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Abstract— Object detection in complex traffic scenarios is
crucial for Intelligent Transportation Systems (ITS). At present,
most real-time traffic object detection methods primarily rely
on YOLO-style vision-only detectors, limiting their potential for
further improvement. Vision-Language Object Detection (VLOD)
has made promising progress currently, yet its adoption in the
realm of ITS remains limited. Previous VLOD methods utilize
text features in the classification task, without fully exploring
their impact on the regression process for object localization.
Besides, existing multi-modal fusion approaches fail to fuse text
features with multi-scale image features at corresponding scales,
which is detrimental to the representation capability of the model.
In this work, we dive into the limitations above and introduce
Zone-YOLO to improve the VLOD to a new level. Specifically,
we propose Scale-Aware Modal Fusion (SAMF) to fully exploit
the text and image features and learn to fuse the multi-modal
representations seamlessly at different scales with channel- and
modal-wise enhancement. Moreover, we present a novel Zone
Prompt learning method to introduce text features into regression
process and capture the zone-class-entity triple co-occurrence,
which significantly improves the localization performance of the
model. Extensive experiments show that Zone-YOLO outper-
forms the comparative methods by a considerable margin, achiev-
ing 55.1 AP, 72.1 AP50 and 71.2 APL on COCO. The competitive
results on BDD100K and VisDrone2019 further demonstrate the
superiority of Zone-YOLO on efficient traffic object detection.

Index Terms— Traffic object detection, vision-language model,
multi-modal feature fusion, prompt learning, YOLO.

I. INTRODUCTION

OBJECT detection is capable of recognizing and locating
the image’s region of interest, such as cars and pedes-

trians, and is widely applied in traffic surveillance, Advanced
Driving Assistance Systems (ADAS). Over the past decades,
research on traffic object detection has achieved significant
breakthroughs in terms of model structure [1], [2], [3], [4],
data security [5], and interpretability [6], becoming the founda-
tional building blocks for high-level decision-making and path
planning capabilities in many ITS tasks. YOLO-style detec-
tors [7], [8], [9], [10], [11] integrate the end-to-end architecture
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Fig. 1. Traffic object detection in complex scenes, from top to bottom are the
results of Ground Truth, YOLOv8, and our Zone-YOLO. It can be observed
that Zone-YOLO achieves higher recall and confidence scores, and exhibits
better detection performance under challenges such as overlap, small size, and
dim lighting condition.

with a lightweight backbone, excelling in real-time traffic
object detection. However, the majority of YOLO-style detec-
tors to traffic object detection rely on vision-only features,
which inherently struggle with a lack of semantic information,
limiting their potential for further scalability and improvement.
In traffic scenes, the varying sizes of objects and complicated
background result in a large number of missed and false
detections. Fig. 1 intuitively illustrates this phenomenon.

Recently, Vision-Language Models (VLMs) [12], [13], [14],
[15] have been extensively researched [16]. By fusing multi-
modal information, VLMs are able to derive more general
and robust feature representations. Inspired by this, several
works [17], [18], [19], [20], [21], [22] integrated text encoders
with object detectors, proposing VLM-based Object Detec-
tion (VLOD) methods. These methods leverage text encoders
such as BERT [23] to extract more semantic information,
significantly improving detection performance. There are two
issues worth investigating in VLOD. First, the inconsistencies
between different modalities inherent in VLMs. Therefore,
the efficient fusion of image and text features is crucial
to fully harness the feature information and subsequently
improve the model’s representational capabilities. Second,
most VLOD methods primarily focus on utilizing text features
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for contrastive learning in the classification task without
exploring their impact on the regression process.

Pertaining to the first issue, studies [14], [15] have utilized
Multi-Head Self-Attention (MHSA) in Transformer [24] to
capture semantic correlations between image and text features
for multi-modal feature fusion. Some methods [15], [25]
concatenate these two features and feed them into multi-layer
Transformers to achieve modal fusion at an early stage,
while Co-Attention [14] modifies the MHSA to compute
mutual attention between two modalities. YOLO-World [22]
distinctively uses Max-Sigmoid Attention to aggregate text
features into image features. Although the aforementioned
works have achieved significant results, they have failed to
distinguish the macro and micro concepts within the text fea-
tures. Integrating these concepts with different scales of image
features indiscriminately may potentially disrupt the fusion
features and exacerbate the modality gap [15]. For this reason,
we propose the Scale-Aware Modal Fusion (SAMF) method
that aligns image and text features at corresponding scales
by updating a scale-aware query (SQ), thereby suppressing
concept aliasing in feature fusion. The multi-modal attention
mechanism utilized in SAMF can enhance the features of
different modalities independently.

In response to the second issue, drawing on Prompt learning
and the Adapter technique, this study innovatively proposes
Zone Prompt, which introduces the regional information of
text features into the regression task, aiming to improve
the detection performance from another perspective. Some
existing studies on regional prompts are available. PTP [26]
numbers the region blocks of an image and then predicts the
objects based on the given blocks. PEVL [27] reconstructs its
objective with explicit object position modeling to generate
the bounding box coordinates. However, these methods cannot
be directly applied to object detection, and the class-specific
prompts they use pose significant difficulties in category-to-
object coreference. In this paper, we design class-agnostic
zone prompts to avoid referential ambiguity and introduce
an adapter to get class-specific zone embeddings that capture
the co-occurrence information between categories and regions.
Then, a brand-new Zone Head is built to fuse the image
features with zone embeddings and achieve the interaction
of zone-class-entity co-occurrence features, thus avoiding the
direct matching of text and image features. An auxiliary branch
is also included to resist potential information loss during
prompt learning.

Incorporating the above two aspects, we propose Zone-
YOLO, a VLM-based YOLO fashioned detector, and inves-
tigate its application in traffic object detection. Our main
contributions are summarized into threefold:

1) We pioneered the scale-aware dual-stream multi-modal
fusion method to fully exploit the text features and learn
to fuse the multi-modal representations seamlessly at
different scales with coarse-to-fine feature enhancement.

2) We presented a novel zone prompt learning approach
to introduce text features into the regression head and
capture the zone-class-entity triple co-occurrence for
richer multi-modal information aggregation.

3) The proposed Zone-YOLO fine-tuned on two traf-
fic benchmarks, BDD100K and VisDrone2019, has

demonstrated its excellent detection capability in traffic
scenarios. Experiments on two universal datasets, COCO
and LVIS, showcase our superior performance among
YOLO-style detectors. Compared with the baseline,
Zone-YOLO achieves 55.1 AP on COCO by a large
margin, and no catastrophic decline emerges on LVIS.

The rest of the paper is organized as follows. Section II
introduces the works related to VLOD and the prompt learning
methods, which offer us inspiration and serve as the theoretical
foundation. After that, the proposed modules are presented and
elaborated on in Section III. Experimental setup and results are
exhibited in Section IV, highlighting the superior performance
of Zone-YOLO on traffic object detection and verifying the
effectiveness of proposed methods. Finally, the conclusions
and prospects are summarized in Section V.

II. RELATED WORKS

A. Vision-Language Object Detection

VLOD is a novel trend in modern object detection that
improves the models’ performance and extends their generality
by integrating multi-modal features. OVR-CNN [18] is the first
to build VLOD using BERT [23] and Faster R-CNN [28].
It learns a visual-semantic feature space by pre-training on
large scale image-caption pairs. However, since VLMs were
trained to match whole images to text descriptions, a domain
shift arises when attempting direct contrastive learning of
region-text features. RegionCLIP [19] leverages the CLIP
with template captions, and aligns image regions and textual
concepts into the same feature space through knowledge dis-
tillation. Moreover, ViLD [20] feeds the category names into
the text encoder to obtain the word embeddings, then distills
the region embeddings to align the word-region features. One-
stage detector DetCLIPv2 [21] employs a similarity optimal
matching set between visual regions and word concepts to
guide fine-grained contrastive learning. YOLO-World [22]
further introduces an effective pre-training strategies to avoid
the domain shift. The aforementioned methods address the
multi-modal alignment problem by optimizing the training
objective, but require considerable computational costs and
labeled data.

Meanwhile, in recent years, multi-modal fusion methods
have been extensively studied and recognized for their capacity
to bridge the modality gap. These methods can be sorted
into single-stream [15], [25], [26] and dual-stream [14], [17],
[29], [30], [31] fusion according to their implement struc-
ture. Single-stream fusion directly concatenates the image
and text features and sends them to the subsequent decoder.
By contrast, the dual-stream architecture preserves the inde-
pendence of each modality and interweaves them to achieve
cross-modality interaction. Co-Attention [14] calculates the
mutual attention of two modalities by exchanging key-value
pairs in MHSA [24], while [29] multiplies the two outputs
as modal mixed features, which may cause the loss of infor-
mation. GLIP [17] and PVLR [30] design a deep fusion
module that fuses visual and textual information in the last
few encoding layers using Co-Attention. Unlike those that
incorporate MHSA, YOLO-World [22] employs Max-Sigmoid
Attention to aggregate text features into image features, and
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Fig. 2. Overall architecture of Zone-YOLO. Based on [22], Zone-YOLO is a Vision-Language detector. The Text Encoder encodes the class names and locality
nouns into word embeddings and zone prompts, respectively. The Image Encoder encodes the input image into multi-scale image features. The proposed
Scale-Aware VL-Neck exploits the cross-modality fusion at the corresponding scale. Innovatively, Zone Prompt learning is presented with an Adapter to weave
in class-specific information and the Zone Head to capture zone-class-entity triple co-occurrence.

VTP-OVD [32] introduces an adapting stage and renders
learnable prompts for fine-grained modal fusion.

However, previous works fused the text features with image
features at different scales without discriminating between
semantic differences, therefore, they potentially led to con-
ceptual confusion [15]. To avoid this problem, the proposed
SAMF constrains information interaction at the corresponding
scale and optimizes the fused features from coarse to fine.

B. Prompt Learning

Prompt engineering can unlock additional representation
capabilities of the model, facilitating easy transfer to down-
stream tasks and significantly boosting performance without
laborious pre-training. CoOp [33] models the context of
prompts as continuous representations and automates prompt
engineering end-to-end for few-shot classification. DetPro [34]
extends CoOp to VLOD by designing unique strategies to
handle foreground and background proposals within images.
PromptDet [35] demonstrates that the regional visual features
are local and object-centric, proposing the regional prompt
learning to steer the textual latent space for better alignment.
MaPLe [36] designs prompts for both vision and language
branches to model the stage-wise feature relationships between
two modalities, while TaI [37] learns prompts with only text
as images during training. DQ-DETR [38] and VTP-OVD [32]
incorporate visual prompts with the existing text prompts
to provide the prior task information for better downstream
adaptation.

Most VLOD prompt learning is primarily tailored for con-
textual information, with little attention paid to positional
information. PTP [26] numbers regions of an image and
associates them with categories, not conforming to practical
linguistic usage. PEVL [27] and BEV-InMLLM [39] recon-
structs the training objective to regress the coordinates of
bounding boxes. However, existing methods rely on class-
specific prompts, which is suitable for visual grounding [17]
task where text descriptions are available beforehand. On the

other hand, one class often corresponds to many object entities,
leading to referential ambiguity. Class-agnostic prompts could
mitigate this issue, but they might sacrifice the co-occurrence
information between categories and regions (e.g., boats tend
to appear in the lower half of images). In this paper, we intro-
duce Zone Prompt, which progressively integrates region and
category information into image features, thereby providing
the regression process with richer positional information.

III. METHODOLOGY

A. Model Architecture

The overall structure of Zone-YOLO is shown in Fig. 2,
which consists of an image encoder from YOLOv8 [8]
and a text encoder from CLIP [12], for feature extraction.
Scale-Aware VL-Neck is designed for better feature fusion
across different scales of multi-modal features. Moreover,
an adapter is proposed to capture zone-class co-occurrence
from word embeddings and zone prompts. Zone Head inte-
grates zone embeddings into image features to capture the
zone-class-entity co-occurrence, thereby guiding the bounding
box regression process. Text Contrastive Head is consistent
with YOLO-World [22] for the classification task.

Given the pre-defined class names, we adopt the pre-trained
text encoder to extract the corresponding word embeddings
T ∈ ℜ

N×D , where N is the number of classes, and D is the
embedding dimension. Homologous, I ∈ ℜ

C×H×W represents
the image features extracted by pre-trained image encoder,
where C is the number of channels. In Scale-Aware VL-
Neck, {C3, C4, C5} denotes multi-scale image features, while
{P3, P4, P5} and {T3, T4, T5} represent image feature pyramids
and word embeddings after modal fusion, respectively.

In essence, Zone-YOLO mitigates the modality gap by
constructing co-occurrence feature spaces during fine-tuning
to realize feature enhancement. In section III-B, we devise
a scale-aware modal fusion approach to facilitate efficient
multi-modal feature fusion. In section III-C, we design a zone
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Fig. 3. Multi-modal fusion modules. (a) Co-Attention [14], (b) proposed SAMF with Channel Enhancement, and (c) proposed SAMF with Modal Enhancement,
where I stands for image features and T for text features. In Co-Attention, multi-modal interaction is coupled with attention computation, while M IS AM F in
SAMF separates the process of information fusion and enhancement.

prompt method that constructs zone-class-entity co-occurrence
to guide the learning of the regression process.

B. Scale-Aware Modal Fusion

Fusing multi-scale image features with text features is
crucial for VLOD, as it can significantly improve the model’s
representation ability through multi-modal feature comple-
mentation and interaction. Based on this, we propose the
Scale-Aware Modal Fusion (SAMF) method that aligns visual
and textual semantic information at corresponding scales by
updating a Scale-aware Query (SQ), suppressing the concept
aliasing in feature fusion. Furthermore, we construct Scale-
Aware VL-Neck by SAMF for early fusion, as shown in Fig. 2.
In contrast to YOLO-World [22], SAMF is fully plug-and-play,
where modal fusion occurs exclusively at lateral connections,
without disturbing the image fusion process.

As shown in Fig. 3(b) and (c), SAMF mainly comprises
two steps. First, we generate a scale-aware modal mixture
matrix M IS AM F . Afterwards, we utilize M IS AM F to enhance
the image and text features based on multi-modal attention.

1) Scale-Aware Modal Mixture: The scale-aware modal
mixture operation is intuitive. First, the image and text features
are projected into the same feature space with the chan-
nels aligned, creating a coarse-grained modal mixture matrix
M IS AM F ∈ ℜ

C×N×H W . Here HW is the spatial dimension, N
is the class dimension, and C is the number of channels. Next,
we load the scale-aware query SQ ∈ ℜ

1×H×W onto M IS AM F
to obtain the scale-aware modal mixture matrix. The SQ serves
as a mask, activating the information of the corresponding
scale while suppressing that of irrelevant scales. The whole
process can be described by:

M IS AM F = Conv(reshape(SQ) · (T W ⊤
v ⊗ I W ⊤

t )) (1)

where Wv and Wt are the projection matrices, ⊗ means matrix
multiplication, and · means element-wise multiplication. Regu-
larization and channel adjustment operations are omitted in the
equation for brevity. SQ can be a learnable parameter tensor

or the spatial attention [40] map of the image features. Subse-
quently, two multi-modal attention mechanisms are proposed,
utilizing scale-aware M IS AM F for feature enhancement in the
channel and modal dimensions.

2) SAMF With Channel Enhancement: Inspired by Co-
Attention [14] (Fig. 3(a)), we introduce a dual-stream
channel-wise multi-modal attention mechanism that refines
and fuses M IS AM F into both text and image flows for adaptive
feature enhancement, as shown in Fig. 3(b). Distinct from
Cross-Attention, we utilize M IS AM F to generate attention
weights and separate the feature fusion and enhancement
processes. SAMF initially performs scale-aware aggregation
of multi-modal information, followed by refining the features
of each modality individually.

Specifically, we first perform the channel attention on
M IS AM F similar to [41]. Global average pooling (GAP)
compresses the spatial or class dimension. Then, a feed-
forward network (FFN) with a sigmoid activation generates
the attention vectors, which represents the global distribution
of channel-wise responses. Finally, the attention vectors are
weighted back to the image and text features by element-
wise multiplication. SAMF with channel enhancement can be
formulated as:{

I ′

l = Il · FFN (GAP(M IS AM F )) + θ1 · Il
T ′

l = T · FFN (GAP(M IS AM F )) + θ2 · T (2)

where, FFN shares its parameters between two modalities,
and l represents the level index in the Neck. We additionally
introduce two learnable parameters θ ∈ [0, 1] to control the
residual connections.

3) SAMF With Modal Enhancement: In an analogous man-
ner to the SAMF with channel enhancement, SAMF with
modal enhancement (Fig. 3(c)) incorporates the textual infor-
mation from scale-aware M IS AM F with image features, and
integrates visual information identically with text features.
In details, we select the maximum value of M IS AM F in the
class dimension and apply the sigmoid operation to generate
attention maps to aggregate textual sematic information into
image features. Symmetric operations are also performed for
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text features, which can be expressed by:
I ′

l = Il · δ

(
Max

i∈{1...N }

(M IS AM F )

)
+ θ1 · Il

T ′

l = T · δ

(
Max

j∈{1...H W }

(M IS AM F )

)
+ θ2 · T

(3)

where δ denotes sigmoid function, and two learnable param-
eter θ ∈ [0, 1] control the residual connections. The
max-sigmoid attention is similar to the operations in [22], and
the only difference is that we do not compress dimensions,
thereby minimizing information loss. Zone-YOLO connects
the SAMF modules in Fig. 3(b) and (c), while each module
can be used independently in practice.

C. Zone Prompt

Conventional VLOD methods fail to consider the utilization
of text features for bounding box regression. Few methods,
such as [26] and [27], employ class-specific regional prompts
to enhance the localization ability of visual grounding. How-
ever, they face two problems when migrating to object detec-
tion task: (i) Text descriptions are not provided beforehand
in object detection. Therefore, we cannot know which objects
to detect in advance. (ii) Random matching is suboptimal for
resolving class-to-objects referential ambiguity, restricting the
model to seeing partial positive samples at a time.

Herein, we propose Zone Prompt, which introduce the
class-agnostic zone prompts to handle with referring difficulty,
an Adapter to obtain class-specific zone embeddings to capture
zone-class co-occurrence, the Zone Head to achieve the zone-
class-entity triple co-occurrence, and finally, a self-supervised
auxiliary branch to improve the stability of zone embeddings.

1) Class-Agnostic Zone Prompts: Like the word embed-
dings in [20], we adopt the fixed zone prompts to avoid the
problem of referential ambiguity and meet the requirement
of being class-agnostic for object detection. We partition the
image into nine regions, describe them with fixed locality
nouns, and feed them into the text encoder to generate
class-agnostic zone prompts P ∈ ℜ

9×C, where C is the embed-
ding dimension same as T. Considering that locality nouns
contain more semantic information and are more suitable for
language models, we did not assign region numbers to the
zone prompts. The effects of various zone prompts and prompt
tuning are assessed in the ablation experiment.

Although the aforementioned class-agnostic zone prompts
enable concise application in VLOD, they apparently lack
spatial information. Location-related low-context information
is attached to the word embeddings and image features,
so capturing both zone-class and zone-entity co-occurrence
information is vital for object detection. We address this
problem internally through the following components.

2) Class-Specific Zone Embedding: Exploring the contex-
tual patterns of where categories appear in images facilitates
object localization. We design a simple adapter, as shown in
Fig 4, to leverage the strengths of the semantic representation
ability of the text encoder and capture zone-class co-
occurrence. The Adapter comprises a single-layer MHSA [24]
and a Language Semantic Attention (LSA) module. Taking
word embedding to the value and key matrix and zone prompts
to the query matrix of MHAS, we first capture the intricate

Fig. 4. Adapter for class-specific zone embeddings, where P stands for zone
prompts and T for word embeddings. AP and MP in Language Semantic
Attention (LSA) represent average pooling and mean pooling in the zone
dimension. The adapter incorporates two forms of attentions: MHSA captures
the inter-relationships between categories and regions, and LSA refines coarse
M IAdp by zone-wise weighting.

relationship between categories and regions in M IAdp. After
that, we aggregate zone prompts into M IAdp via LSA to derive
class-specific zone embeddings Z ∈ ℜ

N×9×C :

M IAdp = T ⊗ MHSA(P, T, T )⊤ (4)

Z = P · FFN
(

Max
k∈{1...9}

(
M IAdp

)
+ Mean

k∈{1...9}

(
M IAdp

))
(5)

where δ represents the sigmoid function. Element-wise mul-
tiplication requires tensor expansion and broadcasting, which
inevitably leads to coarse-grained M IAdp. Consequently, zone-
wise attention LSA is proposed to refine these coarse-grained
features by constraining the distribution of the zone dimension,
thereby mitigating the feature aliasing problem.

3) Zone Head: In one-stage anchor-free detector [7], [8],
[9], [10], [11], object detection is completely decoupled into
classification and regression tasks. Each position of the feature
maps represents an entity to be regressed, and the channel
(typically, 4) represents the coordinates. We propose the novel
Zone Head for the regression process, as illustrated in Fig. 2.
By fusing entity information from image feature I with zone
embedding Z, Zone Head captures zone-class-entity triple co-
occurrence.

Referring to [12], [22], and [29], we eliminate the channel
dimension as a trade-off in computational complexity when
multiplying I and Z to obtain the triple co-occurrence matrix
M IHead ∈ ℜ

N×K×H W :

M IHead = Z W ⊤
z ⊗ I W ⊤

i (6)

where Wz and Wi are the projection matrices. Here, the zone
dimension corresponds to K (9 in the paper), the class dimen-
sion corresponds to N, and the entity dimension corresponds
to HW.

Eliminating the channels may aggravate the gap between
multi-modal feature. Therefore, two self-attention operations,
Zone-wise Self-Attention and Class-wise Self-Attention are
proposed to realize the self-awareness informative interac-
tion between entity and class, entity and region, guiding
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Fig. 5. (a) Self-Attention for M IHead . Class-wise Self-Attention and
Zone-wise Self-Attention facilitate informative interactions between entities
and classes, entities and regions, thereby guiding the model to align the feature
space of M IHead in a self-aware manner. (b) Aggregate M IHead into image
features, where I stands for image features and Z for zone embeddings.

the model to align the feature space of M IHead . Fig. 5(a)
shows the details of these operations. Specifically, in Zone-
wise Self-Attention, the attention weights pertinent to regions
and entities are derived by compressing N. In Class-wise
Self-Attention, the attention weights associated with cate-
gories and entities are attained by compressing K. The above
self-attention mechanisms are formalized as follows:

M I ′

Head = M IHead · δ(Conv( Max
i∈{1...N }

(M IHead)

+ Mean
i∈{1...N }

(M IHead))) (7)

M I ′

Head = M IHead · δ(Conv( Max
k∈{1...K }

(M IHead)

+ Mean
k∈{1...K }

(M IHead))) (8)

where δ indicates the sigmoid function and Conv represents
1 × 1 convolution. It is worth noting that the regularization
after matrix multiplication is crucial, and our self-attention
operation employs layer normalization, which is omitted in
the (8) and (7) for brevity. Unlike rendering M IS AM F for
modality enhancement in SAMF, here, the attention weights
are loaded back to M IHead to augment the co-occurrence
information itself.

Ultimately, we aggregate the zone-class-entity triple
co-occurrence into image features for final regression convolu-
tions. As depicted in Fig. 5(b), we utilize zone embedding Z to
eliminate the class dimension, and then adopt the max-sigmoid
attention in (3) to incorporate the region information into the
image features.

4) Auxiliary Branch: To encourage the network to learn
more generalized co-occurrence information, and to be
resilient to the loss of regional information caused by the Zone
Head, an auxiliary branch is developed to provide explicit
supervision for zone embedding refinement, as illustrated in
Fig. 2. The output Z′

∈ ℜ
C×N×9 is acquired from M IHead by

eliminating Entity dimensions using image features. We resort
to the mean squared error (MSE) loss to minimize the distance

between Z ′ and original zone embedding Z :

M SE =
1∏

∏∑
i=1

(
Z ′

− Z
)2 (9)

By aligning the input and output zone embeddings, we can
alleviate the sparsity issue in M IHead during feature trans-
formation, improve the stability of features after dimension
reduction, and maximize the regularization effect within the
Zone Head. We keep the contrastive loss and regression loss
untouched, consistent with [22].

IV. EXPERIMENTS

A. Dataset and Evaluation Metrics

MS-COCO: COCO [42] is a standard general dataset com-
prising 80 categories of common objects in natural context.
It contains about 118k images for training and 5k images
for validation, with bounding box and instance segmentation
annotations.

BDD100K: BDD100K [43] is tailored for evaluating the
robustness and performance of detectors in the context of
autonomous driving. It boasts an impressive collection of
over 100k diverse video sequences, offering a rich tapestry
of real-world driving scenarios.

VisDrone2019: VisDrone2019 [44] is a renowned chal-
lenge in the realm of ITS. It encompasses 10 categories and
comprises high-resolution images captured by drones, where
the objects are relatively small. The training set contains
6471 images, and the validation set contains 548 images.

LVIS Dataset: LVIS [45] is a comprehensive dataset with
a long-tail data distribution. It divides the 1203 categories
into frequent, common, and rare according to their appearing
frequency in the training set. The frequent and common classes
compose LVIS-base and rare classes refer to LVIS-novel [20].

Evaluation Metrics: In line with [22], we use COCO
average precision metrics [42] to evaluate the detection per-
formance, which contains AP, AP50, and AP75 for different
IoU thresholds and APS, APM, and APL for different object
size. We additionally reported AP85 and AP95 under larger
IoU thresholds to better observe the location ability in ablation
studies. For LVIS experiment, APr, APf, APc [45] and fixed
AP [46] are reported to measure the model’s generalization
capability, and the maximum predictions is set to 1K.

B. Implementation Details

The Zone-YOLO is developed based on the MMYOLO
toolbox [47]. We remove the VLPAN from YOLO-World [22]
to build the baseline model, retaining the efficiency of large-
scale pre-training on region-text pairs, and provide three
variants of Zone-YOLO for fair comparison, e.g., small (S),
medium (M), and large (L). We adopt the frozen CLIP [12]
text encoder to encode the class names and locality nouns,
and use the pre-trained weights from [22] to initialize Zone-
YOLO. All models are fine-tuned for 80 epochs on 2 NVIDIA
RTX4090 GPUs using AdamW [48] optimizer with a total
batch size of 32. Following previous works [8], [22], the
initial learning rate is set to 0.0002 and decays with the
linear policy. Common data augmentations are used, and other
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TABLE I
COMPARISON WITH DIFFERENT YOLO DETECTORS ON COCO. WE FINE-TUNE ZONE-YOLO ON COCO TRAIN2017 AND EVALUATE IT ON COCO

VAL2017. ‡ DENOTES FINE-TUNING ON THE MODEL WEIGHTS THAT PRE-TRAINED WITH MORE DATA, ACCORDING TO [22]. THE BEST RESULTS
ARE BOLDED. SINCE THE TEXT INPUT IS FIXED, #PARAM AND FLOPS ARE REPORTED AFTER REMOVING TEXT ENCODER

configurations are unchanged. The nine locality nouns used
in most experiments are: “top left”, “top center”, “top right”,
“middle left”, “center”, “middle right”, “bottom left”, “bottom
center”, and “bottom right”.

C. Main Result

1) Experiment on COCO Dataset: Table I shows the overall
performance of Zone-YOLO and recent YOLO detectors [7],
[8], [9], [10], [22] on the COCO benchmark. Zone-YOLO
and YOLO-World are fine-tuned for 80 epochs based on pre-
trained weights, while the others are trained from scratch for
hundreds of epochs. For a fair comparison, all models were
trained with mask-refine settings except YOLOv6 and results
were obtained from MMYOLO [47] or their published code.

It is evident that Zone-YOLO-L attains a substantial
improvement over the baseline, especially in AP75 and APM,
which increased by 2.3 and 1.9, respectively. Compared
with YOLO-World [22], which also employs Vision-Language
Neck, Zone-YOLO surpasses it incontestably in all metrics.
Benefit from proposed SAMF and Zone Prompt, Zone-YOLO-
L exceeds YOLOv9 and YOLOv10 significantly in terms of
AP by 1.9 and 2.4, AP75 by 2.8 and 3.4, and APM by 1.9 and
2.6, respectively. As expected, with more generalized pre-
trained weights, Zone-YOLO-L‡ achieves the best results in
terms of AP, AP50, APM, and APL. Zone-YOLO in small
and medium sizes also perform satisfactory results in AP,
AP50, and AP75, although there remains a narrow gap in
other metrics. Our Zone-YOLO exhibits slightly higher FLOPs

and larger parameters, which is inevitable since we introduce
additional components and operations. In summary, Zone-
YOLO exhibits competitive performance compared with other
YOLO detectors on general dataset and strikes a favorable
trade-off between efficiency and performance.

2) Experiment on Traffic Dataset: Table II demonstrates the
excellent detection performance of Zone-YOLO on two traffic
datasets, BDD100K and VisDrone2019. We choose the latest
five YOLO series detectors for comparison, and all of them
use small size models to make the results more practical. FPS
is obtained on a NVIDIA V100 GPU without employing any
optimization strategies.

Zone-YOLO comprehensively outperforms these models
and achieves significant improvements across multiple metrics.
On the one hand, this is attributed to the broad applicability
and vast knowledge reserve of the VLMs. On the other hand,
the proposed Zone Prompt and SAMF can effectively assist
Zone-YOLO in transferring to traffic scene contexts. Specifi-
cally, when facing real-world driving scenarios in BDD100K,
Zone-YOLO ranks first in 4 out of 6 metrics, with a particular
highlight on APL, surpassing the second-place YOLOv9 by
1.5. In VisDrone2019, which contains a large number of
overlapping small objects, Zone-YOLO exceeds all coun-
terparts, achieving improvements of 2.0, 3.1, and 2.7 over
the second-best model in AP50, APM, and APL respectively.
Although Zone-YOLO falls slightly behind in terms of param-
eters and computational complexity, its inference speed is
comparable to that of recent YOLO detectors. In general, the
aforementioned experiments demonstrate that Zone-YOLO is
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TABLE II
COMPARISON WITH YOLO DETECTORS ON BDD100K AND VISDRONE2019. WE FINE-TUNE ZONE-YOLO ON BOTH DATASETS FOR 80 EPOCHS IN

LINE WITH [22]. THE BEST RESULTS ARE BOLDED AND THE SECOND ARE UNDERLINED. SINCE THE TEXT INPUT IS FIXED, #PARAM AND
FLOPS ARE REPORTED AFTER REMOVING TEXT ENCODER. THE FPS IS MEASURED ON ONE NVIDIA V100

Fig. 6. Visualization results of Zone-YOLO on traffic scenario under different angles, lighting conditions, and object densities. Zone-YOLO produces fitted
bounding boxes with higher confidence scores, detects more small objects, and reduces the number of false detections.

well-suited for application in the ITS field, serving as a new
foundational model for downstream tasks.

In order to vividly illustrate the superior performance of
Zone-YOLO in traffic scenarios, we select some challenging
images from BDD100K and VisDrone2019. Fig. 6 showcases
the detection results of Zone-YOLO under different angles,
lighting conditions, and object densities. Specifically, the first
row reflects the ability for detecting small objects. In the left
two columns, Zone-YOLO easily captures objects of different
scales. Meanwhile, in the right two columns, which depict
a dense prediction scenario, Zone-YOLO rarely has false
detection. The second row is the results under dim lighting
condition. Zone-YOLO consistently displays precise bounding
boxes with higher confidence scores, though there is still a neg-
ligible number of wrong classifications for incomplete objects.
The third row exhibits the results from different perspectives,
revealing the problem in distinguishing overlapping small
objects. Apart from the insufficient representation capabilities,
the M IHead in Zone Prompt assigns each entity to a single
category and region, which may not be conducive to handling
this situation. Overall, the qualitative analysis confirms the
model’s ability to accurately detect objects in complex traffic
scenes, underscoring its robustness and effectiveness.

TABLE III
COMPARISON WITH DETECTORS ON LVIS. WE FINE-TUNE ZONE-YOLO

ON THE LVIS-BASE SET AND EVALUATE IT ON LVIS MINIVAL. THE
FINE-TUNING RESULTS OF YOLOV8 AND YOLO-WORLD ARE

TAKEN FROM [22], AND OTHER OVOD RESULTS QUOTED
FROM THEIR ORIGINAL PUBLICATIONS. MQDET WITH

TEXTUAL PROMPTS IS REPORTED

3) Experiment on LVIS Dataset: In Table III, we fine-
tune our Zone-YOLO on LVIS-base and report the highest
APr result. It was found that, despite the modifications made
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TABLE IV

ABLATION FOR ALL PROPOSED COMPONENTS ON COCO VAL2017. EXPERIMENTS ARE CONDUCTED WITH ZONE-YOLO-L‡ , WHERE PROMPT
DENOTES EMPLOYING ZONE PROMPTS AND THE ZONE HEAD, ADAPTER REPRESENTS INTEGRATING ADAPTER, AND AUX SIGNIFIES UTILIZING

THE AUXILIARY BRANCH. CORRESPONDING STRUCTURAL ADJUSTMENTS ARE TAKEN FOR DIFFERENT COMPONENTS

Fig. 7. Visualization results of Zone-YOLO-L‡ on LVIS.(a) Ground Truth.
(b) results from Zone-YOLO-L‡. Zone-YOLO detects most of the novel
objects, maintaining the generalization capability of the vision-language
model.

to the baseline, fine-tuning Zone-YOLO can avoid catas-
trophic degradation in rare object detection. Compared with
the two-stage OVOD works [19], [20], [34], [49], [50], our
one-stage Zone-YOLO possesses a notable edge in APc,
APf and AP. We must confess that, compared with YOLO-
World [22], the Apr of Zone-YOLO-S and Zone-YOLO-L
undergo a noticeable decline. The only difference is that
we adjusted the model structures and added novel compo-
nents, while [22] did not. It is believed that the structural
inconsistencies during fine-tuning apparently lead to a dete-
rioration in the generalization ability of the pre-trained model.
Nonetheless, Zone-YOLO significantly outperforms YOLOv8,
indicating that the impact of the pre-trained vision-language
model still exists. Moreover, we select several images in
traffic scenes for visualization to intuitively demonstrate the
satisfactory performance of Zone-YOLO. In Fig. 7, it can
be seen that Zone-YOLO correctly detects most of the novel
class objects.

TABLE V
RESULTS OF DIFFERENT SQ PATTERNS ON COCO. EXPERIMENTS ARE

CONDUCTED UNDER ZONE-YOLO-L‡ . SA STANDS FOR SPATIAL
ATTENTION IN [40], WHERE CROSS-MODAL SCALE-WISE CORRE-

SPONDENCE OF INFORMATION IS IMPLICITLY ESTABLISHED

TABLE VI
ABLATION EXPERIMENTS ON SAMF ENHANCEMENT. THE NOTA-

TIONS “CHANNEL” AND “MODAL” REPRESENT CHANNEL-WISE AND
MODAL-WISE MULTI-MODAL ATTENTION RESPECTIVELY, WHILE

“MODAL+CHANNEL” REFERS TO THE CONNECTION BETWEEN
THE TWO MODULES

D. Ablation Studies

1) Ablations for Proposed Components: To verify the effec-
tiveness of the proposed components, we report the ablation
result in Table IV. It is important to noted that Zone Prompt
comprises a series of components, with dependencies among
them. The Prompt operation builds the basic form of the Zone
Prompt, and the Adapter and Aux rely on it.

Comparing rows 0 and 1 in the table, SAMF comprehen-
sively improves the baseline performance by 1.1, 1.2, and
2.0 on AP50, AP75, and APL, respectively. It reveals that
SAMF indeed ameliorates the utilization of the multi-modal
features through modal-mixture matrix M IS AM F and coarse-
to-fine enhancement. In addition, the model proves the
feasibility of fine-tuning existing VLOD.

In rows 2, 3, and 4, we gradually apply zone prompts with
zone head, adapter, and auxiliary learning branch. It can be
seen that using solely zone prompts with zone head enhances
the AP to 53.9 (+0.5), reaching the same level as YOLO-
World. This underscores the efficacy of incorporating zone
prompts into the regression process, while also reflecting the
scalability of VLOD. In row 3, the Adapter further improves
metrics such as AP, AP50, and APL, but experiences a slight
decrease in AP95, APS, and APM. This result indicates that
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TABLE VII

RESULTS OF DIFFERENT TYPES OF PROMPTING STRATEGIES ON COCO. EXPERIMENTS ARE CONDUCTED UNDER ZONE-YOLO-L‡ . ZP1 AND ZP2
REPRESENT DIFFERENT ZONE WORDS ACCORDING TO DIFFERENT DISCOURSE CONVENTIONS, WHERE ZP1 USES TOP AND BOTTOM AND ZP2

USES THE COMPARATIVE FORM UPPER AND LOWER. PROMPT TUNING REPRESENTS LEARNABLE PROMPTS INITIALIZED BY ZP1

additional information injection (from zone-entity to zone-
class-entity) contributes to the overall improvement, but has
a negative effect on the small object detection, as we assign
each entity to a single category and region.

Auxiliary branch restored the AP95 and APS performance,
as shown in row 5, demonstrating the efficacy of this concise
self-supervision learning scheme. Rows 3, 4, and 6 repeat
this phenomenon, as textual features could potentially hinder
the AP95, but auxiliary branch can alleviate this problem.
As anticipated, SAMF and Zone Prompt can jointly improve
the model performance in row 6, attaining optimal results on
challenging metrics such as AP85 and APS.

2) Scale-Aware Query Pattern: Table V presents the
effectiveness of different Scale-Aware Query (SQ) patterns,
including learnable parameters, image features with and with-
out spatial attention [40]. The native image features after
channel averaging are used for “Image Feat. w/o SA” and
for initializing the learnable parameters. The spatial attention
maps derived from image features are designated as “Image
Feat. w/ SA”.

It can be observed that learnable parameters achieve the
best result on APM, while “Image Feat. w/ SA” performs
better on AP75 and APL, and both have similar results overall.
Using image features alone also brings some improvement,
but lower than other patterns. We suggest that SQ allows
the model to adaptively align semantic information across
modalities, whereas using only image features tends to obscure
the distinction between conceptual and structural differences,
thus weakening the alignment effect.

3) Ablations on SAMF Enhancement: Table VI shows
the effect of different SAMF configurations on COCO.
SAMF with Modal Enhancement gives the baseline a strong
boost with 0.8 AP50, 1.0 AP75 and 1.6 APL, while SAMF
with Channel Enhancement provides a weak promotion with
0.4 AP50, 0.5 AP75 and 0.9 APL. We believe that the
information relate to modal in M IS AM F dominates the multi-
modal fusion, rather than the channel dimension. Besides,
it is evident that using two modules together maximizes the
improvements.

4) Prompting Strategy: We study the impact of different
prompt strategies on Zone-YOLO in Table VII. Surprisingly,
our findings show that prompt tuning with learnable param-
eters dose not yield superior results, with only moderately
better than ZP1 on AP85, AP95 and APL. We conjecture that
zone prompts do not heavily rely on semantic information and
will be optimized by the proposed Adapter and Zone Head.
Despite utilizing distinct locality nouns, ZP1 and ZP2 yield
comparable outcomes. ZP1 has slightly higher AP50, AP95,

and APS compared to P2, while ZP2 exhibits a marginal
advantage in terms of AP85, APM, and APL, highlighting the
robustness of the Zone Prompt.

V. CONCLUSION

In this work, we propose Zone-YOLO to improve the
YOLO-style vision-language object detection fine-tuning to a
new level, and demonstrate its application in traffic object
detection. To address the defects of existing multi-modal
fusion approaches, we propose SAMF to fully exploit the
text features and learn to fuse the multi-modal representations
seamlessly at different scales. We pioneer a novel Zone Prompt
efficient fine-tuning method to introduce text features into
regression process and capture the zone-class-entity triple
co-occurrence, which significantly improves the localization
performance of the model. Extensive experiments show that
Zone-YOLO achieves competitive results in intricate traffic
scenarios and demonstrate the superiority of fine-tuning on
pre-trained VLOD. In the future, we will further investigate
the effects of zone prompts, explore lightweight structures, and
delve into the real-world ITS applications of Zone-YOLO as
a foundational model.
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