsu’s thresholding method is utilized to segment the
transformed disparity image to produce the undamaged road
areas. The 3-D points in the undamaged road areas are used
to interpolate a quadratic surface; road potholes are detected
by comparing the observed and interpolated surfaces.

Classical 2-D image
processing &
machine/deep learning.

Azhar et al. [112] (2016) Colour image HOG features are extracted from road images; an NBC is
trained with the HOG features to classify road images. The
NGCS method is used to segment road images potentially
containing potholes.

Yousaf et al. [113] (2018) Colour image Road images are classified using the BoW algorithm; the GCS
is used to segment the road images that potentially contain
potholes.

Anand et al. [114] (2018) Colour image A SegNet is trained to segment road images for freespace
detection; the freespace regions are processed to generate
road pothole/crack candidates; a SqueezeNet is trained to
determine whether the generated candidates were road
potholes or cracks.

Machine/deep learning
& 3-D point cloud
modelling and
segmentation.

Dhiman and Klette [115]
(2019)

3-D point cloud, colour
image, disparity image

Four existing computer vision techniques are compared: (1)
single-frame stereo vision-based method; (2) multi-frame
vision sensor data fusion-based method; (3) Mask R-CNN
trained with transfer learning; and (4) YOLOv2 trained with
transfer learning.

Wu et al. [116] (2019) 3-D point cloud, colour
image

A semantic segmentation network is used to provide initial
road pothole detection results; a 3-D point cloud modelling
and segmentation algorithm is used to refine such results and
calculate the road pothole volumes.
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clouds (acquired by Microsoft Kinect) were simultaneously mod-
elled as planar surfaces. Similar to Ref. [50], RANSAC was em-
ployed to enhance the robustness of 3-D road point cloud mod-
elling. Road potholes were then detected by comparing the ob-
served and modelled road surfaces. Thanks to the efficient 2-D
image processing-based keyframe selection, the approach greatly
reduces the redundant computations in 3-D point cloud mod-
elling. Ref. [29] presents a similar hybrid approach. A road video
collected by a high-definition camera is first processed to recog-
nize the keyframes potentially containing road potholes. Simul-
taneously, this road video is also utilized for sparse-to-dense 3-D
road geometry reconstruction. The road potholes are efficiently
and accurately detected by analysing suchmulti-modal road data.
Such a hybrid method significantly reduces the number of incor-
rectly detected road potholes. Ref. [19] introduces a similar hybrid
road pothole detection approach based on RGB-D data (collected
by a Microsoft Kinect) analysis. A planar surface is first fitted to
the acquired depth image. Similar to Ref. [111], this process is op-
timized with the RANSAC. A normalized depth-difference image,
reflecting the difference between the actual and fitted depth im-
ages, is subsequently created and normalized. Otsu’s threshold-
ingmethod is then performed on the normalized depth-difference
image to detect road potholes. Recently, Ref. [3] introduced a hy-
brid road pothole detection algorithm based on 2-D road disparity
image transformation and 3-D road point cloud segmentation. A
dense subpixel disparity map is first transformed to better dis-
tinguish between damaged and undamaged road areas. Otsu’s
thresholding method is then used to extract potential undam-
aged road areas from the transformed disparity map. The dispar-
ities in the extracted regions are modelled as a quadratic surface
using least-squares fitting (also improved with RANSAC). Surface
normal information is also integrated into the point cloud mod-
elling process to reduce outliers. Finally, the road potholes are ef-
fectively detected by comparing the actual and the modelled dis-
parity maps.

In addition to the approaches discussed above, researchers de-
veloped hybrid approaches based on classical 2-D image process-
ing algorithms and machine/deep learning models. Taking Ref.
[112] as an example, a naive Bayes classifier (NBC) [117] is trained
to learn histograms of oriented gradients (HOG) [118] features.
Such HOG features are then utilized to train a road image clas-
sifier. Once an image is considered to contain road potholes, it is
segmented using the normalized graph cut segmentation (NGCS)
[119] algorithm to produce a pixel-level road pothole detection re-
sult. Furthermore, Ref. [113] proposes a two-stage road pothole de-
tection approach. In the first stage, the bag of words (BoW) [120]
algorithm is utilized to classify road images. This process has four
steps: (1) scale-invariant feature transform (SIFT) [121] feature
extraction and description, (2) visual vocabulary/codebook con-
struction with K-means clustering, (3) histogram of words gen-
eration and (4) road image classification with SVM. In the sec-
ond stage, the graph cut segmentation (GCS) [119] algorithm is
used to segment road images for pixel-level road pothole detec-
tion. Recently, Ref. [114] proposed a hybrid road crack and pothole
detection algorithm.Amodified SegNet [122] is first trained to seg-
ment road images for freespace detection. The freespace regions
are then processed with a Canny edge detector to generate road
crack/pothole candidates. Finally, a SqueezeNet [123] is trained to
determine whether the generated candidates are road cracks or
potholes.

In recent years, road pothole detection approaches based on 3-
D point cloud segmentation andmachine/deep learning have also
attracted much attention. Ref. [115] is a representative prior art in

this field. Ref. [115] compares four existing computer vision tech-
niques for road pothole detection: (1) SV1, a single-frame stereo
vision-based method, based on v-disparity image analysis and 3-
D plane fitting (in disparity space); (2) SV2, a multi-frame vision
sensor data fusion-based method, developed based on the digital
elevationmodel (DEM) and visual odometry; (3) LM1,Mask R-CNN
[124] trained with transfer learning; and (4) LM2, YOLOv2 [102]
trained with transfer learning. Furthermore, Ref. [116] introduced
a hybrid road pothole detection method based on semantic road
image segmentation and 3-D road point cloud segmentation. A
DeepLabv3+ [107] model is first trained to produce initial pixel-
level road pothole detection results. The 3-D points of the ini-
tially detected road potholes’ edges are classified as exterior and
interior ones. The exterior edges are used to fit local planes and
calculate road pothole volumes, while the interior edges are used
to reduce incorrectly detected potholes by analysing the road
depth distribution.

4. Public datasets
This section briefly introduces the existing open-access road pot-
hole detection datasets, which can provide researchers with indi-
cations of appropriate datasets when evaluating their developed
road pothole detection algorithms.

Ref. [125] created a dataset for road image classification. It con-
sists of a training set and a test set. The training set contains 367
colour images of healthy roads and 357 colour images of roads
with potholes; the test set contains eight colour images of each
category. This dataset is available at kaggle.com/virenbr11/potho
le-and-plain-rode-images.

Ref. [126] presented a large-scale dataset for instance-level pot-
hole detection.This dataset consists of a training set, a test set and
an annotation CSV file. The training set contains 2,658 colour im-
ages of healthy roads and 1,119 colour images of roads with pot-
holes. The test set contains 628 colour images. The images (reso-
lution: 2,760 × 3,680 pixels) were captured using a GoPro Hero 3+
camera. This dataset can be accessed at kaggle.com/sovitrath/roa
d-pothole-images-for-pothole-detection.

Ref. [127] created a dataset (image resolution: 720 × 1,280
pixels) of Indian roads, with semantic segmentation annotations
(road, pothole, footpath, shallow path and background). This
dataset contains a training set of 2,475 colour images and a test
set of 752 colour images. This dataset is available at kaggle.com/e
yantraiit/semantic-segmentation-datasets-of-indian-roads.

Ref. [128] created a dataset, referred to as CIMAT Challeng-
ing Sequences for Autonomous Driving (CCSAD). It was initially
created to develop and test autonomous vehicle perception and
navigation algorithms. The CCSAD dataset includes four scenar-
ios: (1) colonial town streets, (2) urban streets, (3) avenues and
small roads and (4) a tunnel network.This dataset contains 500 GB
of high-resolution stereo images, complemented with inertial
measurement unit (IMU) and GPS data. The CCSAD dataset is
publicly available at aplicaciones.cimat.mx/Personal/jbhayet/res
earch.

Ref. [84] presented a large-scale road damage dataset, in-
cluding 9,053 colour road images (resolution: 600 × 600 pixels)
collected in Japan. The images (containing 15,435 road damages)
were captured using a smartphonemounted on a car under differ-
ent weather and illumination conditions. This dataset is publicly
available at github.com/sekilab/RoadDamageDetector.

Ref. [129] created a dataset of 665 pairs of colour road images
and pothole ground truth labels under different road conditions.
This dataset can be used for automatic pothole detection and lo-
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calization in urban streets. This dataset is publicly available at
public.roboflow.com/object-detection/pothole.

Another road pothole detection dataset [130] was created for
binary road image classification. It contains 352 undamaged road
images and 329 pothole images. This dataset is small and can only
be used to test image classification CNNs. It is available at kaggle
.com/datasets/atulyakumar98/pothole-detection-dataset.

Ref. [3] published the world’s firstmulti-modal road pothole de-
tection dataset (image resolution: 800 × 1,312 pixels), containing
55 groups of (1) colour images, (2) subpixel disparity images, (3)
transformed disparity images and (4) pixel-level pothole annota-
tions. This dataset is publicly available at github.com/ruirangerfa
n/stereo_pothole_datasets.

Pothole-600 [11] was recently published by the same research
group. It also provides two modalities of vision sensor data: (1)
colour images and (2) transformed disparity images. The trans-
formed disparity images were obtained by performing the dispar-
ity transformation algorithm [50] on dense subpixel disparity im-
ages estimated using the stereo matching algorithm introduced
in Ref. [21]. The Pothole-600 dataset is available at sites.google.c
om/view/pothole-600.

5. Existing challenges and future trends
Before the deep learning boom in 2012, classical 2-D image
processing-based approaches dominated this research field. Such
explicit programming approaches are, however, usually compu-
tationally intensive and sensitive to various environmental fac-
tors, most notably illumination and weather conditions [19]. Fur-
thermore, road potholes have irregular shapes, making the ge-
ometric assumptions made in such approaches occasionally in-
feasible. Therefore, since 2013, 3-D point cloud modelling and
segmentation-based approaches have emerged to boost the road
pothole detection accuracy [34]. Nevertheless, such approaches
generally require a small field of view because of the assumption
that a single-frame 3-D road point cloud is a planar or quadratic
surface. Although significant efforts have been made to further
improve the robustness of road point cloudmodelling, such as us-
ing the RANSAC algorithm [3], extensive parameters are required
to ensure the satisfactory performance of these approaches,mak-
ing them highly challenging to adapt to a new scenario.

Over the past five years, DCNNs have been widely used to solve
this problem. Image classification networks can only determine
whether a road image contains potholes. Object detection net-
works can only provide instance-level road pothole detection re-
sults. Since the transportation departments are more concerned
about potholes’ geometric properties, such as width, depth, vol-
ume, etc., developing hybrid approaches that combine 3-D road
geometry reconstruction and semantic segmentation is the future
trend of this research.

Recent deep stereo matching networks have demonstrated su-
perior performance. We believe that they can be easily applied
to reconstruct 3-D road geometry models through transfer learn-
ing. However, such (supervised) approaches typically require a
large amount of well-labelled training data to learn stereo match-
ing, making them often hard to implement in practice [131].
Therefore, un/self-supervised stereo matching algorithms, specif-
ically developed for road surface 3-D reconstruction, are also
a popular research area that requires more attention. Further-
more, as stated in Refs. [105,106,108,109], data-fusion semantic
segmentation is currently a hot topic in driving scene under-
standing. However, such networks are generally computationally
complicated. After extensive literature investigation, we believe

that network pruning and knowledge distillation can be feasi-
ble solutions to this problem. In practical experiments, we can
also apply a well-trained image classification DCNN to select
keyframes (the road images that potentially contain potholes),
significantly avoiding the redundant computations of seman-
tic segmentation. Road potholes are not necessarily ubiquitous,
and it is challenging to prepare a large, well-annotated dataset
to train semantic segmentation DCNNs. Therefore, developing
few/low-shot semantic segmentation networks for road pothole
detection is also a popular area of research that requires more
attention.

6. Conclusions
This article comprehensively reviewed the SoTA road imaging
techniques and computer vision algorithms developed for road
pothole detection. Classical 2-D image processing-based and 3-D
point cloud modelling and segmentation-based approaches have
serious limitations. Hence, this article mainly discussed the well-
performing SoTA DCNNs, developed for road pothole detection.
Since transportation departments are more interested in the geo-
metric properties of potholes, developing hybrid approaches, con-
sisting of stereo matching-based road surface 3-D reconstruction
and data-fusion semantic segmentation functionalities, is the fu-
ture trend of this research. However, training stereomatching and
semantic segmentation networks require large human-annotated
datasets, and preparing such datasets is exceptionally labour-
intensive. Therefore, we believe that un/self-supervised stereo
matching algorithms, developed specifically for road surface 3-D,
and few/low-shot learning for semantic road image segmentation,
are popular areas of research that require more attention.
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