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Abstract—Task-specific data-fusion networks have marked
considerable achievements in urban scene parsing. Among these
networks, our recently proposed RoadFormer successfully ex-
tracts heterogeneous features from RGB images and surface
normal maps and fuses these features through attention mech-
anisms, demonstrating compelling efficacy in RGB-Normal road
scene parsing. However, its performance significantly deteriorates
when handling other types/sources of data or performing more
universal, all-category scene parsing tasks. To overcome these
limitations, this study introduces RoadFormer+, an efficient,
robust, and adaptable model capable of effectively fusing RGB-
X data, where “X” represents additional types/modalities of
data such as depth, thermal, surface normal, and polarization.
Specifically, we propose a novel hybrid feature decoupling en-
coder to extract heterogeneous features and decouple them into
global and local components. These decoupled features are then
fused through a dual-branch multi-scale heterogeneous feature
fusion block, which employs parallel Transformer attentions
and convolutional neural network modules to merge multi-scale
features across different scales and receptive fields. The fused
features are subsequently fed into a decoder to generate the final
semantic predictions. Notably, our proposed RoadFormer+ ranks
first on the KITTI Road benchmark and achieves state-of-the-art
performance in mean intersection over union on the Cityscapes,
MFNet, FMB, and ZJU datasets. Moreover, it reduces the number
of learnable parameters by 65% compared to RoadFormer. Our
source code is publicly available at mias.group/RoadFormerPlus.

Index Terms—urban scene parsing, heterogeneous features,
Transformer, convolutional neural network.
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CENE parsing is crucial for the safety of autonomous
driving [1]. With the widespread adoption of deep learn-

ing techniques, convolutional neural networks (CNNs) and
Transformers have demonstrated significant performance im-
provements over traditional geometry-based models in vari-
ous image segmentation tasks [2]-[4]. However, single-modal
networks that rely solely on RGB images show limitations
in handling challenging conditions such as poor illumina-
tion and adverse weather [5], [6]. To tackle these problems,
subsequent research has explored the integration of useful
information provided by additional data modalities. Depth
or surface normal information has been utilized to identify
spatially continuous regions [7], while thermal images have
been employed to enhance object recognition robustness under
poor lighting conditions [8]. Furthermore, polarization infor-
mation has been used to improve segmentation performance
for transparent and highly reflective objects [9]. Our recently
proposed RoadFormer [1] effectively extracts heterogeneous
features from RGB images and surface normal information
and fuses these features for robust urban scene parsing, demon-
strating notable efficacy in freespace and road defect detection.
However, RoadFormer still has several limitations, especially
when handling other types/sources of data. Moreover, the large
quantity of parameters leads to considerable hardware resource
consumption, thus limiting its deployment on terminal devices.
Most existing data-fusion networks use symmetric duplex
encoders to extract heterogeneous features from multiple data
sources and fuse them to provide a more comprehensive
understanding of the environment [7], [10], [11]. However,
while prior arts [1], [7], [12] have been developed to capture
more discriminative features using these weight-separating
duplex encoders, directly fusing these features may produce
ambiguous features, thus negatively impairing the performance
of scene parsing [13]. Additionally, the symmetric models
with extensive parameters require more hardware resources
for training, particularly when compared to networks that rely
solely on RGB images [14]. Therefore, exploring an efficient
and effective heterogeneous feature encoding strategy remains
an under-explored research area that deserves more attention.
In addition to the heterogeneous feature extraction strategy,
the performance of a data-fusion network also depends on the
manner in which these features are fused. To address this issue,
recent works [1], [12], [14], [15] employ learnable feature
fusion approaches, which significantly outperform traditional,
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non-discriminative fusion methods that rely solely on element-
wise concatenation or summation [5], [7]. For example, Road-
Former [1] adopts a Transformer-based approach to effec-
tively capture long-range dependencies within heterogeneous
features. On the other hand, RDFNet [16] employs CNN-
based modules to process multi-scale features, effectively
extracting local spatial cues, such as edges and textures, within
a relatively small receptive field. However, these methods
typically employ single-branch feature fusion blocks, where
features extracted from RGB images and additional data
types (referred to as “X” data) are fused using convolutional
layers or attention mechanisms. Such single-branch feature
fusion strategies may not always effectively encode both local
and global contexts simultaneously, limiting their capacity
to fully exploit the advantages of multi-modal/source data
fusion. Considering Transformers’ remarkable capability in
modeling long-range dependencies and CNNs’ robustness in
local feature extraction [13], further research into combining
capabilities of CNNs’ local feature integration and Trans-
former’s global representation modeling through a dual-branch
fusion design to enhance scene parsing is highly warranted.

Moreover, while task-specific networks such as RoadFormer
demonstrate impressive performance in RGB-Normal road
scene parsing, their applicability to more universal urban
scene parsing tasks and their effectiveness in handling di-
verse data types remain limited. For instance, RoadFormer
exhibits a significant performance drop on comprehensive
scene parsing datasets, such as the KITTI Semantics [17]
and Cityscapes [18], compared to existing state-of-the-art
(SoTA) RGB-D/Normal methods. Additionally, it performs
suboptimally when processing RGB-Thermal/Polarization data
[8], [9]. It is urged to design a universal RGB-X data-fusion
network that performs robustly across multiple data sources
for urban scene parsing.

To address the aforementioned limitations, we first design
a more efficient hybrid feature decoupling encoder (HFDE).
Given the correlation between RGB images and their corre-
sponding X data, we first replace the duplex encoder with a
weight-sharing backbone to reduce the number of learnable
parameters. We then employ an asymmetric architecture that
independently utilizes two global feature enhancers (GFEs)
and two local feature extractors (LFEs) to decouple hetero-
geneous features, effectively modeling their inherent differ-
ences at various scales. Subsequently, we introduce a robust
dual-branch multi-scale heterogeneous feature fusion (MHFF)
block to fuse heterogeneous features in parallel, ensuring
a comprehensive integration of global and local features.
The MHFF block utilizes Transformer-based and CNN-based
modules to parallelly fuse and calibrate multi-scale features.
Our proposed RoadFormer+, an upgraded version of Road-
Former, with all these innovative components incorporated,
demonstrates superior performance over RoadFormer across
four RGB-Normal scene parsing datasets, while reducing the
learnable parameters by around 65%. Furthermore, Road-
Former+ achieves SoTA performance in RGB-Normal, RGB-
Thermal, and RGB-Polarization scene parsing, demonstrating
its exceptional applicability across a broad range of RGB-X
data-fusion scenarios.

Our contributions can be summarized as follows:

o We introduce HFDE, which consists of a weight-sharing
backbone and two pairs of independent GFEs and LFEs,
to extract heterogeneous features and effectively capture
both the correlation and inherent differences between
RGB images and X data.

e We design a dual-branch MHFF block to capture both
global and local features simultaneously. It seamlessly in-
tegrates Transformer-based and CNN-based modules, so
as to utilize different receptive fields to achieve advanced
heterogeneous feature fusion.

o We propose RoadFormer+, a novel urban scene parsing
approach with fewer parameters compared with Road-
Former, which achieves SoTA performance across multi-
ple RGB-X scene parsing datasets.

The remainder of this article is organized as follows: In Sect.
II, we review related works on urban scene parsing. In Sect.
III, we introduce our proposed RoadFormer+. In Sect. IV, we
present quantitative and qualitative experimental results and
their corresponding analyses. Finally, in Sect. V, we conclude
this work and discuss potential future directions.

II. RELATED WORK

A. Single-Modal Scene Parsing

Since the introduction of FCN [19], various CNN-based
scene parsing networks have been developed. For instance,
PSPNet [20] uses pyramid pooling to capture semantic in-
formation at multiple scales. DeepLabV3+ [21] employs
atrous convolutions with different dilation rates to enrich
the contextual feature encoding across scales. Additionally,
MobileNetV2 [22] adopts lighter architectures based on depth-
wise separable convolutions to reduce model parameters and
computational demands. In these CNN-based networks, each
convolutional kernel processes only a local region of the image
at a time. This local receptive field design enables CNNs to
excel at extracting local features, such as edges and textures
[25].

Transformers have gained prominence in scene parsing
tasks due to their exceptional global aggregation capabilities
compared to CNNs [24]. The attention mechanisms within
Transformers allow each token to interact with all others
simultaneously [25]. These interactions help achieve a com-
prehensive understanding of the correlation between each
token and the global context, thereby better extracting global
features. Segmentation Transformer (SETR) [26], pioneering
the use of a Transformer-based architecture for scene parsing,
adopts a method similar to the vision Transformer (ViT)
[27] by tokenizing images into patches and processing them
through Transformer blocks to enhance the global context
modeling in the encoder. Furthermore, the MaskFormer series
[28], [29] introduces a novel Transformer-based decoding
paradigm by segmenting images into a set of masks, each
associated with a class prediction. This mask classification
paradigm, previously validated in [!], has been effectively
incorporated into our enhanced RoadFormer+ design, further
optimizing its performance.
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Fig. 1. An overview of our proposed RoadFormer+ architecture.

B. Data-Fusion Scene Parsing

Scene parsing networks that rely solely on RGB images
have been found to be highly sensitive to environmental factors
such as lighting and weather conditions [7]. To overcome this
limitation, data-fusion networks effectively utilize heteroge-
neous features extracted from RGB images and additional
data sources. FuseNet [5] pioneered the incorporation of
depth information into scene parsing. It uses independent
CNN encoders for RGB and depth images and fuses their
features through element-wise summation. MFNet [8] and
RTFNet [30] strike a balance between speed and accuracy
in RGB-Thermal driving scene parsing. Inspired by [5], the
SNE-RoadSeg series [7], [31] incorporates surface normal
information into freespace detection. These networks employ
densely connected skip connections to enhance feature de-
coding. Despite the improved performance achieved by these
networks, the simplistic feature fusion strategies potentially
restrict their capacity to fully exploit the complementary
information present in heterogeneous features.

To address this challenge, recent studies have employed
more advanced and learnable feature fusion strategies. Road-
Former [1] combines self-attention with channel attention to
form a novel feature synergy block that greatly enhances the
fusion of heterogeneous features. Data-fusion networks have
also garnered attention in the broader domain of scene parsing.
Recent works CMX [12] and CAINet [14] utilize various
attention modules to effectively fuse and recalibrate heteroge-
neous features. Additionally, SASEM [3?2] introduces a plug-
and-play module to enhance semantic supervision, thereby
improving feature recovery capabilities. Moreover, CDDFuse
[13] implements a two-step training strategy that integrates
CNN and Transformer blocks in parallel to fuse multi-modal
medical images effectively. This article delves into more
robust and general-purpose modules so as to more effectively
fuse heterogeneous features. Our proposed RoadFormer+ not
only broadens its applicability and generalizability to a wider
range of scene parsing tasks but also significantly reduces the
number of model parameters.

III. METHODOLOGY

A. Hybrid Feature Decoupling Encoder

1) Overall Feature Encoding Pipeline: Current networks
generally employ symmetric duplex encoders to extract het-
erogeneous features from multiple data sources [1], [7]. How-
ever, such dual-branch designs not only double the num-
ber of learnable parameters in the feature encoding phase
but may also potentially lead to feature conflict [33]. To
address this issue, we propose an HFDE to improve the
efficiency of heterogeneous feature extraction. Specifically,
considering the correlation between heterogeneous features
[34], we first employ a weight-sharing backbone to process the
given RGB image I € RP*Wx3 and its corresponding X
data I € R¥>*Wx3  thereby generating multi-scale features
FE = {Ff},. . F}} and FX = {F{,...,F{}. For
X data with a single channel (such as depth, thermal, and
polarization information), we replicate it three times along
the channel dimension to match the RGB image’s dimensions
of H x W x 3. Here, FI'" ¢ RS %5 %Ci represents the
features in the i-th encoding stage, where C; and S; = 21!
(t € [1,4] N Z) denote the channel and stride numbers,
respectively, and H and W denote the height and width of
the input image, respectively. Furthermore, we employ two
weight-separating GFEs and LFEs to extract global features
.7-'5‘ * and local features }'f’X at four spatial scales from the
heterogeneous features F X, respectively, thereby realizing
feature decoupling. Finally, ]_-(1;:,)( and F f’X are fed into the
MHEFF block for further feature fusion and recalibration.

2) Weight-Sharing Backbone: Large-kernel convolutions
exhibit considerable potential in capturing long-range depen-
dencies, owing to their expansive receptive fields, while still
retaining favorable inductive biases crucial for vision-specific
tasks such as scene parsing [35]. For instance, the areas
surrounding vehicles are more likely to be roads rather than
buildings. In our previous study [1], ConvNeXt [36] demon-
strates superior performance compared to ResNet [37] and
Swin Transformer [38], and thus, we continue to adopt it as
the backbone in this study. We also compare the performance
of ConvNeXt with the recently proposed SoTA backbone
networks UniRepLKNet [35] and DiNAT [39]. Detailed ex-
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perimental results and analyses are provided in Table X. Our
backbone is constructed using two identical, weight-sharing
ConvNeXt models.

3) Global Feature Enhancer: ViT has shown exceptional
performance across various fundamental vision tasks [27],
[38]. Its self-attention mechanism effectively models the global
receptive field, thereby enhancing the contextual understanding
essential for recognizing large continuous areas such as roads
and sidewalks. Consequently, we utilize a GFE based on
the multi-head self-attention mechanism to further emphasize
the long-range global features. Given the robustness of the
backbone network, we omit the positional encoding and re-
place the commonly used feed-forward network layers with
simple normalization operations to reduce the number of
model parameters. RGB features % and X features F~
are respectively mapped to query, value, and key matrices
through convolutional layers. We also introduce a residual
connection into the attention operation. Our GFE module can
be formulated as follows:

G; = Norm(MHSA(Fi) + Fl-), (1)

where F'; represents the i-th feature maps within 7% and FX,
G, represents the i-th feature maps within 75 and F5, and
MHSA represents the multi-head self-attention mechanism
operation. After processing by the GFE, the enhanced global
features & and FZ are obtained.

4) Local Feature Extractor: Local detail features, such as
edges and corners, are crucial for accurate scene parsing.
Compared to Transformers, convolution operations are pro-
ficient at extracting local features and further enhancing fine-
grained details [40]. Therefore, we propose a LFE, which in-
corporates an inverted residual block from MobileNetV2 [22]
to process F and FX, specifically targeting local features.
This lightweight module strikes a balance between model
parameters and accuracy, as demonstrated across multiple
tasks [14]. Our LFE can be formalized as follows:

L; = Conv (ReLU (DWConV (ReLU(Conv(F;))) )) + F;,
1x1 3x3 1x1

2)

where L; denotes the i-th feature maps within 77 and F7*.

After processing by the LFE, we obtain the local features F7*
and Fy.

B. Multi-Scale Heterogeneous Feature Fusion Block

To further fuse and integrate global and local features,
we introduce a dual-branch MHFF block, which employs
attention mechanisms and CNN modules in parallel. An MHFF
consists of (1) a global feature recalibration module (GFRM)
that utilizes a cross-attention mechanism to recalibrate .Fg
and FX, (2) a local feature fusion module (LFFM) that
utilizes convolutional layers to fuse FI and F7, and (3)
a feature enhancement and integration module (FEIM) based
on a spatial attention mechanism to integrate heterogeneous
features and generate robust fused feature F¥.

1) Global Feature Recalibration Module: Heterogeneous
global features .7:5 and ]-'é( are generally complementary
[34]. For example, road areas often appear consistent in color
across RGB images and possess uniform normal vectors and
polarization properties. Therefore, one feature type can be uti-
lized to mitigate potential noise in its complementary feature
type [12]. Additionally, features from different channels do
not all contribute positively to semantic predictions [1], [41],
necessitating the recalibration of heterogeneous features along
the channel dimension [42]. To address these challenges, we
introduce the GFRM (see Fig. 2 (a)) to recalibrate and fuse
FE and FZ . The cross-attention mechanism, which considers
interactions among all positions in the input, is well-suited
for calibrating complementary heterogeneous global features
and has demonstrated excellent performance in many visual
tasks [12]. Drawing inspiration from these approaches, the
GFRM first recalibrates global features using a cross-attention
mechanism, which can be formulated as follows:

GF = Softmax (Qfo T) kVELGE ()
GX' = Softmax (QX K[ ) wvX +GY, @
FZC = Norm ((5([GZR/7 G;X/])) , (5)

where G and G¥ represent the i-th feature maps within
FE and FX, respectively, GzR and GZX are then identically
mapped to query Qf7X, key K ZR’X and value VlR’X embed-
dings, [, -] denotes the concatenation operation along the chan-
nel dimension, and § is a non-linear activation function. The
learnable coefficients «; and 7; can adaptively adjust attention
significance [43]. For F¢, we further employ channel-wise
attention to emphasize key features and suppress those with
low information density, which can be formulated as follows:

52 S c
P S S U
h=1w=1
G c c
Fy =F; GU(Cloqu(zi)) +Fy )

where z; = [21,...,2i.c;] € RY1XC gtores the av-

erage pooling results of each feature map in Fic, o is

the sigmoid function, and ® denotes the Hadamard prod-

uct operation. Finally, we obtain the fused global feature
H w .

FG = {F§{,... F$}. Here, F¢ ¢ R %5 *" represents

the global features in the i-th feature fusion stages.

2) Local Feature Fusion Module: To preserve more local
contexts when fusing heterogeneous features F£ and F7, we
propose a convolution-based LFFM (see Fig. 2 (b)). Inspired
by the MLP-Mixer [44], our LFFM captures relationships
between heterogeneous features from different local regions,
generating fused local features. The LFFM can be mathemat-
ically represented as follows:

H{ = DWConv (Conv([L{, L}])), ®
3x3

where LlR and LlX represent the ¢-th feature maps within
FE and FiX, respectively, each having C; channels. After
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Fig. 2. An illustration of our proposed multi-scale heterogeneous feature fusion block, consisting of (a) a global feature recalibration module, (b) a local

feature fusion module, and (c) a feature enhancement and integration module.

R and L;* along the channel dimension, we
employ depth-wise separable convolutions to expand their
channels to 4C}, thereby enhancing the local context. The
resultant I~ is then split into H* and H." along the channel
dimension. This design allows the model to learn new feature
representations, which is further validated in Table XI. These
two components interact through Hadamard multiplication,
enabling the capture of relationships between features from
different local regions:

F! = Cou(HM ©o(H))), 9)
1x1

concatenating LT

where we utilize the Gaussian error linear unit (GELU) as
the activation function o(-). Then we obtain the fused local
H W .
features FL = {FE ... FL}, where FL ¢ R&*s7%C
represents the local features in the i-th feature fusion stage.
3) Feature Enhancement and Integration Module: Spatial
information is crucial for capturing spatial structures in visual
perception tasks [15]. Nonetheless, our GFRM and LFFM fuse
heterogeneous features across channel dimensions, squeezing
spatial information into a channel descriptor, and hence is
difficult to preserve positional information [45]. Therefore, it
is necessary to introduce additional spatial information when
integrating global features F¢ and local features F”. The
spatial attention mechanism emphasizes the importance of
specific regions within features, aiding the network in focusing
on “where” informative parts are located [46]. Inspired by the
coordinated attention [45], we introduce the FEIM (see Fig.
2 (c)) to further enhance and integrate JF' G and FL, enabling
the module to detect more subtle spatial variations. Specif-
ically, we employ global pooling kernels (H,1) or (1, W)
to aggregate features along the height and width dimensions,
respectively. Thus, the output of the j-th channel at height p
and width ¢ can be formulated as:

F? =F% 4+ FL, (10)

ZJp Z FS (p,m,j), (11)
0<m<W

,J,q Z F (n,4,7), (12)
0<n<H

where F? and FZL represent the ¢-th feature maps within
FG& and FL, respectively, and Z" € RH¥*1xCi a5 well as
Z? € RWXCi gtore the average pooling results of each
feature map in Ff across the dimensions of H and W,
respectively. Z!' is subsequently reshaped into RW*1*xC: We
further apply a convolutional layer and a Sigmoid function to
make full use of the captured positional information, enhanc-
ing the network’s ability to accurately emphasize regions of
interest. This process can be formulated as follows:

7, = A

2, = oo (2! Z}), 13
where [-,-] denotes the concatenation operation along the
spatial dimension. Then, Z; is split into two separate tensors:

~h
7! € RHXIXCs and Z; € RWx1xCi_ This allows interac-

tions between Z and Z from both dlmensmns enhancing
the emphasis on regions of interest. Z is then reshaped 1nt0

RIXWXC Each element within the two attention maps, " P
and Z , indicates the presence of objects of interest across

~h ~Aw .
respective rows or columns. Z; and Z, are applied to F?
to more accurately pinpoint the exact location of the object of
interest, which can be written as follows:

FFr—FSozl0z! (14)

Finally, we obtain the fused features F¥ = {F1 ... F%},
which are forwarded to the decoder to obtain the final semantic
prediction. Given the outstanding performance of the multi-
scale Transformer decoder employed in RoadFormer, we retain
this design. Please refer to [ 1] for more details on the decoder
and loss function.
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IV. EXPERIMENTS
A. Datasets

We compare RoadFormer+ with other SOTA scene parsing
networks on the following seven RGB-X datasets:

1) SYN-UDTIRI [/]: This dataset contains over 10,000
pairs of stereo road images, along with corresponding depth
maps, surface normal information, and semantic annotations,
including three categories: freespace, road defect, and other
objects. It is created using the CARLA simulator [47] and
first introduced in our previous work [1]. The input images
are resized to a resolution of 640x352 pixels.

2) KITTI Road [45]: This dataset has 289 pairs of stereo
road images and their corresponding LiDAR point clouds for
both model training and validation. We employ a data pre-
processing strategy akin to that detailed in [7]. The input
images are resized to a resolution of 1,280x384 pixels.

3) Cityscapes [/8]: This widely used urban scene dataset
contains 2,975 stereo training images and 500 validation
images, with well-annotated semantic annotations. Notably,
the surface normal information is derived from depth images
generated using RAFT-Stereo [49], trained on the KITTI
dataset [50]. The input images are resized to a resolution of
1,024 x512 pixels.

4) KITTI Semantics [17]: This dataset contains 200 im-
ages and their corresponding semantic annotations across 19
classes. Surface normal information is derived from depth
data acquired using ViTAStereo [51], chosen for its superior
accuracy. The input images are resized to a resolution of
1,280x384 pixels.

5) MFNet [8]: This urban driving scene parsing dataset
contains 1,569 synchronized pairs of RGB and thermal im-
ages at a resolution of 640x480 pixels. It includes semantic
annotations across nine classes: bike, person, car, road lanes,
guardrail, car stop, bump, color cone, and background.

6) FMB [52]: This dataset contains 1,500 well-rectified
RGB-Thermal image pairs (resolution: 800x 600 pixels), cap-
tured in urban driving scenes under different illumination
conditions. It provides semantic annotations across 14 classes.

7) ZJU [9]: This RGB-Polarization dataset, designed for
automated driving applications, contains 394 image pairs.
Each pair contains four polarized images captured at different
polarization angles (0°, 45°, 90°, and 135°). The input images
are resized to a resolution of 612x512 pixels.

B. Experimental Setup and Evaluation Metrics

For the SYN-UDTIRI and other RGB-Normal datasets, we
exclusively use surface normal information estimated using
the D2NT algorithm [54] owing to its superior accuracy. This
information serves as the “X” data to train our RoadFormer+.
Additionally, depth, thermal, and polarization information are
replicated across the channel dimension three times during
data pre-processing to match the H x W x 3 dimensions
of RGB images. During training, we employ the common
data augmentation techniques used in semantic segmentation,
including resizing, random cropping, and random flipping of
RGB-X image pairs. Additionally, we make random adjust-
ments to the brightness, contrast, saturation, and hue of the

RGB images. All networks are trained for the same number
of epochs on an NVIDIA RTX 3090 GPU using the AdamW
optimizer [55], with a polynomial decay strategy for the
learning rate [23]. The initial learning rate is set to 10~% with
a weight decay of 5 x 1072, and learning rate multipliers of
10~ are applied to the weight-sharing backbone.

We evaluate the performance of our models using five
common metrics: accuracy (Acc), precision (Pre), recall (Rec),
intersection over union (IoU), and F-score (Fsc). We refer
readers to our previous work [1] for more details on these
metrics. Additionally, the evaluation metrics used for the
KITTI Road and KITTI Semantics benchmarks are available
on the official webpage: cvlibs.net/datasets/kitti.

C. Comparison with SoTA Networks

We first conduct experiments on four RGB-Normal datasets.
The quantitative results on the SYN-UDTIRI, Cityscapes,
KITTI Road, and KITTI Semantics datasets are presented in
Tables I-V, respectively. In these experiments, the symbols
“B” and “L” respectively denote the use of ConvNeXt-B and
ConvNeXt-L as the backbones. These results demonstrate that
our proposed RoadFormer+ significantly outperforms all other
SoTA networks, including our previous work RoadFormer
[1], across all four RGB-Normal datasets. This validates its
exceptional performance and robustness in effectively parsing
various types of road scenes. Notably, as shown in Table I,
RoadFormer+ based on ConvNeXt-B reduces the number of
learnable parameters by 65% compared to RoadFormer.

Furthermore, we conduct experiments on the Cityscapes
dataset by treating it as both a binary segmentation task (road
versus background) and a full-category segmentation task (19
labeled categories plus an “ignore” category). Experimental
results are presented in Tables III and IV, respectively. We
also compare RoadFormer+ with four SoTA single-modal
networks. It is worth noting that traditional data-fusion net-
works, which typically employ basic element-wise addition or
feature-level concatenation for feature fusion, perform worse
than single-modal networks. This underperformance may be
attributed to the noise present in disparity maps used for
surface normal estimation, which are derived directly from
a stereo matching network pre-trained on the KITTI dataset.
Experimental results further demonstrate that RoadFormer+
effectively overcomes this issue through feature recalibration
and enhancement, thus preventing performance degradation
even when surface normal information is inaccurate.

We submit the test set results obtained by RoadFormer+ to
both the KITTI Road and KITTI Semantics benchmarks for
performance comparison. As shown in Tables II and V, Road-
Former+ ranks first on the KITTI Road benchmark and ranks
third on the KITTI Semantics benchmark. Notably, the top-
performing SoTA methods in the KITTI Semantics benchmark
employ sequential frames (+10) from the scene flow subset
for data augmentation. Despite this, RoadFormer+ exhibits
superior performance in urban scene parsing compared to all
previously published methods.

Furthermore, we explore the applicability of Road-
Former+ for RGB-Thermal and RGB-Polarization scene pars-
ing. Experimental results on three public datasets, MFNet
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TABLE I
QUANTITATIVE COMPARISON OF ROAD DEFECT DETECTION ON THE SYN-UDTIRI TEST SET.

Method Publication ToU (%) 1 Fsc (%) 1 Pre (%) 1 Rec (%) 1 #Params (M) |
OFF-Net ICRA22 [3] 83.80 91.20 91.90 90.50 252
RTENet RAL’19 [30] 90.50 95.00 95.50 94.50 254.5
DFormer ICLR24 [53] 90.88 95.22 96.09 94.37 38.8
CAINet T-MM’24 [14] 91.77 95.71 95.43 95.99 12.2
SNE-RoadSeg ECCV’20[7] 92.10 95.90 96.70 95.10 201.3
CMX T-ITS’23 [12] 93.31 96.27 96.54 96.81 138.8
RoadFormer (B) T-IV'24 1] 93.06 96.41 96.19 96.63 206.8
RoadFormer (L) T-IV'24 1] 93.51 96.65 96.61 96.69 438.6
RoadFormer+ (B) Ours 94.11 96.96 97.03 96.90 152.4
TABLE 11 TABLE V
COMPARISON WITH SOTA ALGORITHMS PUBLISHED ON THE KITTI ROAD COMPARISON WITH SOTA ALGORITHMS PUBLISHED ON THE KITTI
BENCHMARK. SEMANTICS BENCHMARK.
Method MaxF (%) 1 Pre (%) t Rec (%) 1 Rank Method IoU Class (%) 1 IoU Category (%) 1 Rank
SNE-RoadSeg [7] 96.75 96.90 96.61 13 RoadFormer (B) [1] 67.17 87.89 5
RoadFormer (B) [1] 97.50 97.16 97.84 3 VideoProp-LabelRelax [57] 72.82 88.99 4
SNE-RoadSegV2 [31] 97.55 97.57 97.53 2 RoadFormer+ (B) 70.32 87.16 -
RoadFormer+ (B) 97.56 97.43 97.69 1 RoadFormer+ (L) 7313 88.75 3
TABLE III TABLE VI

QUANTITATIVE COMPARISON OF FREESPACE DETECTION ON THE
VALIDATION SET OF THE CITYSCAPES DATASET.

Method ToU (%) 1 Fsc (%) 1 Acc (%) T

SNE-RoadSeg [7] 93.22 96.49 97.68

SNE-RoadSegV2 [31] 94.40 97.12 98.11

RoadFormer (B) [1] 95.87 97.89 98.30

RoadFormer+ (B) 96.01 97.96 97.82
TABLE IV

QUANTITATIVE COMPARISON OF ALL-CATEGORY SCENE PARSING ON
THE VALIDATION SET OF THE CITYSCAPES DATASET.

Method mloU (%)t mFsc (%)t mAcc (%) 1
SegFormer [56] 64.51 76.99 76.39
8 DeepLabV3+ [23] 68.66 80.34 78.89
& | ConvNeXt [36] 73.35 83.94 83.32
Mask2Former [29] 74.78 84.97 85.90
CAINet [14] 62.38 75.04 73.68
£ | emx (i) 74.11 84.41 83.30
2 DFormer [53] 74.37 84.55 84.00
g RoadFormer (B) [1] 76.09 85.83 86.30
RoadFormer+ (B) 77.42 86.72 86.23
RTFENet [30] 49.60 61.20 90.00
- SNE-RoadSeg [7] 53.40 64.54 85.64
é CAINet [14] 62.41 75.13 74.23
2 CMX [12] 73.50 83.99 83.67
% | RoadFormer (B) [1] 76.18 85.88 85.38
~ RoadFormer+ (B) 71.57 86.84 86.77
RoadFormer+ (L) 78.53 87.48 87.00

(RGB-Thermal), FMB (RGB-Thermal), and ZJU (RGB-
Polarization), demonstrate the superiority of RoadFormer+
over other task-specific data-fusion networks for these modal-
ities. Impressively, RoadFormer+ achieves an improvement in
mloU of 1.2-9.5% on the MFNet dataset, 4.9-19.3% on the
FMB dataset, and 0.4-7.3% on the ZJU dataset, compared to
other SOTA methods. These results underscore the versatility
of our network in handling diverse data types. It is important

QUANTITATIVE COMPARISON ON THE MFNET TEST SET.

Method mloU (%) 1 | Rank
RTFNet [30] 532 33
RoadFormer (B) [1] 58.0 12
CAlNet [14] 58.6 9
CMX [12] 59.7 5
CMNeXt [58] 59.9 4
CRM-RGBTSeg [59] 61.4 3
HAPNet [60] 61.5 2
RoadFormer+ (B) 60.9 -
RoadFormer+ (L) 62.7 1
TABLE VII

QUANTITATIVE COMPARISON ON THE FMB DATASET.

Method mloU (%) 1 | Rank

SegMiF [52] 54.8 4

RoadFormer (B) [1] 69.2 2

RoadFormer+ (B) 73.1 -

RoadFormer+ (L) 74.1 1
TABLE VIII

QUANTITATIVE COMPARISON ON THE ZJU-RGB-P DATASET.

Method mloU (%) 1 Rank
EAFNet [9] 85.7 5
RoadFormer (B) [1] 92.6 4
CMX [12] 92.6 3
RoadFormer+ (B) 92.9 -
RoadFormer+ (L) 93.0 1

to note that since the “bicycle” category is not included in the
test set of the FMB dataset, and we report the mloU metrics
excluding the “bicycle” category.

Qualitative comparisons on the KITTI Road, Cityscapes,
and MFNet datasets are presented in Figs. 3-5. The dual-
branch feature fusion design of RoadFormer+ enables ef-
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SNE-RoadSegV2

RoadFormer

RoadFormer+
(Ours)

Fig. 3. Qualitative comparison between our proposed RoadFormer+ and other
SoTA networks on the KITTI Road dataset. The results are produced by the
official KITTI online benchmark suite. The classifications are visualized with
true positives in green, false positives in blue, and false negatives in red.

Semantic Ground Truth

Fig. 4. Qualitative comparisons between our proposed RoadFormer+ and
other SOTA networks on the Cityscapes validation set, where significantly
improved regions are shown with yellow dashed boxes.

fective capture of both local and global contexts, thereby
outperforming previous single-branch heterogeneous feature
fusion approaches. Our method not only demonstrates robust
performance in comprehensive scene understanding but also
excels in delineating detailed boundaries. Additionally, Road-
Former+ exhibits superior capabilities in handling challenging
conditions such as darkness and fog, demonstrating its ver-
satility across diverse scenarios. Furthermore, RoadFormer+
consistently delivers robust performance across various illu-
mination conditions. As illustrated in the second row of Fig.
5, RoadFormer+ outperforms all existing data-fusion methods
in handling overexposed scenes within the MFNet dataset.

D. Ablation Studies

We conduct ablation studies on the SYN-UDTIRI, MFNet,
and ZJU datasets. Our baseline is built upon RoadFormer
[1], and all implementation details are consistent with those
described in Sect. I'V-B.

1) Effectiveness of HFDE: Building on our previous find-
ings stated in [!] that demonstrated the effectiveness of Con-
vNeXt [36] in urban scene parsing, we continue to employ it
as the backbone in this study. We investigate two backbone
training strategies: weight-sharing and weight-separating. The
results, presented in Table IX, show that the weight-sharing
strategy not only achieves performance comparable to the
weight-separating strategy across three RGB-X datasets but
also significantly reduces the model’s parameters by nearly
half. This observation calls into question the utility of tradi-
tional duplex encoder designs in these applications.

We further validate the effectiveness of our proposed GFE
and LFE on the SYN-UDTIRI dataset in terms of heteroge-

TABLE IX
ABLATION STUDY ON THE BACKBONE TRAINING STRATEGY WHEN USING
CONVNEXT AS THE BACKBONE.

Strategy SYN-UDTIRI MFNet ZJU #Params (M)* |
IoU (%)t mloU (%)1 | mloU (%)t
Weight-Separating 92.88 58.88 92.54 206.8
Weight-Sharing 92.87 58.96 92.47 113.7

*The resolution of the input image is set to 640x352 pixels.

TABLE X
ABLATION STUDY ON THE BACKBONE SELECTION AND THE
EFFECTIVENESS OF OUR PROPOSED HFDE.

Backbone GFE LFE ToU (%) #Params (M) |
ConvNeXt-B v X 93.05 123.8
ConvNeXt-B X v 93.13 124.9
ConvNeXt-B v v 93.44 1349

DiNAT-B v v 93.19 136.1

UniRepLKNet-B v v 93.36 145.5

neous feature enhancement. It is evident that using either GFEs
or LFEs independently can effectively enhance our model’s
performance, and their combined use results in an IoU increase
of 0.57%. Additionally, we compare ConvNeXt with recently
proposed models, including the Transformer-based DiNAT
[39] and UniRepLKNet [35], which both employ large-kernel
convolutions. The results affirm that ConvNeXt continues to
exhibit superior performance compared to other backbones.
2) Effectiveness of the MHFF Block: As illustrated in Table
XI, we utilize RoadFormer as the baseline and alternately
replace its feature fusion module with components from our
proposed MHFF block to validate the efficacy of the dual-
branch feature fusion design. First, we maintain RoadFormer’s
HFFM and FFRM to fuse global and local features, with the
results depicted in the first row. As indicated in the second row,
we maintain the use of the HFFM for global feature fusion
while integrating the proposed LFFM for local feature fusion,
resulting in performance improvements on the SYN-UDTIRI
and MFNet datasets, while maintaining stability on the ZJU
dataset. Subsequently, HFFM is replaced with our proposed
GFRM, with results shown in the third row. Finally, FFRM
is replaced with the proposed FEIM, with results presented
in the fourth row. The experimental results underscore the
individual effectiveness and compatibility of our proposed
GFRM, LFFM, and FEIM. When fully integrated, these
modules significantly enhance RoadFormer+’s performance
in processing three types of RGB-X data compared to the
original RoadFormer’s feature fusion method. The feature
fusion method presented in row four is our proposed MHFF
block. To further validate the effectiveness of the channel
expansion design in LFFM and the collaborative processing of
Z!" and Z" in FEIM, additional experiments are conducted.
Removing these operations leads to a decline in the overall
performance, as demonstrated in rows five and six.

V. CONCLUSION

This article reviewed designs for heterogeneous feature
extraction and fusion strategies and introduced RoadFormer+,
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Semantic Annotation RoadFormer+ (Ours) HAPNet

CRM-RGBTSeg

CAINet RTFNet CMNeXt

RGB Image Semantic Annotation RoadFormer+ (Ours) HAPNet

CRM-RGBTSeg

CAINet RTFNet CMNeXt

Fig. 5. Qualitative comparisons between our proposed RoadFormer+ and other SOTA networks on the MFNet test set, with significantly improved regions
highlighted in red dashed boxes.

TABLE XI
ABLATION STUDY ON THE EFFECTIVENESS OF OUR PROPOSED MHFF
BLOCK.
Feature Fusion Method SYN-UDTIRI MEFNet 2
ToU (%)t mloU (%)t mloU (%)t
HFFM + FFRM 93.44 59.34 92.72
HFFM + LFFM + FFRM 93.67 60.13 92.70
GFRM + LFFM + FFRM 93.82 60.51 92.85
GFRM + LFFM + FEIM 93.91 60.91 92.89
GFRM + LFFM* + FEIM 93.45 60.69 92.64
GFRM + LFFM + FEIM* 93.76 59.42 92.55

* The feature channel number of LFFM is doubled due to direct duplication.

W

zZ él and Z3" in the FEIM are processed separately without interaction.

a highly efficient, robust, and applicable urban scene parsing
network. Breaking down our contributions further, our work
contains five key technical advancements: two modules for
feature decoupling in the encoding stage, and three new
components within the feature fusion module. The effective-
ness of each contribution was validated through extensive

experiments.

RoadFormer+ outperforms other SoTA algo-

rithms across multiple RGB-X scene parsing datasets. Our
future work will primarily focus on investigating lightweight
algorithms to enhance adaptability to terminal devices.
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