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Abstract—Stereo matching has become a key technique for 3D
environment perception in intelligent vehicles. For a considerable
time, convolutional neural networks (CNNs) have remained the
mainstream choice for feature extraction in this domain. Nonethe-
less, there is a growing consensus that the existing paradigm
should evolve towards vision foundation models (VFM), par-
ticularly those developed based on vision Transformers (ViTs)
and pre-trained through self-supervision on extensive, unlabeled
datasets. While VFMs are adept at extracting informative,
general-purpose visual features, specifically for dense prediction
tasks, their performance often lacks in geometric vision tasks.
This study serves as the first exploration of a viable approach
for adapting VFMs to stereo matching. Our ViT adapter, referred
to as ViTAS, is constructed upon three types of modules: spatial
differentiation, patch attention fusion, and cross-attention. The
first module initializes feature pyramids, while the latter two
aggregate stereo and multi-scale contextual information into fine-
grained features, respectively. ViTAStereo, which combines Vi-
TAS with cost volume-based stereo matching back-end processes,
achieves the top rank on the KITTI Stereo 2012 dataset and out-
performs the second-best network StereoBase by approximately
7.9% in terms of the percentage of error pixels, with a tolerance
of 3 pixels. Additional experiments across diverse scenarios
further demonstrate its superior generalizability compared to all
other state-of-the-art approaches. We believe this new paradigm
will pave the way for the next generation of stereo matching
networks. Our source code and supplementary material are
publicly available at https://mias.group/ViTAS.

Index Terms—stereo matching, intelligent vehicle, vision foun-
dation model, geometry vision task, attention.

I. INTRODUCTION

STEREO matching, which mimics human binocular depth
perception, has long been a key technique in intelligent

vehicles and mobile robots [1]–[4]. Vision foundation models
(VFMs) have rapidly emerged as a focal point in the field
of computer vision [5], [6]. From models like Segmentation
Anything [7] and DINOv2 [8] by Meta AI to the more recent
Depth Anything [9], VFMs have garnered significant attention
and interest. Surprisingly, despite its fundamental role in 3D
computer vision, stereo matching has not received adequate
attention amidst the wave of VFMs yet. Therefore, this article
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serves as the first attempt to navigate stereo matching into this
new continent, with a specific emphasis on adapting VFMs for
more generalizable stereo matching.

Recent advancements in stereo matching have primarily
focused on the back-end processes, including cost volume con-
struction [10], cost aggregation [11], and disparity refinement
[12], while relatively overlooking the development of deep
feature extractors. This is largely attributed to the effectiveness
of traditional backbone networks, such as ResNet [13] and
MobileNet [14], in extracting rich deep features for matching
cost computation. Specifically, the limited progress in this
process has focused on employing cross-attention layers after
the traditional backbone network for further feature quality
improvements [15]–[18]. Nevertheless, recent VFMs, gener-
ally built upon a Vision Transformer (ViT), have demonstrated
greater effectiveness in learning informative, general-purpose
deep features across various related computer vision tasks,
when pre-trained in a self-supervised fashion on large curated
datasets [7]–[9]. Therefore, a key focus of this article lies in
the development of ViT adapters to selectively leverage these
general-purpose deep features to improve stereo matching.

Despite the extensive application of pre-trained VFMs with
task-specific adapters for scene parsing tasks [19]–[21], their
utilization in 3D geometric vision tasks solved by pixel-wise
dense matching, such as stereo matching, remains unexplored.
This is primarily because VFMs trained for image segmenta-
tion (pixel-level classification) and monocular depth estimation
(pixel-level regression) are not capable of producing features
that are sufficiently distinct for similarity measurement in the
cost volume construction stage [22]. The significant domain
gap of geometry information between VFM features and those
preferred by 3D geometric vision tasks renders existing VFM
adapters infeasible for stereo matching. Thus, the primary
objective in designing our VFM adapter is to further enhance
feature distinctiveness, thereby reducing ambiguities in stereo
matching.

Additionally, it is noteworthy that there is a potential trend
among state-of-the-art (SoTA) networks [22], [23] to shift
away from constructing cost volumes for stereo matching.
These networks generally employ a Transformer with an
encoder-decoder architecture to aggregate stereo knowledge
into features from a single view. These features are then
taken as input by a dense prediction Transformer [24] for
disparity regression. This new design transforms disparity
estimation from pixel-wise matching process into a regression
task, thereby sacrificing the explicit constraint on the absolute
scale of disparity offered by epipolar geometry. Consequently,
we are intrigued by the generalizability of such a network
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design in unseen scenarios and have conducted extensive
experiments across various public datasets. Regrettably, the
comprehensive experimental results suggest a shortfall in
its performance on unseen data, particularly evident in its
tendency to estimate disparity based on the disparity range
encountered during training. This limitation could possibly be
attributed to the reduced explainability of disparity estimation
without the use of cost volumes. This observation further
reinforces our motivation for playing to VFM’s strengths by
developing an effective adapter to fully exploit the general-
purpose deep features for cost volume construction, rather than
simply regressing disparities from these features without any
interpretability.

Therefore, in this article, we introduce ViT Adapter for
Stereo (ViTAS), playing to the strengths of VFMs in stereo
matching. Our proposed ViTAS incorporates three types of
modules: (1) the spatial differentiation module (SDM), which
captures multi-scale contextual information by initializing fea-
ture pyramids, akin to the studies presented in [11], [12],
[16], [25], (2) the patch attention fusion module (PAFM),
which aggregates multi-scale contextual information into fine-
grained features, and (3) the cross-attention module (CAM),
which aggregates stereo contextual information into extracted
features via cross-view interactions. Notably, our newly de-
veloped PAFM employs local patch attention and quasi-
global attention, devised in accordance with the pixel-to-
patch and squeeze-and-excitation manners, to learn the local
and global feature weighting parameters, respectively. The
PAFM significantly reduces computational complexity and
memory usage compared to the conventional global attention
mechanism [26]–[28], which learns these features simulta-
neously. Combining ViTAS with cost volume-based stereo
matching back-end processes yields ViTAStereo, a SoTA,
powerful, and highly generalizable stereo matching network.
ViTAStereo achieves top ranking on the KITTI Stereo 2012
dataset and second-best performance on the KITTI Stereo
2015 dataset [29], outperforming StereoBase, the current SoTA
stereo matching network, by approximately 5.2-11.3% in the
percentage of error pixels.

We conclude the contributions of this study as follows:

• We introduce ViTAS, marking the first research endeavor
to fully exploit the informative, general-purpose features
extracted by VFMs for stereo matching.

• We develop a novel, lightweight PAFM that learns lo-
cal and global feature weighting parameters separately,
effectively, and efficiently.

• We argue that stereo matching networks relying solely on
cross-attention mechanism have limited generalizability,
primarily due to the absence of cost volumes.

• We conduct extensive experiments to demonstrate the
SoTA performance and superior generalizability of Vi-
TAStereo across various public datasets.

The remainder of this article is structured as follows: related
works, including ViT adapters and stereo matching networks,
are presented in Sect. II. Sect. III details our proposed ViTAS.
Comprehensive ablation studies and comparative experiments
are presented in Sect. IV. Finally, in Sect. V, we summarize

the results and provide recommendations for future work.

II. RELATED WORK

A. ViT Adapters

SoTA VFMs generally utilize a plain ViT as their back-
bone network. To date, ViT adapters have found widespread
application in 2D computer vision tasks. For instance, ViTDet
[19], [20] enables the plain, non-hierarchical ViT architecture
to undergo fine-tuning for object detection without the need for
redesigning a hierarchical backbone for pre-training. Similarly,
ViT-Adapter [21] injects image priors into the ViT using an
additional attention path, resulting in superior accuracy in both
object detection and semantic/instance segmentation tasks. On
the other hand, recent researches on stereo matching task
have explored various training strategies, including contrastive
learning and self-supervision, to leverage the ViT architecture
[30], [31]. However, there has been relatively less focus on
the development of adapters in this field. It is likely that the
deep features utilized for scene understanding tasks are not
inherently suitable or compatible with geometric vision tasks.
Therefore, developing an adapter compatible with the plain
ViT architecture for geometric vision tasks is a promising area
of research that requires more attention.

B. Stereo Matching

1) Cost Volume-based Networks: Recent SoTA stereo
matching networks [11], [12], [16], [25] based on cost volumes
have largely overlooked pyramid feature extraction and instead
focused mainly on back-end stages that process features and
costs. Since the introduction of RAFT-Stereo [25], its core
component–a multi-level gated recurrent unit, has become
prevalent in stereo matching. This unit takes feature pyramids
extracted by a conventional deep feature extractor as input
for cost aggregation, enabling the incorporation of semantic
information at various scales. RAFT-Stereo has significantly
influenced subsequent advancements in stereo matching net-
works, such as those seen in CREStereo [16], IGEV-Stereo
[11], and GMStereo [12]. These networks have further ex-
tended and refined this multi-scale structure, often integrating
attention mechanism to improve feature representation and
address local matching ambiguities in challenging regions.
For instance, CREStereo [16] follows LoFTR [32] and in-
corporates an attention module at the lowest resolution to
aggregate global contextual and stereo information in single or
cross-view feature maps. IGEV-Stereo [11], on the other hand,
combines multi-scale correlation volumes with a geometry
encoding volume obtained through 3D convolutions, aiming
at addressing local matching ambiguities in ill-posed regions.
Moreover, GMStereo [12] further extends this multi-scale
structure into both stereo matching and optical flow estimation
tasks, with the exactly same learnable parameters. Similar to
CreStereo, GMStereo also employs attention modules prior
to cost volume construction, but across all spatial scales. In
contrast to these SoTA methods, we leverage recent VFMs for
feature extraction and design our adapter, drawing inspiration
from the existing pyramid feature structure and attention
mechanism.
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Fig. 1. An illustration of our proposed ViTAS. ViTAS employs a Siamese architecture and each sub-network is comprised of a SDM, four CAMs, and three
PAFMs. The output feature pyramids are passed through the back-end processes of a stereo matching network for disparity estimation. The superscripts “L”
and “R” denote the left and right views, respectively.

2) Cost Volume-free Network: CroCo-Stereo [22] is a semi-
nal contribution in this domain. It utilizes an encoder-decoder
Transformer, initially pre-trained on the ImageNet database
[33] for cross-view completion [23], and subsequently fine-
tuned for stereo matching by incorporating a dense prediction
Transformer (DPT) head [31]. Specifically, stereo information
is aggregated into the left-view features through cross-attention
via a plain ViT decoder, followed by a DPT head to regress
disparities. However, due to the utilization of a large VFM
encoder and extensively deployed attention modules in the
decoder, CroCo-Stereo incurs even greater computational and
memory overhead compared to cost volume-based networks.
More importantly, abandoning the cost volume considerably
reduces its generalizability and interoperability, as demon-
strated by our extensive experiments. These limitations un-
derscore the importance of prioritizing compatibility with cost
volume-based networks.

III. METHODOLOGY

The overall task is first formulated in Sect. III-A. Then, the
three modules in ViTAS are detailed in Sects. III-B1, III-B2,
and III-B3, respectively.

A. Task Formulation

Pyramid feature extraction has been prevalently used in
stereo matching [12], [16], [25], [34], primarily due to its
capability to handle objects of various scales while maintain-
ing high computational efficiency [35], [36]. As demonstrated
in recent works [11], [12], [16], [25], [37], [38], features
at four scales (1/32, 1/16, 1/8, and 1/4 of the original
image resolution) have been shown to be sufficient and ef-
fective for stereo matching. However, the SoTA VFMs [7],
[8] generally adopt the plain ViT architecture [39] for feature
extraction, resulting in extracted features at a single resolution.
Specifically, a VFM consists of a patch embedding layer
and N consecutive Transformer encoders. An input image
I ∈ Rh0×w0×3 is first divided into a collection of p × p
non-overlapping patches by the patch embedding layer. These
patches are then sequentially projected into N tokens T ∈
Rh0/p×w0/p×cT through the Transformer encoders. Therefore,
to fully exploit the general-purpose VFM features, the most
fundamental task of our ViTAS is to transform the tokens into a
collection of pyramid features F = {F 0,F 1,F 2,F 3}, where
F k ∈ R

h0
25−k × w0

25−k ×ck .
In this study, we use DINOv2 [8] as our backbone VFM,

in which N is set to 24. Nonetheless, a limitation arises as it
sets the parameter p to 14, causing a misalignment between
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Algorithm 1: ViTAS workflow
Input: VFM tokens T L,R

Output: Output feature pyramids FL,R

1 Generating initialized feature pyramids from VFM tokens

via: DL,R ← SDM(T L,R);

2 Aggregating stereo contextual information for the deepest

initial features via: {FL
0 ,F

R
0 } ← CAM(DL

0 ,D
R
0 ) ;

3 Aggregating stereo and multi-scale contextual information

hierarchically via: for i← 1 to 3 do
4 ML,R

i ← PAFM(FL,R
i−1 ,D

L,R
i );

5 FL,R
i ← CAM(ML,R

i ,MR,L
i );

token scales and the preferred pyramid feature scales. To
address this issue, we first adjust the input stereo images by
a factor of 14

16 , resulting in tokens at 1
16 of the original image

resolution. Subsequently, following recent advancements in
ViT adapters [19], [21], we split the Transformer encoders into
four groups. From each group, we select tokens generated by
the final Transformer block to serve as input for our ViTAS.
Consequently, the essential goal of our ViTAS is to transform
the T L,R = {TL,R

6 ,TL,R
12 ,TL,R

18 ,TL,R
24 } into FL,R, where the

superscripts L and R correspond to the left and right images,
respectively.

B. ViTAS Architecture

As depicted in Fig. 1, our proposed ViTAS adopts a
Siamese architecture comprising two weight-sharing sub-
networks. Each sub-network is dedicated to processing one
view of the stereo images and consists of a SDM followed
by three PAFMs and four CAMs arranged alternately. The
SDM generates initial feature pyramids, while the PAFMs
and CAMs hierarchically aggregate stereo and multi-scale
contextual information into fine-grained features, respectively.
Each module type is designed to accomplish an independent
task, making our ViTAS highly modular and adaptable to
future updates with more advanced techniques. The workflow
of our proposed ViTAS is detailed in Algorithm 1.

1) SDM: Recent studies [40], [41] have demonstrated the
complementarity between ViTs and convolutional neural net-
works (CNNs). The former excels at capturing global con-
textual information, while the latter enriches the local spatial
patterns of the ViT tokens. Therefore, we introduce the SDM
at the beginning of ViTAS to re-scale the ViT tokens, as
illustrated in Fig. 1(a). This process enables ViTAS to capture
multi-scale contextual information, resulting in significantly
improved stereo matching accuracy, particularly for small
objects and boundaries.

The input ViT tokens T L,R are first assembled into initial
feature pyramids DL,R = {DL,R

0 ,DL,R
1 ,DL,R

2 ,DL,R
3 } using

two SDMs. Each SDM consists of four blocks of convolutions
and transpose convolutions, where DL,R

k is at a resolution
equal to 1/25−k of the original image. Since deeper ViT tokens
contain richer global context and shallower ones focus on fine-
grained details [24], we assemble ViT tokens from deeper

(b)

GlobalAvgPooling
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GlobalAvgPooling

Sigmoid

(c)

MLP  LayerNorm  MLP

Convention Global Attention

Local Patch Attention (Ours)

(a)

. . .. . .

...

Similarity Measurement

Fig. 2. Illustrations of (a) local path attention versus conventional global
attention, (b) quasi-global attention, and (c) multi-scale feature aggregation
within PAFM.

to shallower layers with gradually increasing resolutions. In
addition, we reduce the number of channels in the initial fea-
ture pyramids to further alleviate computational and memory
pressure. A hierarchical refinement process is then performed
with CAMs and PAFMs from DL,R

0 to DL,R
3 , as detailed in

the remainder of this section.
2) PAFM: With the feature pyramids DL,R initialized by

SDM, we perform multi-scale feature fusion to aggregate F i

and Di+1. Although recent Transformer-based multi-scale fea-
ture fusion approaches [28], [42] have demonstrated superior
performance over CNN-based methods [26], [27], [43], [44]
in dense prediction tasks [27], their computational complexity
and memory consumption, inherent in the global attention
mechanism, pose significant challenges. Furthermore, a com-
mon limitation persists wherein lower-resolution feature maps
have to be upsampled (typically via bilinear interpolation) to
align with the higher-resolution feature maps. However, such
simplistic feature upsampling operations fail to preserve fine-
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grained details in low-resolution features [45], [46]. To over-
come these limitations, we design PAFM, a lightweight yet
effective Transformer-based multi-scale feature fusion module.
As illustrated in Fig. 1(b), our proposed PAFM consists of a
local patch attention and a quasi-global attention, capable of
learning local weights wL ∈ R(h×w)×4×1 and global weights
wG ∈ R(h×w)×1×ci+1 , respectively. F i is aggregated based on
wG, while Di+1 is aggregated based on both wG and wL.

The local patch attention measures the fine-grained feature
similarity between a given pixel in F i ∈ Rh×w×ci and its
corresponding patch with a resolution of 2 × 2 pixels in
Di+1 ∈ R2h×2w×ci+1 . To this end, we project Di+1 into
query Q ∈ R(h×w)×4×ci+1 and value V D ∈ R(h×w)×4×ci+1 ,
and project F i into key K ∈ R(h×w)×1×ci+1 and another
value V F ∈ R(h×w)×1×ci+1 , where the second dimension,
referred to as the “patch dimension” in this article, depicts
the number of pixels inside a feature patch. Compared to con-
ventional global attention, our local patch attention operates
by measuring feature similarity in a pixel-to-patch manner, as
illustrated in Fig. 2(a). This approach dramatically reduces the
computational demands, lowering the complexity from O(N2)
to O(N). The local weights wL are computed through the
following process:

wL = Softmax(
Q⊙ RepPad(K)×O

√
ci+1

), (1)

where ⊙ denotes the element-wise multiplication operation,
RepPad denotes replication padding operation, O ∈ Rci+1×1

is a matrix storing ones, and the Softmax operation is per-
formed at the patch dimension to normalize the weights within
a feature patch.

The quasi-global attention emphasizes both the informative
spatial areas in Di+1 and the prominent feature channels in
F i, yielding the global weights wG, as illustrated in Fig. 2(b).
To this end, we first employ a global average pooling layer
to squeeze Q along the patch dimension, thereby aligning
its size with K. We then aggregate the squeezed features
along the channel dimension using a multi-layer perceptron
(MLP) to prioritize informative spatial areas while suppress-
ing redundant ones, thereby producing the spatial weights
wS ∈ R(h×w)×1×1. In the meantime, we follow the design
of squeeze-and-excitation block [47], [48] and produce the
context weights wC ∈ R1×1×ci+1 from K (containing rich
global contextual information), highlighting prominent feature
channels while de-emphasizing the less important ones. This
is achieved through a combination of a global average pooling
layer and two MLPs. Finally, the global weights wG are
calculated as follows:

wG = Sigmoid (RepPad (wC)⊕ RepPad (wS)) , (2)

where ⊕ denotes the element-wise summation operation. Af-
terwards, as depicted in Fig. 2(c), we combine wL and wG,
the local and global weights, to adaptively fuse V D and V F

as follows:

W = RepPad (wG ⊙ V F )⊕
4 (RepPad (wL)− RepPad (wL)⊙ RepPad (wG))⊙ V D,

(3)

where W ∈ R(h×w)×4×ci+1 denotes the fused features.
Consequently, multi-scale contextual information is aggregated
into W with weight parameters balancing between Q and
V (summing to 4 in each feature patch). With fully fused
information from Di+1 and F i, the final output of our PAFM
is derived as follows:

M i+1 = Di+1 +Reshape ◦ LayerNorm ◦MLP(W ), (4)

which is subsequently fed into a CAM for stereo contextual
information aggregation.

3) CAM: CAMs have been commonly utilized in stereo
matching networks [12], [16], [49] to aggregate stereo con-
textual information into features through cross-view feature
interactions. In this study, CAMs are strategically positioned
after the SDM and interleaved with PAFMs, before generating
the output feature pyramids FL,R. As depicted in Fig. 1(c),
each CAM contains two attention blocks, each of which
consists of a self-attention layer and a cross-attention layer,
respectively. The former aggregates global contextual infor-
mation, whereas the latter enhances feature distinctiveness,
thereby reducing disparity ambiguities, particularly in texture-
less and occluded regions. Despite having similar structures
and sharing the same query feature sources, these two layers
diverge in key and value feature sources: the self-attention
layer uses features from the same view, whereas the cross-
attention layer uses features from the other view. The existing
networks for stereo matching suffer from a crucial limitation
due to the absence of cross-scale feature interaction, leading
to an over-reliance on self-attention layers to capture global
contextual information. To address this issue, GMStereo [12]
utilizes six attention blocks within each CAM to independently
process features across different layers, albeit at a notable
increase in computational complexity. In contrast, our pro-
posed ViTAS has a progressive architecture, wherein PAFMs
collaborate with CAMs to aggregate both global and stereo
contextual information from deeper layers into shallower ones.
As a result, ViTAS utilizes markedly more lightweight CAMs
to process features, significantly reducing the computational
complexity and memory demands in comparison to GMStereo.

IV. EXPERIMENTS

This section comprehensively analyzes the effectiveness of
our proposed ViTAS in improving both disparity accuracy and
network generalizability. The following subsections delve into
details on datasets and implementations, evaluation metrics,
ablation studies, and a thorough performance evaluation.

A. Datasets and Implementation Details

Five public stereo matching datasets are utilized in our
experiments for model pre-training and fine-tuning. The fol-
lowing two synthetic, large-scale datasets with dense disparity
ground truth are employed for the first purpose:

1) SceneFlow [50] consists of a training set (containing
35,454 stereo image pairs) and a test set (often known
as the Flying 3D test set, containing 4,370 stereo image
pairs) with the image resolution of 960× 540 pixels. We
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use the “finalpass” version rather than the “cleanpass”
version because it is more realistic.

2) Virtual KITTI [51] contains 21,260 stereo image pairs
(resolution: 1, 242 × 375 pixels), generated from five
different virtual scenarios (created using the Unity game
engine and a real-to-virtual cloning method) in urban
settings under different imaging and weather conditions.

The following three real-world, small datasets are used to fine-
tune networks and evaluate their performance:

1) KITTI Stereo contains two subsets: 2012 [29] and 2015
[52], with 192 and 200 training pairs, respectively, and
194 and 200 test pairs, respectively. The image resolution
is around 1, 240 × 370 pixels and the sparse disparity
ground truth is generated using a LIDAR.

2) Middlebury [53]–[55] contains five subsets: 2005, 2006,
2014, 2021, and MiddEval3, with 45, 171, 132, 335,
and 14 pairs of high-resolution indoor stereo images and
their corresponding disparity ground truth provided by
structured light, respectively.

3) ETH3D [56] contains 27 pairs of stereo gray-scale
images of both indoor and outdoor scenes (resolution:
around 930× 490 pixels). A high-precision laser scanner
is used to provide the disparity ground truth.

In our ablation studies (see Sect. IV-C), each network
is first trained on the SceneFlow training set and Virtual
KITTI dataset for 50 epochs. The pre-trained networks are
determined based on their performance on the test set of the
SceneFlow dataset [50], with the networks demonstrating the
best performance being selected.

When comparing our proposed ViTAStereo with SoTA
networks on the KITTI test set (see Sect. IV-D), we first
pre-train our network on the combined training set of the
aforementioned five datasets for 100 epochs. Subsequently, an
additional fine-tuning stage is conducted on the KITTI training
set for 200 epochs.

When evaluating the generalizability of our proposed Vi-
TAStereo (see Sect. IV-E), we adopt the same pre-training
strategy used in the ablation studies. Specifically, we split the
original KITTI training set into two subsets: KITTI Train
and KITTI Eval, for model fine-tuning and generalizabil-
ity evaluation, respectively. Similarly, we divide the original
Middlebury dataset into two subsets: Midd Train (excluding
the MiddEval3 dataset) and Midd Eval (identical to the
MiddEval3 dataset) for model fine-tuning and generalizability
evaluation, respectively. The entire ETH3D dataset is used
only for generalizability evaluation.

All experiments are conducted on four NVIDIA RTX 4090
GPUs. During model training, we randomly crop images to
320 × 720 pixels and apply conventional data augmenta-
tion techniques, including random changes in image color,
random rescaling, and random erasing, to further enhance
model performance. The back-end components in IGEV-Stereo
[11] are used to build our ViTAStereo, primarily due to the
similar hardware requirement (both are capable of training
and testing on a GPU with 24 GB GDDR6X memory). The
parameters of the VFM, excluding those of the last five ViT
encoder blocks, are frozen. In our generalizability evalua-

(a) (b)

Fig. 3. Ablation studies on (a) the optimal configuration for CAM attention
blocks and (b) the most suitable number of unfrozen VFM blocks.

TABLE I
ABLATION STUDY ON THE EFFECTIVENESS OF EACH COMPONENT WITHIN

VITAS.

SDM
Fusion Methods

CAM EPE (pixel) D1-all (%) Runtime (s)
PAFM SDFA [27] VAF [28]

✔ ✔ ✔ 0.334 1.109 0.278
✔ ✔ 0.351 1.206 0.275

✔ ✔ 0.388 1.349 0.273
✔ ✔ 0.362 1.281 0.266
✔ 0.427 1.389 0.262

✔ 0.383 1.266 0.265
✔ 0.417 1.348 0.272

0.435 1.394 0.261

✔ ✔ ✔ 0.351 1.155 0.274
✔ ✔ ✔ 0.335 1.122 0.287

tion experiments, we further demonstrate the compatibility of
our proposed ViTAStereo with three additional SoTA stereo
matching networks, GMStereo [12], CREStereo [16], and
CroCo-Stereo [22]. The experimental results on CroCo-Stereo
are presented in the supplementary material, demonstrating
that stereo matching networks relying solely on cross-attention
mechanisms have limited generalizability, primarily due to the
absence of cost volumes. The loss function, learning rate, and
optimizer used in our experiments are identical to the settings
reported in their publications [11], [12], [16], [22].

B. Evaluation Metrics

The following three metrics are computed to quantify stereo
matching accuracy (lower values indicate better performance):

• end-point error (EPE), indicating the average disparity
estimation error;

• percentage of error pixels (PEP), indicating the percent-
age of incorrect disparities with respect to a tolerance of
δ pixels;

• D1, indicating the percentage of disparities for which the
estimation error exceeds both three pixels and 5% of the
ground-truth disparity.

C. Ablation Studies

We first investigate the optimal configuration for CAM and
determine the most suitable number of unfrozen VFM blocks,
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Fig. 4. Qualitative experimental results of ViTAStereo, IGEV-Stereo [11], MC-Stereo [57], and NMRF-Stereo [58] on the KITTI Stereo datasets [29], [52],
where significantly improved regions are shown with pink dashed boxes.

TABLE II
THE AMOUNTS OF LEARNABLE PARAMETERS, MEMORY DEMANDS, AND
FUSION INFERENCE TIME OF PAFM AND ANOTHER TWO METICULOUSLY

DESIGNED FEATURE FUSION APPROACHES.

Feature Fusion Methods Parameters (M) Memory (MB) Inference Time (ms)

PAFM 0.22 118 6.11
SDFA [27] 1.38 98.3 5.67
VAF [28] 1.31 360 17.1

TABLE III
ABLATION STUDY ON RECENT VFMS FOR BUILDING VITASTEREO.

VFM EPE (pixel)
PEP w.r.t Different δ

D1 (%)
1 2 3

DINOv2 [8] 0.334 3.05 1.82 1.36 1.11
Depth Anything [9] 0.341 3.12 1.87 1.41 1.13

as detailed in Fig. 3. It is evident that incorporating a greater
number of attention blocks and unfreezing additional VFM
blocks both contribute to reductions in EPE, albeit at the cost
of a significant increase in the model’s learnable parameters.
Therefore, in subsequent experiments, we build our CAM with
only two attention blocks and unfreeze the last five VFM
blocks, so as to minimize the trade-off between disparity
accuracy and network complexity.

In an additional ablation study conducted to validate the
effectiveness of each component within our ViTAS in terms
of both disparity estimation accuracy and the runtime of
ViTAStereo. The findings, as detailed in Table I, demonstrate
that the inclusion of any single module leads to improved
disparity accuracy. Specifically, the incorporation of SDM,
PAFM, and CAM independently leads to reductions in the
EPE by 1.8%, 11.9%, and 4.1%, respectively. When all three
modules are incorporated, ViTAS achieves the most significant
decrease in EPE. This investigation further indicates that
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TABLE IV
COMPARISONS WITH SOTA STEREO MATCHING NETWORKS PUBLISHED ON THE KITTI STEREO 2012 DATASET [29]. “δ-NOC” DENOTES PEP FOR

NON-OCCLUDED PIXELS W.R.T. δ, AND “ALL” DENOTES PEP FOR ALL PIXELS W.R.T. δ.

Network
PEP w.r.t Different δ

Runtime (s)
2-noc (%) 2-all (%) 3-noc (%) 3-all (%) 4-noc (%) 4-all (%) 5-noc (%) 5-all (%)

LEAStereo [59] 1.90 2.39 1.13 1.45 0.83 1.08 0.67 0.88 0.30
HITNet [60] 2.00 2.65 1.41 1.89 1.14 1.53 0.96 1.29 0.02
ACVNet [61] 1.83 2.34 1.13 1.47 0.86 1.12 0.71 0.91 0.20
CREStereo [16] 1.72 2.18 1.14 1.46 0.90 1.14 0.76 0.95 0.40
PCWNet [62] 1.69 2.18 1.04 1.37 0.78 1.01 0.63 0.81 0.44
IGEV-Stereo [12] 1.71 2.17 1.12 1.44 0.88 1.12 0.73 0.94 0.18
UCFNet [63] 1.67 2.17 1.09 1.45 0.85 1.12 0.69 0.91 0.21
ICVP [64] 1.72 2.21 1.06 1.39 0.80 1.05 0.66 0.86 0.17
MC-Stereo [57] 1.55 1.99 1.04 1.35 0.82 1.05 0.68 0.87 0.40
NMRF-Stereo [58] 1.59 2.07 1.01 1.35 0.78 1.03 0.64 0.84 0.09
StereoBase [65] 1.54 1.95 1.00 1.26 0.76 0.97 0.62 0.80 0.24
ViTAStereo (ours) 1.46 1.80 0.93 1.16 0.71 0.87 0.58 0.71 0.22

TABLE V
COMPARISONS WITH SOTA STEREO MATCHING NETWORKS PUBLISHED

ON THE KITTI STEREO 2015 DATASET [52]. D1-BG, D1-FG, AND D1-ALL
DENOTE D1 FOR BACKGROUND, FOREGROUND, AND ALL PIXELS,

RESPECTIVELY. ALL VALUES ARE EXPRESSED IN PERCENTAGES (%).

Network
All Pixels Non-Occluded Pixels

D1-bg D1-fg D1-all D1-bg D1-fg D1-all

LEAStereo [59] 1.40 2.91 1.65 1.29 2.65 1.51
HITNet [60] 1.74 3.20 1.98 1.54 2.72 1.74
CREStereo [16] 1.45 2.86 1.69 1.33 2.60 1.54
ACVNet [61] 1.37 3.07 1.65 1.26 2.84 1.52
UCFNet [63] 1.57 3.33 1.86 1.41 2.93 1.66
GMStereo [12] 1.49 3.14 1.77 1.34 2.97 1.61
CroCo-Stereo [22] 1.38 2.65 1.59 1.30 2.56 1.51
IGEV-Stereo [12] 1.38 2.67 1.59 1.27 2.62 1.49
MC-Stereo [57] 1.36 2.51 1.55 1.24 2.55 1.46
NMRF-Stereo [58] 1.28 3.13 1.59 1.17 2.95 1.46
StereoBase [65] 1.28 2.26 1.44 1.17 2.23 1.35
ViTAStereo (ours) 1.21 2.99 1.50 1.12 2.90 1.41

excluding any single module from the complete ViTAS yields
a performance deterioration comparable to the impact observed
when the module is used in isolation. This observation under-
scores the modular independence within our ViTAS. Notably,
the PAFM is identified as the most influential component,
primarily attributed to its capability of aggregating both global
and stereo contextual information throughout different feature
layers, thereby underlining its significance in enhancing the
model’s overall performance.

Moreover, we compare our PAFM with two other meticu-
lously designed multi-scale feature fusion methods: the CNN-
based self-distilled feature aggregation (SDFA) [27] and the
Transformer-based vertical attention fusion (VAF), to under-
score the efficacy of PAFM. As shown in Table II, PAFM
dramatically reduces the number of learnable parameters by
84.1% and 83.2% compared to SDFA and VAF, respectively.
While PAFM has marginally higher memory requirements
than SDFA, its memory demands are significantly lower—by
32.8%—than those of VAF. Table I further illustrates that
ViTAStereo, equipped with PAFM, outperforms another two
feature fusion methods in disparity estimation accuracy. Fur-

thermore, our proposed PAFM achieves a feature fusion in-
ference time that is similar but slightly higher compared to
SDFA, and is 64.3% faster than VAF. These comprehensive
experiments collectively demonstrate that PAFM achieves not
only the highest disparity accuracy but also the fewest learn-
able parameters. In addition, it markedly reduces both com-
putational complexity and memory consumption compared to
VAF, demonstrating its exceptional capacity to minimize the
trade-off between accuracy and efficiency.

We further validate the universality of our proposed ViTAS
in using the general-purpose VFM features for stereo match-
ing. Two recent VFMs, DINOv2 [8] and Depth Anything [9],
are employed to build ViTAStereo and the quantitative results
are presented in Table III. Although ViTAStereo built with
DINOv2 achieves higher stereo matching accuracy across all
metrics, the performance of ViTAStereo built with Depth Any-
thing is only marginally lower. The minor performance gap
between ViTAStereo built with DINOv2 and Depth Anything
underscores the effectiveness of ViTAS in adapting general-
purpose VFM features for stereo matching and its potential
compatibility with future, more advanced VFMs.

D. Comparisons with SoTA Networks

Upon submitting our best results1 (achieved without exten-
sive hyperparameter tuning) to the KITTI Stereo 2012 and
2015 benchmark suites, we conduct a comparative analysis
with other SoTA stereo matching networks published on these
benchmarks. The results presented in Table IV suggest that on
the KITTI Stereo 2012 dataset, our ViTAStereo outperforms
all other SoTA stereo matching networks across all evalua-
tion metrics. Surprisingly, ViTAStereo outperforms StereoBase
[65], the second-best network, by up to 7.00% and 11.25% in
PEP for non-occluded pixels and all pixels, respectively. More-
over, compared to IGEV-Stereo [11], which uses an identical
stereo matching back-end structure, our ViTAStereo reduces
PEP by up to 24.47%. These significant performance gains
underscore the effectiveness of adapting a pre-trained VFM to

1These results can be accessed at https://cvlibs.net/datasets/kitti/eval
stereo flow.php?benchmark=stereo and https://cvlibs.net/datasets/kitti/eval
scene flow.php?benchmark=stereo.
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TABLE VI
COMPARISONS AMONG SOTA STEREO MATCHING NETWORKS WITHOUT AND WITH OUR PROPOSED VITAS APPLIED.

Network Dataset for
Model Fine-tuning

ViTAS
KITTI Eval Midd Eval ETH3D

EPE (px) D1-all (%) EPE (px) D1-all (%) EPE (px) D1-all (%)

IGEV-Stereo [11]
KITTI Train

w/o 0.55 1.71 5.27 16.8 1.15 5.23
w/ 0.49 1.36 3.05 10.9 1.01 5.08

Midd Train
w/o 1.07 5.27 2.14 10.8 4.20 5.49
w/ 0.87 3.45 1.34 6.00 2.65 3.68

GMStereo [12]
KITTI Train

w/o 0.59 1.82 2.96 14.1 1.08 8.99
w/ 0.56 1.62 2.65 12.4 0.82 2.30

Midd Train
w/o 1.14 6.14 2.65 13.3 1.72 10.1
w/ 1.02 4.41 1.99 10.2 0.67 4.34

CREStereo [16]
KITTI Train

w/o 0.70 2.32 5.20 16.1 3.45 18.8
w/ 0.66 2.02 4.99 16.6 1.75 14.8

Midd Train
w/o 1.18 6.24 3.98 14.4 28.6 35.0
w/ 1.07 4.91 2.59 12.7 29.1 25.9
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Fig. 5. Qualitative experimental results on the KITTI Eval dataset. Significantly improved regions are shown in pink dashed boxes.

stereo matching using ViTAS, as opposed to traditional CNN-
based backbones for feature extraction. However, ViTAStereo
shows a 22.2% increase in runtime compared to IGEV-Stereo.
This increase is primarily due to the additional computations
introduced by the VFM and ViTAS, as opposed to the original
CNN-based feature extractor used in IGEV-Stereo. On the
other hand, ViTAStereo remains highly efficient, with an 8.3%
reduction in runtime compared to StereoBase, the second most
accurate stereo matching network on the KITTI Stereo 2012
dataset. Furthermore, the results presented in Table V indicate

that ViTAStereo achieves the best performance in terms of D1
in background areas (lower by approximately 5.47% compared
to StereoBase and about 12.3% compared to IGEV-Stereo)
on the KITTI Stereo 2015 dataset. Moreover, our ViTAStereo
decreases D1-all by around 5.66% compared to IGEV-Stereo.

The qualitative experimental results on these two datasets, as
illustrated in Fig. 4, also suggest that ViTAStereo outperforms
other SoTA networks in handling challenging scenarios. This
superior performance is evident in both large-scale, texture-
less regions (illustrated in rows 1 and 2) as well as small-scale
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Fig. 7. Qualitative experimental results on the ETH3D dataset. Significantly improved regions are shown in pink dashed boxes.

areas rich in details (shown in rows 3 to 9). We attribute these
improvements to the multi-scale feature aggregation process
performed by our proposed PAFM. Additionally, ViTAStereo
achieves improved disparity accuracy within occluded areas
(shown in row 10), further validating the robustness of our
approach in complex environments.

E. Generalizability Evaluation

VFMs are renowned for their remarkable generalizability
across diverse scenarios. Therefore, we conduct a series of
additional experiments on three public, real-world datasets to
further evaluate the generalizability of our proposed ViTAS,
when combined with three SoTA cost volume-based stereo
matching networks. The quantitative results are given in Table
VI, while the qualitative results on the KITTI Eval, Midd
Eval, and ETH3D datasets are presented in Figs. 5, 6, and

7, respectively. Our results suggest that leveraging ViTAS
for visual feature extraction enables both IGEV-Stereo and
GMStereo to consistently achieve superior performance across
all evaluation metrics on each dataset. While CREStereo
achieves comparable, albeit slightly less favorable, results in
terms of D1-all (when trained on the KITTI Train dataset
and evaluated on the Midd Eval dataset) and EPE (when
trained on the Midd Train dataset and evaluated on the ETH3D
dataset), it gains performance improvements in the remaining
experiments. These extensive and comprehensive experimental
results validate the compatibility of our proposed ViTAS as
well as its effectiveness in adapting to new, unseen datasets.

V. CONCLUSION AND FUTURE WORK

This article introduced ViTAS, a pioneering research effort
to fully exploit the general-purpose VFM features for stereo
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matching. Our study has yielded several key findings: (1)
the prevalent use of CNN-based feature extractors in existing
stereo matching networks has been identified as a critical
bottleneck, limiting these networks from achieving higher
levels of stereo matching accuracy; (2) a pre-trained VFM
combined with an appropriate adapter, demonstrates supe-
rior performance in terms of both stereo matching accuracy
and generalizability, when compared to conventional CNN-
based backbones; (3) merely aggregating stereo contextual
information via the cross-attention mechanism falls short in
addressing the scale ambiguity problem, underscoring the
indispensable role of cost volumes in developing generalizable
stereo matching networks. Our ViTAStereo sets a new standard
of performance on the KITTI Stereo datasets, establishing
itself as the SoTA in this field. While the contributions of this
study are significant, it is noted that the CAM utilized herein
remains unchanged and still requires substantial computational
and memory resources. Therefore, we intend to investigate
more efficient strategies for the aggregation of stereo contex-
tual information in the near future, to facilitate the future ap-
plication of our ViTAStereo in other correspondence matching
tasks and its deployment on mobile hardware devices.
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