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Abstract—Semantic segmentation and stereo matching are two
essential components of 3D environmental perception systems for
autonomous driving. Nevertheless, conventional approaches often
address these two problems independently, employing separate
models for each task. This approach poses practical limitations in
real-world scenarios, particularly when computational resources
are scarce or real-time performance is imperative. Hence, in this
article, we introduce S®M-Net, a novel joint learning framework
developed to perform semantic segmentation and stereo matching
simultaneously. Specifically, S M-Net shares the features extracted
from RGB images between both tasks, resulting in an improved
overall scene understanding capability. This feature sharing pro-
cess is realized using a feature fusion adaption (FFA) module, which
effectively transforms the shared features into semantic space and
subsequently fuses them with the encoded disparity features. The
entire joint learning framework is trained by minimizing a novel
semantic consistency-guided (SCG) loss, which places emphasis on
the structural consistency in both tasks. Extensive experimental
results conducted on the vKITTI2 and KITTI datasets demon-
strate the effectiveness of our proposed joint learning framework
and its superior performance compared to other state-of-the-
art single-task networks. Our project webpage is accessible at
mias.group/S3M-Net.

Index Terms—Autonomous driving, environmental perception,
joint learning, semantic segmentation, stereo matching.

I. INTRODUCTION

environmental perception stands as a critical and

3D foundational aspect of autonomous driving [1], [2].
Semantic segmentation and stereo matching are two key func-

tionalities in 3D environmental perception systems [3], [4], [5].
The former provides a comprehensive pixel-level understanding
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of the environment, while the latter simulates human binocular
vision to acquire accurate and dense depth information [6]. The
combined utilization of both functionalities has become the
mainstream approach in recent years [7], [8], [9], [10], [11],
[12].

In recent years, the research focus in semantic segmentation
has shifted from single-modal networks [13], [14], [15], [16],
[17], [18] with a single encoder to feature-fusion networks with
dual encoders [19], [20], [21], [22]. The latter type of networks
extract heterogeneous features from RGB-X data, where “X” can
represent various forms of spatial geometric information, e.g.,
depth images generated from LiDAR point clouds and surface
normal maps obtained through depth-to-normal translation [23].
These heterogeneous features are subsequently fused to achieve
a more comprehensive understanding of the environment [21].
However, a critical drawback of feature-fusion networks is their
dependency on the availability of the “X” data, which can
pose limitations in scenarios where LiDARs are not present.
Additionally, when the accuracy of the “X” data is not satis-
factory, such as due to variations in camera-LiDAR calibration,
the fusion of these heterogeneous features can potentially lead
to a degradation in the overall performance of semantic seg-
mentation [24]. While a stereo camera can serve as a practical
and cost-effective alternative to LiDARs for depth informa-
tion acquisition, the incorporation of a separate stereo match-
ing network introduces additional computations, and therefore,
poses difficulties in achieving real-time processing speeds for
the entire system [9]. Moreover, stereo matching and semantic
segmentation share the same input, and the representations from
RGB images can be more informative when they are jointly
learned by both tasks.

The joint learning of multiple interconnected 3D environ-
mental perception tasks introduces a form of regularization that
has demonstrated superiority over uniform complexity penaliza-
tion in reducing over-fitting [25]. Furthermore, rather than em-
ploying separate models for semantic segmentation and stereo
matching, joint learning can potentially reduce computational
complexity [7], [8], [9], [10], [11], [12], as shared learning
representations can be used for both tasks. This can be ad-
vantageous in real-time or resource-constrained applications.
Moreover, joint learning enables end-to-end optimization of
the entire system, allowing the model to adapt to the specific
challenges of both tasks simultaneously. Consequently, this
can lead to improved performance when compared to models
trained separately for each task [12]. In addition, stereo matching
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can occasionally produce ambiguously estimated disparities,
particularly in texture-less or occluded regions [26]. Semantic
segmentation can provide informative contextual information
that helps disambiguate such cases, ultimately leading to more
reliable disparity estimations [9]. Regrettably, the joint learning
of semantic segmentation and stereo matching, especially within
feature-fusion networks or when faced with a scarcity of training
samples, has received relatively limited attention in this research
area and calls for further investigation.

Therefore, in this article, we present Semantic Segmentation
and Stereo Matching Network (S?M-Net), a joint framework to
simultaneously predict both semantic and disparity information.
S3M-Net begins with the extraction of features from stereo
images. These features are then processed by a multi-level
gate recurrent unit (GRU) operator to generate a disparity map.
Simultaneously, these features are shared with the semantic
segmentation task via a feature fusion adaptation (FFA) module.
Building upon our prior work SNE-RoadSeg [3], we extract
additional features from the estimated disparity map. Finally,
a densely-connected skip connection decoder is employed to
decode the fused features and generate the semantic predictions.
S3M-Net is trained in a fully supervised manner by minimizing
a semantic consistency-guided (SCG) joint learning loss. Ex-
tensive experiments conducted on the vKITTI2 [27] and KITTI
2015 [28] datasets unequivocally demonstrate the effectiveness
and superior performance of our proposed S*M-Net.

In summary, the main contributions of this article include:

e S3M-Net, a joint learning framework designed to address
semantic segmentation and stereo matching simultane-
ously, where both tasks collaboratively leverage the fea-
tures extracted from RGB images, enhancing the overall
understanding of the driving scenario;

e A feature fusion adaption module to transform the shared
feature maps into semantic space and subsequently fuse
them with encoded disparity features;

® A semantic consistency-guided loss function to supervise
the training process of the joint learning framework, em-
phasizing on the structural consistency in both tasks.

The remainder of this article is organized as follows:
Section II provides a review of related work. Section III in-
troduces our proposed S®M-Net. Section IV presents the ex-
perimental results and compares our framework with other
state-of-the-art (S0TA) approaches. In Section V, we discuss the
advantages and limitations of our method. Finally, we conclude
this article in Section VI.

II. LITERATURE REVIEW
A. Semantic Segmentation

Semantic segmentation has been a long-standing problem
in the field of computer vision over the past decade [6],
[29]. The SoTA networks in this research area can generally
be classified into two categories: (1) single-modal networks
with a single encoder and (2) feature-fusion networks with
multiple encoders [3], [30], [31]. In the early attempts to
tackle semantic segmentation, researchers primarily focused
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on encoder-decoder architectures for pixel-level classification.
Notable examples include SegNet [13], U-Net [14], PSP-
Net [15], the DeepLab series [16], [17], and Transformer-based
networks [32], [33], [34]. The encoder extracts hierarchical deep
features from the input image, while the decoder produces the
segmentation map by upsampling and combining the features
from different encoder layers. However, these networks are lim-
ited in their ability to effectively combine deep features extracted
from different modalities (or sources) of visual information. As
aresult, they often struggle to produce accurate segmentation re-
sults in challenging scenarios characterized by poor lighting and
illumination conditions [3]. Therefore, researchers have turned
their focus towards feature-fusion networks that can effectively
integrate deep features learned from multiple modalities (or
sources) of visual information. This problem is commonly
referred to as “RGB-X semantic segmentation”, where “X”
represents the additional modality (or source) of visual infor-
mation, in addition to the RGB images. The most representative
feature-fusion networks based on convolutional neural networks
(CNNs) include FuseNet [19], MFNet [35], RTENet [20], and
our previous works SNE-RoadSeg series [3], [21]. Furthermore,
Transformer-based RGB-X semantic segmentation networks,
such as OFF-Net [22] and RoadFormer [24], have been recently
introduced. In this article, we design our S3M-Net based on the
SNE-RoadSeg architecture and explore more effective solutions
for the feature fusion operation.

B. Stereo Matching

Conventional explicit programming-based stereo matching
algorithms (local, global, and semi-global) generally consist
of four main procedures: (1) cost computation, (2) cost ag-
gregation, (3) disparity optimization, and (4) disparity refine-
ment [26]. The performance of these algorithms has been signifi-
cantly outperformed by end-to-end deep stereo networks, thanks
to the recent advancements in deep learning techniques. PSM-
Net [36], GwcNet [37], AANet [38], LEA-Stereo [39], RAFT-
Stereo [40], and CRE-Stereo [41] are six representative end-to-
end deep stereo networks proposed in recent years. PSMNet [36]
employs a spatial pyramid to capture multi-scale information
and employs multiple 3D convolutional layers to exploit both
local and global contexts for cost computation. GwcNet [37],
on the other hand, builds upon the foundation of PSMNet
by constructing the cost volume via group-wise correlation,
thereby enhancing the 3D stacked hourglass network. In light
of the computational demands of 3D convolutions, researchers
have actively sought ways to minimize the trade-off between
efficiency and accuracy in stereo matching. For example, LEA-
Stereo [39] introduces the neural architecture search (NAS) [42]
technique to stereo matching. This pioneering approach results
in the first end-to-end hierarchical NAS framework for deep
stereo matching. RAFT-Stereo [40], a rectified stereo matching
method that draws inspiration from the optical flow estimation
network RAFT [43], leverages the RAFT architecture to perform
accurate and real-time stereo matching inference. The network
utilizes recurrent structures to refine correlation features and
enhance the disparity estimation accuracy. CRE-Stereo [41],
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another recent prior art based on recurrent refinement (to update
disparities in a coarse-to-fine manner) and adaptive group corre-
lation (to mitigate the impact of erroneous rectification), yields
more compelling disparity estimation results. In this article, we
develop our S®M-Net based on the RAFT-Stereo architecture.

C. Multi-Task Joint Learning for Semantic Segmentation and
Stereo Matching

Existing frameworks that jointly address semantic segmenta-
tion and stereo matching generally focus on improving dispar-
ity accuracy by leveraging semantic information [7], [8], [9],
[10], [11], [12], while the discussion regarding the utilization
of disparity information to enhance semantic segmentation at
the feature level for joint learning remains limited, except for
the exploration of “RGB-X semantic segmentation” discussed
in Section II-A. Nevertheless, these prior arts either require a
large amount of well-annotated training data or involve intri-
cate training strategies for the joint learning of both tasks. For
instance, SegStereo [7] and DispSegNet [8] require an initial
unsupervised training phase on the large-scale Cityscapes [44]
dataset, followed by a subsequent supervised fine-tuning on the
smaller KITTI 2012 and 2015 [28], [45] datasets. Similarly,
the studies presented in [9], [11], [12] involve the pre-training
of their spatial branches (performing stereo matching) on the
large-scale SceneFlow [46] dataset, followed by the fine-tuning
of both semantic and spatial branches on the KITTI 2012 and
2015 datasets [28], [45]. DSNet [10] adopts a different joint
learning strategy in which the training alternates between the
semantic segmentation and stereo matching networks, with each
network being frozen during the training of the other. However,
achieving simultaneous convergence of the two networks can
be challenging, as the shared features are not learned in an end-
to-end manner. Additionally, we were unable to locate publicly
available source code (in PyTorch or TensorFlow) for these prior
arts, and re-implementations carry the risk of introducing errors.
In contrast to the aforementioned approaches, our proposed

Architecture of our proposed S®M-Net for end-to-end joint learning of semantic segmentation and stereo matching.

S3M-Net is trained in an end-to-end fashion and capable of
jointly learning semantic segmentation and stereo matching even
when the training data are limited.

III. METHODOLOGY

As illustrated in Fig. 1, our proposed S*M-Net consists of five
main components:

1) Jointencoder to extract shared features from RGB images;

2) Multi-level GRU update operator to refine disparity maps;

3) Feature fusion adaptation module to transform shared fea-
tures into the semantic space and fuse them with features
extracted from the disparity maps;
Densely-connected skip connection decoder to decode
fused features and produce final semantic predictions;
Semantic consistency-guided loss to supervise the entire
joint learning process.

4)

5)

A. Joint Encoder

Given a pair of well-rectified stereo images I', I" e
RAIXWx3 where H and W denote their height and width,
respectively, we employ a joint encoder consisting of a series
of residual blocks and downsampling layers to extract features
FL={FEF . .. F:yand FE = {F§, ... FE} from I* and
I respectively. F* is subsequently shared with the semantic
segmentation task.

B. Multi-Level GRU Update Operator

Using the features F* and F7 extracted by the joint en-
coder, we first construct an initial 3D correlation volume C' €
RAXWXW 45 follows:

Ci(i,j. k) = FL(i,j.:) - FE(i, k"), (1)

where ¢ represents the i-th row, and j and k represent to the
j-th and k-th columns in the left and right shared feature maps,
respectively. We then construct a pyramid of 3D correlation
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volumes C = {C4,...,C,,} by downsampling C; with aver-

age pooling operations. The m-th 3D correlation volume C',,, €

W, .
RIT*W* 3w is constructed from the (m — 1)-th 3D correlation

volume C',, 1 using 1D average pooling with a kernel size of
2 and a stride of 2. Inspired by RAFT-Stereo [40], we adopt a
multi-level GRU update operator to refine a sequence of disparity
mapsD = {D1,...,D,}, where D; € RT>W (; =1,... n).
This refinement process is performed in a coarse-to-fine manner,
starting from an initial disparity map D in which all disparities
are initialized to 0.

C. Feature Fusion Adaptation Module

In stereo matching, a lower number of channels, e.g., the 256
channels utilized in RAFT-Stereo [40], is often sufficient for cap-
turing relevant features for 1D correspondence search, especially
when considering computational efficiency. On the other hand,
semantic segmentation requires pixel-level classification and a
more in-depth scene understanding. It benefits from complex
feature representations that can capture fine-grained details and
object boundaries, making a larger number of channels, e.g., the
2048 channels employed in SNE-RoadSeg [3], advantageous
for this task. Therefore, we introduce the FFA module to align
the channels and resolutions between the disparity and semantic
feature maps during joint learning.

As illustrated in Fig. 2, given the left shared feature maps
FL={FL .. FL} and the disparity map pyramid D =
{D;,...,D,}, we obtain the adapted fused feature sequence
FF ={F{,..., FI'} using our proposed FFA module, which
can be formulated as follows:

F! = A(F") o gP(Dn), )

where £ denotes the disparity map encoding operation, @
denotes the feature fusion operation, and .A; is defined as our
feature adaptation operation, as formulated as follows:

L . n+1
R(F3i_1), i< gy 3 )

)
g(Ff:l D 51D—1(D7l))7 1> (2L1)

Ai(FF) = {
where R represents the remapping operation from the shared
feature space to the semantic feature space, and £ represents the
encoding operation for the semantic feature maps.
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Specifically, for the remapping operation R, we employ 3 x 3
convolutional layers with a stride of 2 and padding of 1, each
followed by a batch normalization layer and a rectified linear unit
(ReLU) activation layer, adapting the feature map channels to
64,256, and 512, respectively. Regarding the disparity encoding
operation £, we employ ResNet-152 [47] as the backbone
network to extract features from the last disparity map D,,. In
ResNet-152, the first block consists of a convolutional layer, a
batch normalization layer, and a ReL.U activation layer. Then,
a max pooling layer and four residual layers are sequentially
applied to progressively increase the number of feature map
channels.

Similarly, we utilize the residual block for the encoding oper-
ation £ on the semantic feature maps, resulting in feature maps
with 1024 and 2048 channels. The fused features %" contain
both texture and spatial geometric information, thereby enhanc-
ing semantic scene understanding. We conduct an ablation study
for different feature fusion modules in Section I'V-F.

D. Densely-Connected Skip Connection Decoder

We employ the decoder introduced in our previous work
SNE-RoadSeg [3] to decode the fused features and generate the
semantic prediction. In this encoder, three convolutional layers
in the feature extractor and the upsampling layer share the same
parameters: a 3 x 3 kernel size, a stride of 1, and a padding of 1.
In the final layer, features are upsampled to create the prediction
map with IV channels, where N denotes the number of semantic
classes.

E. Semantic Consistency-Guided Joint Learning Loss

The loss function employed in our joint learning framework
should guide the supervision of both the semantic segmenta-
tion and stereo matching tasks. Gradient smoothness between
the disparity and semantic segmentation maps typically aligns
closely, particularly at inter-class boundaries, where traditional
training strategies tend to result in more errors due to factors
such as occlusion and reflection. In light of this, we propose an
SCG loss function to supervise the entire joint learning process,
which leverages semantic consistency to optimize the training
of S?M-Net.

Given the ground-truth semantic segmentation map M €
R7>W Each pixel p of M“ can be written as follows:

MC(p) € {1,...,C}, 4

where C' refers to the number of the semantic classes. We
construct an extended 3D volume V3P ¢ R#*W*C ysing the
following expression:

VEP(p) = 5(M%(p),c), Q)

where c represents the c-th channel in the volume, and § denotes
the Kronecker Delta function [48]. As a result, each channel of
the volume can be regarded as a binary segmentation map of
the c-th class. To emphasize semantic consistency, We use an
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average pooling operation for each channel to obtain the inter-
class volume VI € R#>*WxC:

vi=pW?P), (©6)

where P denotes the average pooling operation. Furthermore,
we apply a normalization operation:

VN (p) = eV D7, ™)

to obtain a normalized volume V¥ € R#*W*C_We then map
V¥ to a semantic consistency-guided weight map W € R#*W
through:

W (p) = max {V¥(p)}. ®)
The total loss function
Escg - ﬁss + »Csm (9)

consists of an SCG semantic segmentation loss L¢¢ and an SCG
stereo matching loss Lg,,. L is formulated as follows:

1 N C
Los = =5 D> (1= )+ aW(p)lye(p) log(iie(p)),

i=1 c=1

(10)

where N denotes the pixel number, C' represents the class
number, g.(p) denotes the predicted probability of p belonging
to class ¢, y.(p) represents the ground-truth label for p in class
¢, and « denotes the loss weight. Based on the ablation study
detailed in Section IV-F, we set the value of « to 0.1. Moreover,
L is formulated as follows:

N

Lon=1Y [1—a)+aW@W"|D° =D, (D
i=1

where DY represents the ground-truth disparity map and D;
denotes the i-th disparity map in D. «v is set to 0.1 and + is set
to 0.9.

IV. EXPERIMENTS

In this article, we conduct extensive experiments to evaluate
the performance of our developed S*M-Net both quantitatively
and qualitatively. The following subsections provide details on
the used datasets, experimental set-up, evaluation metrics, and
the comprehensive evaluation of our proposed method.

A. Datasets

Since the training of our network requires both semantic and
disparity annotations, we employ two public datasets to evaluate
its performance: the vKITTI2 [27] dataset (synthetic yet large-
scale) and the KITTI 2015 [28] dataset (real-world yet modest-
scale). Their details are as follows:

e The vKITTI2 dataset contains virtual replicas of five se-
quences from the KITTI dataset. It provides 15 classes
for the semantic segmentation tasks. Dense ground-truth
disparity maps are acquired through depth rendering using
a virtual engine. In our experiments, we randomly select
700 pairs of stereo images, along with their semantic

IEEE TRANSACTIONS ON INTELLIGENT VEHICLES, VOL. 9, NO. 2, FEBRUARY 2024

and disparity annotations to evaluate the effectiveness and
robustness of our proposed S>M-Net, where 500 pairs are
used for model training and the remaining 200 pairs are
used for model validation.

e The KITTI2015 dataset contains 400 pairs of stereo images
captured in real-world driving scenarios, with 200 pairs
containing ground truth and the other 200 pairs lacking
ground truth. It provides 19 classes for the semantic seg-
mentation tasks (in alignment with the Cityscapes [44]
dataset). Sparse disparity ground truth is obtained using
a Velodyne HDL-64E LiDAR. In our experiments, we
allocate 70% of the dataset for training, while the remaining
portion is used as the test set.

B. Experimental Setup

Our experiments are conducted on an NVIDIA RTX 3090
GPU. The batch size is set to 1. The maximum disparity search
range is set to 192 pixels. All images are cropped to 1000 x
320 pixels before feeding into the network. We utilize the
AdamW [54] optimizer for model training, setting the epsilon
and weight decay parameters to 10~® and 10~°, respectively. The
initial learning rate is set to 2 x 10~%. Training lasts for 100 K
iterations on the VKITTI2 dataset and 20 K iterations on the
KITTI 2015 dataset. We employ traditional data augmentation
techniques to enhance the robustness of the models.

C. Evaluation Metrics

Since our proposed S3M-Net simultaneously performs se-
mantic segmentation and stereo matching, we evaluate the per-
formance of both tasks in our experiments.

We utilize seven evaluation metrics to quantify the perfor-
mance of semantic segmentation: (1) accuracy (Acc), (2) mean
accuracy (mAcc), (3) mean intersection over union (mloU), (4)
frequency-weighted intersection over union (fwloU) [55], (5)
precision (Pre), (6) recall (Rec), and (7) F1-score (FSc).

Additionally, we use two evaluation metrics: (1) the average
end-point error (EPE) and (2) the percentage of error pixels
(PEP), setting the tolerance for the latter to 1.0 and 3.0 pixels,
respectively, to quantify the performance of stereo matching.

D. Semantic Segmentation Performance

The qualitative experimental results on the VKITTI2 and
KITTI datasets are presented in Figs. 3 and 4, respectively,
while the quantitative experimental results on the vKITTI2 and
KITTI datasets are given in Tables I and II, respectively. These
results suggest that S?M-Net outperforms other SoTA single-
modal and feature-fusion networks (including CNN-based and
Transformer-based methods) across all evaluation metrics on
both datasets. Specifically, it is noteworthy that when the entire
joint learning framework is trained by minimizing our proposed
SCG loss, S®M-Net achieves the best performance on the KITTI
dataset across all evaluation metrics except for Pre. Compared
with SoTA methods, it shows improvements of 5.71% in mAcc,
4.84% inmloU, 1.35% in fwloU, and 0.76% in FSc, respectively.
Similarly, it outperforms other networks on the vKITTI2 dataset
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Qualitative experimental results of semantic segmentation on the VKITTI2 [27] dataset: (a) RGB images; (b)—(k) semantic segmentation results achieved

by SegNet [13], U-Net [14], PSPNet [15], DeepLabv3+ [17], HRNet [49], BiSeNet V2 [50], Segmenter [32], SegFormer [33], Mask2Former [34], and DDRNet [51],
respectively; (1)-(q) semantic segmentation results achieved by FuseNet [19], MFNet [35], RTFNet [20], SNE-RoadSeg [3], OFF-Net [22], and RoadFormer [24],
respectively; (r)—(s) semantic segmentation results achieved by our proposed S?M-Net w/o and w/ the use of the SCG loss, respectively; (t) ground truth annotations.

in most evaluation metrics, with improvements of 1.72% in
fwloU and 1.44% in FSc. However, for mAcc, mloU, and
Rec, its performance is comparable to that of S?M-Net trained
without using the SCG loss. Additionally, it is obvious that
feature-fusion networks consistently outperform single-modal
networks, particularly under challenging weather and lighting
conditions. This observation aligns with our expectations, as
feature-fusion networks leverage both RGB images and dispar-
ity maps, allowing them to effectively learn informative spa-
tial geometric representations. However, SoTA feature-fusion
networks may exhibit higher error rates in distant regions. For
instance, FuseNet and SNE-RoadSeg demonstrate poor perfor-
mance in the sky. We attribute this phenomenon to the deep
structure of the encoders, where distinguishing distant objects

using disparity features becomes challenging, and the feature
fusion process amplifies the influence of the disparity feature.
In contrast, within our proposed joint learning framework, we
can extract more informative features benefiting from both
tasks, irrespective of dataset size. This improvement is likely
due to the fact that joint learning of multiple interconnected
tasks introduces a form of regularization, which has shown its
superiority over uniform complexity penalization in reducing
over-fitting.

E. Stereo Matching Performance

The qualitative experimental results on the vKITTI2 and
KITTI datasets are given in Figs. 5 and 6, respectively, while

Authorized licensed use limited to: TONGJI UNIVERSITY. Downloaded on June 16,2024 at 05:13:31 UTC from IEEE Xplore. Restrictions apply.



3946 IEEE TRANSACTIONS ON INTELLIGENT VEHICLES, VOL. 9, NO. 2, FEBRUARY 2024
[ . Road . Sidewalk . Building . Wall . Fence . Pole . Vegetation D Terrain . Sky D Traffic Sign . Person . Rider . Car . Truck . Bus. . Train . Motorcycle . Bicycle D Traffic Light ]
Fig. 4. Qualitative experimental results of semantic segmentation on the KITTI 2015 [28] dataset: (a) RGB images; (b)—(k) semantic segmentation results

achieved by SegNet [13], U-Net [14], PSPNet [15], DeepLabv3+ [17], HRNet [49], BiSeNet V2 [50], Segmenter [32], SegFormer [33], Mask2Former [34],
and DDRNet [51], respectively; (1)-(q) semantic segmentation results achieved by FuseNet [19], MFNet [35], RTFNet [20], SNE-RoadSeg [3], OFF-Net [22],
and RoadFormer [24], respectively; (r)—(s) semantic segmentation results achieved by our proposed S®M-Net w/o and w/ the use of the SCG loss, respectively;

(t) ground truth annotations.

the quantitative experimental results on the VKITTI2 and
KITTTI datasets are presented in Tables IIT and IV, respectively.
These results suggest that S?M-Net outperforms other SoTA
stereo matching networks across all evaluation metrics on both
datasets. Specifically, S?M-Net trained with and without using
the SCG loss achieves the top and second-best overall perfor-
mances, respectively. S?M-Net, when trained without using the
SCG loss, demonstrates improvements of 2.50%-71.32% in
EPE, 4.17%—-64.19% in PEP 1.0, and 4.49%—67.97% in PEP 3.0.
On the other hand, S?M-Net, when trained with the SCG loss,
shows improvements of 5.00%-72.06% in EPE, 5.44%—-64.38%
in PEP 1.0, and 4.49%—-69.83% in PEP 3.0. We attribute these
improvements to the feature sharing and fusion strategies

applied in S®M-Net. First, sharing features with the semantic
segmentation task allows S*M-Net to learn stereo matching
effectively even with limited training data. Second, as discussed
above, stereo matching can sometimes produce ambiguous
disparity estimations, especially in occluded or texture-less
areas. The pursuit of semantic consistency helps resolve such
ambiguities, leading to more reliable disparity estimation
results. In Fig. 6, it is evident that regions lacking disparity
ground truth frequently have substantial errors. Previous stereo
matching algorithms have endeavored to tackle this issue
through knowledge distillation with pre-trained models [38].
Nevertheless, our S3M-Net successfully overcomes this
challenge by leveraging semantic information.
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TABLE I
COMPARISONS OF SOTA SEMANTIC SEGMENTATION NETWORKS ON THE VKITTI2 [27] DATASET

Category Networks Acc (%) 1 mAcc (%) T mloU (%) T fwloU (%) T Pre (%) 1 Rec (%) T FSc (%) T

SegNet [13] 59.29 32.54 23.93 48.17 66.10 66.73 61.11

U-Net [14] 62.71 37.65 29.83 55.10 75.80 67.67 65.26

PSPNet [15] 76.26 53.53 44.81 69.30 81.55 79.68 75.38

E DeepLabv3+ [17] 92.19 63.15 56.90 87.15 89.00 92.71 90.16

E? HRNet [49] 74.79 40.82 32.47 63.23 73.69 76.50 73.39

;éo BiSeNet V2 [50] 81.77 51.07 44.45 74.71 83.23 82.19 80.67

@ Segmenter [32] 90.39 60.33 52.99 83.47 88.05 87.89 87.70

SegFormer [33] 94.75 70.56 64.98 90.49 93.57 93.62 93.46

Mask2Former [34] 89.29 64.58 57.14 83.84 90.75 87.23 87.19

DDRNet [51] 70.80 40.32 32.10 61.44 76.35 71.67 70.57

FuseNet [19] 49.42 31.21 22.56 41.07 79.39 50.67 47.50

MFNet [35] 76.22 51.50 43.41 68.82 82.46 78.65 73.80

§ RTFNet [20] 85.22 49.47 42.59 77.69 83.74 89.17 84.41

U:; SNE-RoadSeg [3] 83.64 60.85 52.56 75.14 83.44 81.66 7177

._% OFF-Net [22] 90.84 61.51 55.27 84.69 89.24 86.71 86.15

i RoadFormer [24] 97.54 86.58 80.83 95.34 96.99 96.86 96.91

S®M-Net 98.27 88.28 84.25 96.92 98.29 98.32 98.28

S*M-Net w/ SCG loss 98.32 88.24 84.18 96.98 98.37 98.28 98.31

The symbol 1 indicates that a higher value corresponds to better performance. The best results are shown in bold font.
TABLE II
COMPARISONS OF SOTA SEMANTIC SEGMENTATION NETWORKS ON THE KITTI 2015 [28] DATASET
Category Networks Acc (%) T mAcc (%) T mloU (%) 1 fwloU (%) T Pre (%) T Rec (%) T FSc (%) 1

SegNet [13] 59.63 31.98 22.61 43.98 55.25 67.49 57.29
U-Net [14] 69.02 41.15 30.64 55.65 69.11 77.65 71.04
PSPNet [15] 80.03 44.97 38.15 68.62 79.29 82.66 79.59
= DeepLabv3+ [17] 82.33 50.15 42.79 7243 83.85 87.18 84.59
§ HRNet [49] 63.42 31.68 2278 49.40 55.10 67.71 57.21
%;u BiSeNet V2 [50] 73.68 41.66 3271 60.55 68.35 81.79 72.37
@ Segmenter [32] 84.53 50.77 43.63 74.72 82.99 87.15 84.41
SegFormer [33] 88.28 59.23 51.39 80.53 87.15 90.85 88.46
Mask2Former [34] 84.35 54.33 45.87 75.56 84.74 89.12 85.92
DDRNet [51] 62.12 31.61 22.63 48.15 57.09 68.98 59.07
FuseNet [19] 41.79 19.05 11.38 27.53 44.14 44.35 37.68
MFNet [35] 81.02 48.13 40.70 70.42 82.85 85.73 82.36
§ RTFNet [20] 71.61 39.26 30.35 57.98 69.52 85.16 74.28
U? SNE-RoadSeg [3] 79.46 51.91 41.56 69.22 81.45 87.05 82.91
% OFF-Net [22] 75.84 40.13 33.13 64.02 77.48 72.19 70.62
& RoadFormer [24] 90.05 62.34 55.13 83.40 91.65 91.39 91.11
SM-Net 90.01 62.48 5433 83.44 88.96 93.52 90.65
S3M-Net w/ SCG loss 90.66 65.90 57.80 84.53 90.85 93.55 91.80

The symbol 7 indicates that a higher value corresponds to better performance. The best results are shown in bold font.

F. Ablation Studies

In this subsection, we first conduct an ablation study on the
selection of loss weight o in (11). Fig. 7 shows the quantitative
experimental results with respect to different « in the range of
0.0 to 0.4 for both semantic segmentation and stereo matching.
It can be obvious that when o = 0.1, S®M-Net achieves the
best overall performance for both tasks. Further weight tuning
is possible, but it should be approached cautiously, especially
when dealing with limited data to avoid over-fitting.

Furthermore, we conduct an additional ablation study on
the feature fusion strategy in our proposed FFA module. As
shown in Table V, when using the addition operation to fuse
heterogeneous features, the FFA module consistently achieves
the best performance across all evaluation metrics, compared
to other feature fusion strategies, including concatenation, cross

feature module (CFM) [56], dynamic dilated pyramid module
(DDPM) [57], separation-and-aggregation gate (SA Gate) [58],
and softmax weighted sum (SWS) used in AysmFusion [59],
CEN [60], and TokenFusion [61].

V. DISCUSSION

The experimental results shown in Section IV provide strong
support for the claims made in Section I. First, the joint learning
of semantic segmentation and stereo matching, two intercon-
nected environmental perception tasks, using our proposed S*M-
Net introduces a form of regularization that has shown its effec-
tiveness in reducing overfitting, particularly in scenarios where
training data are limited. Secondly, this end-to-end joint learning
framework yields improved performance when compared to the
models trained separately for each task. Finally, the pursuit of
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Fig.5. Qualitative experimental results of stereo matching on the vKITTI2 [27] dataset: (a) left RGB images; (b)—(j) disparity maps estimated using PSMNet [36],
GwcNet [37], AANet [38], LEA-Stereo [39], RAFT-Stereo [40], CRE-Stereo [41], ACVNet [52], PCWNet [53], and IGEV-Stereo [4], respectively; (k)—(1) disparity
maps estimated using our proposed S?M-Net w/o and w/ the use of the SCG loss, respectively.

TABLE III
COMPARISONS OF SOTA STEREO MATCHING NETWORK ON THE VKITTI2 [27]
DATASET
PEP (%) |
Networks EPE (pixels) |
> 1 pixel > 3 pixels
PSMNet [36] 0.68 10.31 3.77
GwceNet [37] 0.65 9.72 3.69
AANet [38] 1.36 15.61 6.98
LEA-Stereo [39] 0.83 13.33 4.84
RAFT-Stereo [40] 0.40 5.88 2.67
CRE-Stereo [41] 0.63 10.35 3.90
ACVNet [52] 0.61 9.41 345
PCW-Net [53] 0.63 9.45 3.49
IGEV-Stereo [4] 0.47 7.15 3.09
S®M-Net 0.39 5.59 2.55
$3M-Net w/ SCG loss 0.38 5.56 2.55

The symbol | indicates that a lower value corresponds to better performance. The best
results are shown in bold font.

semantic consistency in joint learning helps reduce ambiguous
disparity estimations in texture-less or occluded regions. We
believe that our proposed S>M-Net can be readily deployed in
autonomous vehicles after addressing the following limitations:
¢ S3M-Net requires both semantic and disparity annotations,
and collecting data with such ground truth remains a labor-
intensive process. Therefore, the exploration of potential

TABLE IV
COMPARISONS OF SOTA STEREO MATCHING NETWORK ON THE KITTI
2015 [28] DATASET

PEP (%) |
Networks EPE (pixels) |
> 1 pixel > 3 pixels
PSMNet [36] 0.74 16.12 2.61
GweNet [37] 0.68 14.21 2,01
AANet [38] 1.10 22,67 5.37
LEA-Stereo [39] 0.83 18.67 3.22
RAFT-Stereo [40] 0.60 10.78 1.96
CRE-Stereo [41] 0.92 19.68 3.35
ACVNet [52] 0.68 13.93 2.10
PCW-Net [53] 0.70 14.81 243
IGEV-Stereo [4] 0.62 12.15 1.99
S5 M-Net 0.56 10.33 1.72
$3M-Net w/ SCG loss 0.55 10.02 1.62

The symbol | indicates that a lower value corresponds to better performance. The best
results are shown in bold font.

solutions such as semi-supervised or low/few-shot seman-
tic segmentation and un/self-supervised stereo matching is
a promising avenue for future research.

S3M-Net achieves a processing speed of 0.66 fps when
processing input RGB images with a resolution of
1248 x 384 pixels. We believe that further computational
efficiency optimizations are necessary before deploying
S3M-Net in autonomous vehicles.
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Fig. 6. Qualitative experimental results of stereo matching on the KITTI 2015 [28] dataset: (a) left RGB images; (b)—(j) disparity maps estimated using
PSMNet [36], GwceNet [37], AANet [38], LEA-Stereo [39], RAFT-Stereo [40], CRE-Stereo [41], ACVNet [52], PCWNet [53], and IGEV-Stereo [4], respectively;
(k)—(1) disparity maps estimated using our proposed S®M-Net w/o and w/ the use of the SCG loss, respectively.

TABLE V
ABLATION STUDY ON FEATURE FUSION STRATEGY IN OUR FFA MODULE ON THE KITTI [28] 2015 DATASET

Fusion Strategy Acc (%) T mAcc (%) T mloU (%) 1 fwloU (%) 1 Pre (%) T Rec (%) 1 FSc (%) 1
Addition 90.01 62.48 5433 83.44 88.96 93.52 90.65
Concatenation 86.88 57.43 48.40 78.50 85.96 93.71 88.92
CFM [56] 86.87 57.41 48.77 79.13 85.41 92.05 87.63
DDPM [57] 86.52 58.65 4951 78.14 85.56 93.34 88.44
SA Gate [58] 87.62 61.77 52.10 80.55 86.74 9231 88.52
SWS [59], [60], [61] |  87.94 58.11 49.64 80.25 86.63 9334 89.20
Semantic Segmentation VI. CONCLUSION
92.0 58.0
2915 57.0 This article introduced S®M-Net, an effective solution for
gglo zgz% joint learning of semantic segmentation and stereo matching.
P a0s - We have made three significant contributions in this work: (1)
90.0 530 the development of an entire joint learning framework that
00 ot 0z 03 04 shares features between both tasks and fuses heterogeneous
Stereo Matching features to improve semantic segmentation, (2) a feature fusion
10.50 1.85 adaption module designed to enable effective feature sharing
g0 1800 between the two tasks, and (3) a semantic consistency-guided
E 1222 1;25 joint learning loss that emphasizes structural consistency in both
€ 010 Lest tasks. We conducted extensive experiments on the vKITTI2
1000 A o o o 160 (synthetic and large) and KITTI (real-world and small) datasets
a to validate the effectiveness of our framework, the FFA mod-
B~ FScore  ~E mloU —A—PEP10  —A— PEP30 ule, and the training loss. Our results demonstrate the superior

Fig. 7. Ablation study on the selection of « in the SCG joint learning loss

function on the KITTI 2015 [28] dataset.

performance of our approach compared to all other existing
methods.
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