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Abstract—Optical flow and disparity are two informative
visual features for autonomous driving perception. They
have been used for a variety of applications, such as ob-
stacle and lane detection. The concept of “U-V-Disparity”
has been widely explored in the literature, while its coun-
terpart in optical flow has received relatively little attention.
Traditional motion analysis algorithms estimate optical flow
by matching correspondences between two successive
video frames, which limits the full utilization of environ-
mental information and geometric constraints. Therefore,
we propose a novel strategy to model optical flow in the
collision-freespace (also referred to as drivable area or sim-
ply freespace) for intelligent vehicles, with the full utiliza-
tion of geometry information in a 3-D driving environment.
We provide explicit representations of optical flow and de-
duce the quadratic relationship between the optical flow
component and the vertical coordinate. Through extensive
experiments on several public datasets, we demonstrate
the high accuracy and robustness of our model. In addition,
our proposed freespace optical flow model boasts a diverse
array of applications within the realm of automated driving,
providing a geometric constraint in freespace detection,
vehicle localization, and more. We have made our source
code publicly available at https://mias.group/FSOF.

Index Terms—Automated driving, autonomous driving
perception, freespace, optical flow, vehicle localization.
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|. INTRODUCTION

ITH the advancements in sensor technology and naviga-
W tion positioning systems, the advanced driver assistance
system (ADAS) has emerged as a crucial component of intelli-
gent vehicles [1]. It utilizes multiple sensors to monitor the sur-
rounding environment and provides real-time information to the
front end of the automated driving system [2]. Simultaneously,
the emergence and evolution of various computer vision algo-
rithms have driven continuous improvements in the accuracy
and performance of the environmental perception functionality
in ADAS systems [3]. Motion analysis poses a fundamen-
tal and challenging problem in environmental perception [4],
which entails the estimation of 2-D or 3-D object motion using
dynamic scene sequences captured across multiple successive
video frames. Optical flow estimation focuses specifically on
analyzing 2-D motion, whereas scene flow estimation deals
with 3-D motion analysis [5], [6]. Optical flow and scene flow
estimations hold profound significance in establishing high-level
cognitive ability in 3-D scene understanding and play a pivotal
role in downstream ADAS applications, such as mobile robot
navigation [7] and semantic scene parsing [3].

Depth estimation and object tracking are two crucial tasks in
the ADAS. Depth estimation typically involves using a stereo
rig to acquire disparity information [8], which is inversely
proportional to the depth. In autonomous driving scenarios,
the depth map often exhibits gradual changes along the V-axis
of the image plane due to the geometric features of the road
surface [9]. On the other hand, object tracking is commonly
accomplished or aided by optical flow information, which de-
scribes the pixel-level relationship by a 2-D motion field based
on luminosity consistency. Fig. 1 illustrates the difference and
relationship between optical flow and disparity in autonomous
driving scenarios. I é and I} represent the RGB images obtained
by the left and right cameras at time ¢, respectively, while I' 11
represents the image captured by the left camera at time ¢ + 1.
The optical flow map F' € R *W>2 ig obtained by calculating
the displacements of corresponding pixels between two succes-
sive video frames, where F',, and F', store the horizontal and
vertical displacements, respectively. This process introduces a
3-D translation and a slight rotation from the perspective of the
camera. In contrast, the disparity map represents corresponding
pixels that are horizontally shifted between the stereo image
pair. In this process, it is considered that a monocular camera
produces a horizontal translation b (the stereo rig baseline)
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Fig. 1. Difference and relationship between optical flow and disparity.

within a very short period of time. As shown in Fig. 1, both
the disparity map and F',, exhibit similar distributions: They
both change gradually along the V-axis.

Hu et al. [10] conducted a comprehensive analysis of the
relationship between disparity and pixel coordinates, which can
be expressed as follows:

{u = oz, A) + ug 1)
v=U" A)+ v
where p* = [z, y%, 2] represents a 3-D point in the world
coordinate system, p = [u, v] denotes its projection in the left
image, p, = [uo,vo] ' represents the coordinates of the principal
point, & and ¥ are two linear functions, and A denotes the
disparity of p. In addition, the geometric characteristics in 3-D
space can be abstracted into plane equations with various expres-
sions. By combining these plane equations with (1), disparity
maps can be mapped to the U-Disparity or V-Disparity domains
using cumulative voting algorithms [11].

This article is motivated by two observations. First, F',, ex-
hibits a similar distribution to that of the disparity map. Second,
the physical meanings of optical flow and disparity are highly
similar, as both describe the coordinate offset of corresponding
pixels between two successive video frames. Inspired by the
U-V-Disparity work mentioned above, we aim to explore the
regularities in the distribution of freespace optical flow through
the mathematical modeling of the 3-D driving environment and
the integration of camera parameters and odometry information.

The rest of this article is organized as follows. Section II
discusses two types of optical flow definitions and relevant
literature. In Section I1I, we derive the mathematical relationship
between an arbitrary on-road pixel p and its optical flow F(p)
for two different types of optical flow data formats. In Section IV,
we present the experimental results concerning model validation
and robustness evaluation. Section V provides a detailed dis-
cussion of various applications based on our proposed model.
Finally, Section VI concludes this article.

[I. LITERATURE REVIEW

Optical flow can be defined in two different ways. Traditional
optical flow algorithms consider optical flow as the partial
derivative of image intensity with respect to time [12]. This
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definition characterizes optical flow as an apparent velocity
distribution of brightness patterns in the current image [13], [14].
However, this definition assumes small interframe displace-
ments and short time intervals, which may not always hold true
in real-world scenarios. On the other hand, data-driven optical
flow estimation methods rely on large and accurate optical flow
datasets to enhance the performance of neural networks [15],
[16], [17], [18]. These datasets define optical flow ground truth
as the displacement vector of corresponding pixels between two
adjacent frames. This is because that the instantaneous velocity
of pixels cannot be directly measured, and calibration errors are
inevitable [19].

In accordance with the two aforementioned definitions, op-
tical flow approaches can be categorized as prior knowledge-
driven or data-driven. The former ones, exemplified by Horn
and Schunck’s flow estimation framework [13], aim to mini-
mize distortions in optical flow and prefer solutions that exhibit
smoothness. Nevertheless, these approaches assume smoothness
in optical flow across the entire image and the invariance of
pixel intensity between frames, making them difficult to apply
in real-world scenarios. Following Horn’s work, Lucas and
Kanade [14] introduced a local invariance constraint to estimate
sparse optical flow. However, when the input data are noisy,
this method performs poorly due to its reliance on the least
squares criterion. To address illumination variation problems,
Brox et al. [20] introduced a gradient constancy assumption.
However, this assumption is only effective for linear illumination
changes and is not capable of handling large vehicle displace-
ments.

Data-driven algorithms, such as FlowNet [21], employ deep
neural networks and large optical flow datasets to enhance the ac-
curacy of optical flow estimation. These methods yield superior
results compared to traditional approaches. However, they may
not fully exploit the environment geometry information, relying
heavily on hardware capabilities and the quality of optical flow
datasets.

This article builds upon the two definitions of optical flow and
aims to systematically construct freespace optical flow models
with geometry constraints. By deriving the explicit relationship
between an on-road pixel p and its optical flow F(p), we
effectively address the problems mentioned above.

[ll. METHODOLOGY

An example of the monocular system mounted on au-
tonomous vehicles for environmental perception is illustrated
in Fig. 2. We assume that the monocular system fixed above the
vehicle is a basic pinhole camera model with the camera intrinsic
matrix K, and the vehicle with the monocular camera can be
considered as a rigid body.

In our model, three coordinates are considered: Vehicle co-
ordinate system (VCS), camera coordinate system (CCS), and
pixel coordinate system (PCS). Due to the rigid connection
between the monocular camera and the vehicle body, we place
the CCS origin at the same position as the VCS origin, with the
Y -axis pointing vertically downward and the Z-axis parallel to
the vehicle’s motion direction. Taking into account the potential
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Fig. 2. lllustration of the two models. (a) Displacement-based model.
(b) Velocity-based model.

mounting error and centrifugal force experienced when a car
turns, there exists a roll angle 6 along the Z-axis between the
VCS and the CCS. Therefore, a 3-D point p§ = [x¢, 3¢, 2] " in
the CCS at time ¢ can be linked to a 3-D point p¢ = [x?,yY, 2¥]"
in the VCS using pf = Ryp;, where

cosf sinf O
Ry = |—sinf cosf O (2)
0 0 1

is the rotation matrix. Moreover, we consider the road surface
as a horizontal plane, because the unevenness of the road and
jolts while driving are negligible compared to the scale of
the camera’s field of view. Therefore, the road surface can be
described by a plane equation: y¥ = h, where h is the mounting
height of the camera from the ground.

Our model establishes the relationship between optical flow
and pixel coordinates, explicitly representing the optical flow
with respect to vehicle poses and camera parameters. As dis-
cussed in Section II, there are two distinct definitions of optical
flow. Therefore, we derive two different forms of the freespace
optical flow model: the displacement-based freespace optical
flow model, represented by f ;, and the velocity-based freespace
optical flow model, represented by f,. The choice between
the two models should be made based on the optical flow data
format. The displacement-based model is applicable when the
optical flow is encoded in interframe displacement, whereas
the velocity-based model is applicable when the optical flow
is encoded in pixel apparent velocity.

1513

A. Displacement-Based Freespace Optical Flow
Modeling

As mentioned in Section II, optical flow is commonly de-
fined as the displacement between two adjacent frames in
most public datasets, such as Sintel [22], Flying Chairs [21],
KITTT [19], [23], and Middlebury [24]. Therefore, we first
establish a displacement-based freespace optical flow model,
which explicitly describes the relationship between a freespace
point p in the PCS and its optical flow f .

For an arbitrary 3-D point p? = [z?,yY, 2?]" in the VCS, it
can be projected to p; = [u, v¢] " in the PCS of the video frame
captured at time ¢ as follows:

z;pr = KRypy 3

where z{ = z{ is the depth of point p in the CCS of the frame
at time ¢, and P, represents the homogeneous coordinates of
p:. Combining road surface equation (y” = h) with (3), we can
calculate p; with respect to p,:

Jy(us — ug) cos O — fo(vy —vg)sind
Jy(us —up)sin@ + f(ve — o) cos
pi =h 1 “4)
Jafy
fy(ug —uo) sin€ + fo(vy — vo) cos

where f, and f, are the horizontal and vertical camera focal
lengths, respectively. In order to simplify (4), we define A; and
X, as follows:

A= U — 4o ind + Yt — % cos
Up — U Uy — Vo . :
Ay = cosf — sin 0
fa fy
Therefore, (4) can be rewritten as follows:
A
U h ’
Py = ALl - (6)
"

Since the camera mounted on the vehicle typically has a fixed
distance to the ground plane, only the yaw angle ¢ (rotation
around the Y'-axis) and a translation d = [24,0, z4] " in the X-
direction and Z-direction, respectively, should be considered.
Therefore, we can obtain the following relationship:

Py = RoR,(p/ —d) @)
where
cosp 0 —sing
R,=1| 0 1 0 ®)
sing 0 cosy

represents the rotation with respect to ¢. Therefore, the perspec-
tive projection for the second frame is as follows:

ZinPi = Kpiy = KRyR, (p) —d), 9
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where 2 | = (2} — x4)sinp + (2] — z4) cos p is the depth of
point pf, ;. Combining (3) and (9) yields

1 v

Zt pt ’

By plugging (6) into (10), we deduce the displacement-based
freespace optical flow f as follows:

(10)

1
fd] = KRy (Rw(pf —d)
0 241

A3COS @ — Agsin @ N

fi=M Az sin gp}:!l—hM cos ¢ (11)
A3 sinp 4 Ag cos
where
B l frcosf  f.sin 9]
—fysin@  f,cosf
A3 = Ah — Ajxyg
As=h—Azg. (12)

Therefore, we derive the explicit relationship between the
optical flow and the pixel coordinates incorporating odometry
and camera parameters.

B. Velocity-Based Optical Flow Modeling

As mentioned in Section II, the optical flow has also been de-
fined as the (apparent or instantaneous) velocities of movement
of brightness patterns in an image. Therefore, we also develop
a velocity-based freespace optical flow model to accommodate
such data format.

To derive the velocity-based freespace optical flow model,
we introduce the Ackermann steering geometry [25] for four-
wheel autonomous vehicle kinematics modeling. As illustrated
in Fig. 2(b), d; denotes the steering angle of the front wheel,
P, =[xy, 2" and p; =[xy, 2] respectively represent the
coordinates of vehicle’s rear and front axle centers, v, =
[ir, %,]" and vy = [y, 2] " respectively denote the velocities
of the rear and front axles (||v,||» = ||v¢||» = v,), l denotes the
distance between the front and rear axles, and ¢ represents the
vehicle’s turning angle. With no sideslip of the front and rear
axles, the kinematics constraints can be expressed as follows:

Zycos(p+dp) = Zrsin(e +0y)
Ty COSp = Zpsinp (13)
where

(14)

According to the positions of the front and rear axle centers,
we can obtain the following expressions:

Ty = VpSIN P,  Zp = U, COS Q.

s)

Plugging (14) and (15) into (13) results in the Ackermann
kinematic model as follows:

Ty =, +1sing, zp =2z +1lcosep.

. tan &
¥ = Ur I !
Ty =VpSinp °

Zr = Uy COS Y

(16)

IEEE/ASME TRANSACTIONS ON MECHATRONICS, VOL. 29, NO. 2, APRIL 2024

To derive the velocity-based freespace optical flow model f,
we assume that the time interval At between two adjacent video
frames approaches zero:

e Ja
B AhtIEOE B Ahtglo Mq

fo (17)

where

AM(A2zd — x4) cos Ap — (Ag + Apr3) sin Ap

_ (A3sin Ap + Aq cos Ap) /At
9= h(1 — cos Ap) — A3sin Ap + A1z4 cos Ay

A
: (A38in A + Aq cos Ap) /At

. (18)

According to the limit theorem, we have:
Aa:d

im ——

At—0 At

Azd

im ——

At—0 At

=%, =v,sinp =0

= Z, = VypCOS = U,

sin Ap
At

li Ap=1.
i cos &7

tandy

li
11m I

At—0

= Alggo cos App = v,
(19)
Plugging (19) into (17) results in

tandys
Lo (20)

vy MAg — h (14 23)
fv:ﬁM tandy

AT — Aok

Equations (11) and (20) establish the fundamental relation-
ships between pixel coordinates p and their optical flow F(p)
in a general monocular camera system. These relationships
demonstrate that optical flow can be explicitly derived from
camera model parameters and vehicle poses, eliminating the
need for the brightness constancy assumption [13], which can
be challenging to satisfy and may lead to estimation errors. With
accurate vehicle poses and camera parameters, our proposed
freespace optical flow model can be effectively deployed in
various downstream autonomous driving applications.

C. Simplified Optical Flow Models for Special Cases

In most driving scenarios, the vehicle moves primarily along
the Z-axis with minimal rotation and little bias in the X-
direction. As a result, the yaw angle ¢ and the offset x4 between
two adjacent frames can be approximated to zero. Consequently,
(11) can be simplified as follows:

A Up — U
17)»1 Vi — Vg ’

Zd

fa=

ey

Furthermore, given that the steering angle d; is negligible,
(20) can be simplified as follows:

VpAl | U — U
h v —wo |’

Moreover, when there are no centrifugal effects during
straight-line motion and the camera’s mounting error (the

fo= (22)
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nonzero roll angle) is negligible, the optical flow can be ex-
pressed in its simplest form as follows:

f Zd Ut — Uo
=
hty —2Z4 |Vt — Vo

V¢ —Vo
f _ Ur(’Ut - Uo) Ut — Uo (23)
! hfy vy — Vg

Therefore, it can be observed that the vertical optical flow
component exhibits a quadratic relationship with respect to the
vertical pixel coordinates in the freespace area. Leveraging this
insight, we can adopt strategies similar to those used in U-V-
Disparity analysis to effectively depict freespace and incorporate
additional geometric constraints for other autonomous driving
applications.

IV. EXPERIMENTS

This section presents a comprehensive evaluation of our pro-
posed model, including effectiveness validation, quantitative
and qualitative assessments, robustness testing, and real-time
performance quantification.

As discussed in Section III, the optical flow can be explicitly
represented by pixel coordinates and vehicle poses. This repre-
sentation can be validated through surface fitting. If the optical
flow modeling is incorrect, a significant fitting error may occur,
which can serve as a criterion for measuring the accuracy of our
model.

A. Evaluation Metrics

We use the following four evaluation metrics to quantify the
effectiveness of our proposed optical flow models.
1) Average angular error

! ww< (F(p). F(p)) +1 )

[N

N =
VIF@)B+0(1F@)3+1)
(24
2) Average end-point error
1 -~
e =5 D _IIF(®) = Fp)l. (25)
P
3) Average absolute error of F';, modeling
1 -~
ev =5 D [Fu(p) = Fulp)] (26)
p
4) Average absolute error of F',, modeling
27

ov =3 S IFu(p) - Fulp)]

Here, F' and F respectively denote the ground-truth and
estimated optical flow maps, F', , and F', , respectively rep-
resent the ground-truth and estimated horizontal and vertical
optical flow maps, p denotes a pixel in the freespace area, and
N represents the total number of valid pixels used for model
evaluation.
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TABLE |
QUANTITATIVE EXPERIMENTAL RESULTS ON THE CVC12 DATASET

Scenario Type  Vehicle Speed ea (Rad) eg (Pixel)
Simple x1 0.003 0.609
Simple x4 0.003 0.704

Complex x1 0.089 0.534
Complex x4 0.030 0.244

TABLE Il
QUANTITATIVE EXPERIMENTAL RESULTS ON THE KITTI DATASET

Scenario Type | ea (Rad)  eg (Pixel) ey (Pixel) ey (Pixel)

Straight-going | 0.036 0.921 0.255 0.465
Turning 0.050 1.005 0.599 0.814
B. Datasets

We utilize the following three datasets to quantify the perfor-
mance of our proposed optical flow models:

1) the CVCI12 optical flow [26] dataset, which offers dense
optical flow ground truth (in pixels) for both the simple
and complex synthetic driving scenarios with respect to
different vehicle speeds, making it suitable for a compre-
hensive evaluation of our proposed displacement-based
model’s validity;

2) the KITTI flow 2012 and 2015 [19], [23] datasets, which
provide sparse optical flow ground truth (in pixels) cap-
tured in real-world driving scenarios, making it suit-
able for a comprehensive evaluation of our proposed
displacement-based model’s robustness and effective-
ness;

3) the CARLA [27] dataset (a synthetic dataset that we
created using the CARLA simulator), which provides
dense optical flow ground truth (instantaneous velocities
of movement) for synthetic driving scenarios, making it
suitable for a comprehensive evaluation of our proposed
velocity-based model.

C. Model Effectiveness Validation

The qualitative results on the CVC12 dataset are shown in
Fig. 3. It can be observed that the modeling error is minimal, and
its distribution is relatively uniform, validating the correctness
of our proposed displacement-based model. Table I provides the
corresponding e and eg results, where e, is less than 0.1 rad and
eg is less than one pixel. Based on these results, it is evident that
our displacement-based optical flow modeling process exhibits
high accuracy and robustness, regardless of varying vehicle
speeds and diverse driving scenarios.

Furthermore, we use the KITTI flow datasets to evaluate
the effectiveness and robustness of our proposed displacement-
based model. The qualitative and quantitative experimental re-
sults are presented in Fig. 4 and Table II, respectively. It can be
observed that our model achieves an e, of less than 0.05 rad
and an eg of less than one pixel in almost all the scenarios,
demonstrating the exceptional performance of our model in
real-world scenarios.
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Fig. 3. Qualitative experimental results on the CVC12 dataset: (I) simple scenario and (ll) complex scenario. (a) RGB images with freespace
shown in green. (b) Optical flow ground truth. (c) Estimated optical flow. (d) Absolute error of F',, modeling. (e) Absolute error of F',, modeling.
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Qualitative experimental results on the KITTI dataset. (a) RGB images with freespace shown in green. (b) Absolute error of F',, modeling.
(c) Absolute error of F',, modeling.
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Fig. 4.

TABLE I

These results strongly indicate the effectiveness of our proposed
QUANTITATIVE EXPERIMENTAL RESULTS ON THE CARLA DATASET

velocity-based optical flow model.

Driving direction 6 (Degrees)  ea (Rad/s)  eg (Pixel/s) . . . .
0 0050 0526 D. Optical Flow Modeling in the Special Case
5 0.038 0.516 We also conduct an additional experiment to demonstrate the
Straight-going -5 0.040 0.566 robustness of our optical flow modeling process in the special
10 0.034 0.521 casewhered = 0, = 0,and z4 = 0. AsshowninFig. 6, similar
-10 0.041 0.627 to the V-Disparity analysis process, we create the histogram
0 0.034 1.260 of F', for each row and then fit the F',, projections to a curve
5 0.032 1.285 expressed in (23). A fitted F', map can then be generated using
Turning _5 0.035 1.275 the curve parameters. By comparing the difference between the
10 0.033 1.357 observed and fitted F',, maps, we obtain an optical flow modeling
—10 0.037 1.325 error of less than one pixel, providing compelling evidence for

the validity of our model in this special case.

Finally, we present the evaluation of our velocity-based mod- E. Robustness to Random Noise

els with respect to two types of driving directions and varying
camera roll angles on the CARLA dataset. The experimental
results are shown in Fig. 5 and Table III. It can be observed
that our model achieves high accuracy in 6 estimation, with an
e of less than 0.05 rad/s and an eg of less than 1.5 pixels/s.

To further evaluate the robustness of our proposed model,
we conduct an experiment where random Gaussian noises with
varying intensities are added to the CVC12 dataset. We then
compare the fitting results with the observed optical flow ground
truth. As depicted in Fig. 7, our model demonstrates remarkable
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Qualitative experimental results on the CARLA dataset. (a) RGB images. (b) Optical flow ground truth. (c) Estimated optical flow.

(I) Straight-going with 6 = 0°. (Il) Turning with 6 = 0°. (Ill) Straight-going with 6 = 5°. (IV) Turning with 6 = 5°.
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Fig. 6. Optical flow modeling in the special case. (a) F',. (b) Hori-
zontal projections of F',. (c) Curve fitting result. (d) F', fitting error
visualization.
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Fig. 7. Noise robustness experiment on the CVC12 dataset. o repre-
sents the variance of added Gaussian noise.

robustness, effectively ignoring noise even when the variance
o is less than 1/32. In addition, our proposed model exhibits
superior performance in terms of end-point error at lower vehicle
speeds and maintains consistency across different scenarios.
Furthermore, the model demonstrates robustness in terms of
the average angular error across various scenarios and vehicle
speeds.

F. Real-Time Performance

We conduct an experiment to evaluate the efficiency of our
proposed model on an Intel i17-12700K CPU (using only a single
thread). With the input of odometry and camera parameters, our
model can generate accurate freespace optical flow (resolution:
1242 x 375 pixels) at a speed of 34.5 frames/s, without any
hardware acceleration.

G. Practical Experiments

To validate the feasibility and effectiveness of our proposed
freespace optical flow modeling approach, we conduct extensive
practical experiments on an automated guided vehicle, as illus-
trated in Fig. 8. We utilize a well-calibrated stereo rig to collect
video sequences in both the indoor and outdoor environments.
The optical flow information was obtained using pretrained
optical flow networks RAFT [28] (supervised) and ARFlow [29]
(unsupervised). We compare the optical flow estimation results
without and with our proposed algorithm incorporated. We apply
the optical flow to warp the target image to the reference view and
calculate the photometric error between the warped target image
and the reference image. The results reported in Table I'V indicate
that our proposed displacement-based model can effectively im-
prove the freespace optical flow results obtained using other deep
learning-based algorithms. By applying our modeling approach
as a postprocessing step, we are able to improve the geometry
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Fig. 8. lllustration of our practical experiments, where all the sensors
are well calibrated and synchronized to ensure accurate data collection.

TABLE IV
COMPARISON OF THE PHOTOMETRIC ERROR ACHIEVED BY TWO
STATE-OF-THE-ART OPTICAL FLOW ESTIMATION NETWORKS WITHOUT AND
WITH OUR PROPOSED ALGORITHM INCORPORATED

Indoor Outdoor
Networks - -
Baseline ~ Our model | Baseline  Our model
RAFT [28] 10.423 8.266 9.252 7.399
ARFlow [29] 11.251 9.125 9.953 8.017

consistency of the freespace optical flow. These findings high-
light the potential of our approach in enhancing the performance
of the existing optical flow algorithms for autonomous driving
perception and navigation tasks.

V. POTENTIAL AUTONOMOUS DRIVING APPLICATIONS
A. Freespace Detection

As discussed in Section IV-D, we can leverage our pro-
posed displacement-based optical flow model to segment F,
for freespace detection. Fig. 9 shows an example of freespace
detection results achieved using the technique depicted in Fig. 6.
This process is akin to the road area detection with disparity
segmentation presented in [30].

B. Vehicle Pose Estimation

Our proposed model also holds great promise for vehicle pose
estimation by utilizing the information provided by freespace
optical flow. As depicted in Fig. 10, we begin by creating a virtual
road plane using uniform sampling points. Assuming that the
vehicle has a random displacement and yaw angle changes while
moving along this virtual road plane, we employ the pinhole
camera model to obtain the optical flow ground truth. To evaluate

IEEE/ASME TRANSACTIONS ON MECHATRONICS, VOL. 29, NO. 2, APRIL 2024
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Fig. 9. Freespace detection using our proposed displacement-based
optical flow model.
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Fig. 10. Vehicle pose estimation with respect to varying displace-
ments, yaw angles, and different levels of Gaussian noise.

the robustness of our model against measurement noise, we
introduce Gaussian noise with varying variances o to the optical
flow ground truth, which serves as the sole input to our pose
estimation pipeline. We employ the particle swarm optimization
algorithm [31] in the bivariate fitting process to determine the
best localization parameters. The absolute estimation errors of d
and  are shown on the right. It is evident that the displacement
estimation error is below 0.07 m, and the yaw angle estimation
error is less than 0.3°. Moreover, the localization accuracy
demonstrates robustness against noises of different magnitudes
of displacement and rotation, indicating the effectiveness of our
approach in accurate pose estimation even under challenging
conditions.

VI. CONCLUSION

This article presented two freespace optical flow models
for automated driving based on two definitions (displacement
and velocity). By leveraging the monocular camera parameters
and vehicle poses, we established an explicit relationship be-
tween optical flow and the pixel coordinates. We mathematically
demonstrated the distribution regularities of both the optical flow
models in the PCS. To verify the validity and accuracy of our
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proposed models, we conducted extensive experiments on the
CVC12 optical flow dataset, KITTI flow 2012 and 2015 datasets,
and the CARLA dataset. The average end-point error is less
than one pixel on the CVC12 and KITTI datasets and less than
1.5 pixels/s on the CARLA dataset. We also verified the validity
of our model in special cases via curve fitting. Our proposed
model performed well against noise and demonstrates real-time
performance. Finally, we showcased the potential applications
of our model through experiments involving freespace detection
and vehicle pose estimation.
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