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Abstract— Over the past decade, automated methods have
been developed to detect cracks more efficiently, accurately,
and objectively, with the ultimate goal of replacing conventional
manual visual inspection techniques. Among these methods,
semantic segmentation algorithms have demonstrated promising
results in pixel-wise crack detection tasks. However, training such
networks requires a large amount of human-annotated datasets
with pixel-level annotations, which is a highly labor-intensive and
time-consuming process. Moreover, supervised learning-based
methods often struggle with poor generalizability in unseen
datasets. Therefore, we propose an unsupervised pixel-wise road
crack detection network, known as UP-CrackNet. Our approach
first generates multi-scale square masks and randomly selects
them to corrupt undamaged road images by removing certain
regions. Subsequently, a generative adversarial network is trained
to restore the corrupted regions by leveraging the semantic
context learned from surrounding uncorrupted regions. During
the testing phase, an error map is generated by calculating the
difference between the input and restored images, which allows
for pixel-wise crack detection. Our comprehensive experimen-
tal results demonstrate that UP-CrackNet outperforms other
general-purpose unsupervised anomaly detection algorithms, and
exhibits satisfactory performance and superior generalizability
when compared with state-of-the-art supervised crack segmen-
tation algorithms. Our source code is publicly available at
mias.group/UP-CrackNet.

Index Terms— Semantic segmentation, crack detection, gener-
ative adversarial network, unsupervised anomaly detection.

I. INTRODUCTION

CRACKS are slender, dark lines or curves that appear
on the surface of solid materials, such as roads and

bridges [1]. Road cracks result from the interplay of water
and traffic influences [2], including soil swelling, founda-
tion shifting, traffic overcrowding, premature drying, material

Manuscript received 26 June 2023; revised 4 November 2023,
9 January 2024, and 18 April 2024; accepted 28 April 2024. This work was
supported in part by the Fundamental Research Funds for Central Universities
and in part by the Xiaomi Young Talents Program. The Associate Editor for
this article was Y. Yu. (Corresponding author: Rui Fan.)

Nachuan Ma and Rui Fan are with the College of Electronics and Infor-
mation Engineering, Shanghai Research Institute for Intelligent Autonomous
Systems, the State Key Laboratory of Intelligent Autonomous Systems,
and the Frontiers Science Center for Intelligent Autonomous Systems,
Tongji University, Shanghai 201804, China (e-mail: manachuan@163.com;
rui.fan@ieee.org).

Lihua Xie is with the School of Electrical and Electronic Engi-
neering, Nanyang Technological University, Singapore 639798 (e-mail:
elhxie@ntu.edu.sg).

This article has supplementary downloadable material available at
https://doi.org/10.1109/TITS.2024.3398037, provided by the authors.

Digital Object Identifier 10.1109/TITS.2024.3398037

expansion and contraction, etc. Road cracks are not just
an inconvenience, they significantly affect the reliability and
sustainability of civil infrastructure while posing a significant
threat to vehicle conditions and driving safety [3]. For instance,
in the first two months of 2018, drivers in Chicago submitted
11,706 complaints pertaining to road defects. Furthermore,
statistics suggest that substandard road conditions are responsi-
ble for nearly one-third of the 33,000 traffic fatalities that occur
in the United States annually [4], [5]. Therefore, to lower the
risk of structural degradation and traffic accidents, frequent
road inspection is necessary and essential [6]. Currently,
manual visual inspection is still the dominant method for road
crack detection [7]. The locations of road cracks are recorded
routinely by civil engineers or qualified inspectors, the process
of which is time-consuming, costly, and hazardous [8], [9]. For
example, New Zealand city councils spent millions of dollars
in 2017 detecting and repairing road defects (Christchurch
alone spent 525,000 USD) [5]. Moreover, the detection results
are always qualitative and subjective, as decisions depend
entirely on personal opinions and expertise. Owing to these
concerns, there is an ever-increasing need to develop auto-
mated road condition monitoring methods that can detect road
cracks accurately, efficiently, and objectively [10].

Before the advent of the deep learning revolution, research
in road crack detection was primarily dominated by traditional
image processing-based techniques, including edge-based
[11], [12], thresholding-based [13], texture analysis-
based [14], wavelet-based [15], and minimal path search-based
methods [16]. While these methods may demonstrate
effectiveness in certain simple scenarios, they are often char-
acterized by high computational demands and susceptibility to
various environmental factors, with illumination and weather
conditions being particularly notable [17]. Moreover, the
geometric presumptions used in such methods are sometimes
impractical, due to the irregular shapes of road cracks [18].

Fortunately, with recent advances in deep learning, con-
volutional neural networks (CNNs) have been extensively
employed as feasible methods for automated road crack
detection. Rather than setting explicit parameters and using
hand-crafted features, CNNs are typically trained to update the
implicit parameters of neural layers through back-propagation
with a huge amount of human-annotated road data. Such
data-driven algorithms are commonly divided into three cate-
gories: (1) image classification networks, (2) object detection
networks, and (3) semantic segmentation networks. The image
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classification networks [19] are trained to distinguish positive
(crack) and negative (non-crack) road images [20]. Object
detection networks are trained to identify road cracks at
the instance level (location and class) [21], [22]. Semantic
segmentation networks [23], [24], [25], [26], [27], [28], [29]
are trained to achieve pixel-wise crack detection results, and
they have emerged as the preferred choice for this task in
recent years.

Nonetheless, the aforementioned pixel-wise road crack
detection algorithms predominantly rely on supervised
learning. On one hand, training these data-driven algorithms
demands a large amount of pixel-level human-annotated labels.
The annotation process is exceptionally labor-intensive and
time-consuming. Moreover, unique road cracks are not ubiq-
uitous, which adds complexity to the task of gathering a suffi-
cient number of images containing road cracks. On the other
hand, supervised learning-based algorithms often demonstrate
limited generalizability when applied to different scenarios due
to their dependency on fixed, pre-defined patterns learned from
specific training data, which may not adequately represent the
variability and complexity of real-world situations.

To overcome these limitations, we propose an Unsupervised
Pixel-wise Crack Detection Network (UP-CrackNet) via
adversarial image restoration. In the training phase, multi-
scale square masks are first generated and selected randomly
to corrupt input undamaged road images. These corrupted
images are subsequently fed into the proposed model, which
learns semantic context from surrounding uncorrupted regions
to restore the corrupted regions while adhering to a global
consistency constraint. In the testing phase, when provided
with a damaged road image, the trained model can restore
undamaged regions but may not effectively restore crack
regions to their original appearance. Consequently, we can
obtain an error map by comparing the difference between
the input damaged image and the restored image. This error
map can then be used to produce pixel-wise crack detection
results. We conduct experiments on three public road crack
detection datasets. The results suggest that UP-CrackNet can
eliminate the need for human annotations during training
while outperforming other unsupervised anomaly detection
algorithms. Furthermore, it achieves satisfactory performance
and shows superior generalizability when compared to state-
of-the-art (SoTA) supervised crack detection approaches. Our
main contributions are summarized as follows:

1) We propose UP-CrackNet, a novel unsupervised network
for pixel-wise road crack detection via adversarial image
restoration. It uses only undamaged road images in the
training phase without any human-annotated labels.

2) We design multi-scale square masks to randomly corrupt
input undamaged images, which can prevent the net-
work from degenerating into an identity mapping in the
inference phase.

3) We design comprehensive loss functions, enabling the
network to learn semantic context features from uncor-
rupted undamaged regions to restore the corrupted
regions.

4) We conduct extensive experiments and compare
our method with 11 supervised methods and two

unsupervised methods. The results suggest that
UP-CrackNet outperforms other unsupervised methods
and demonstrates satisfactory performance and superior
generalizability compared to supervised methods.

The remainder of this article is organized as follows: Sect. II
reviews related works. Sect. III provides a detailed descrip-
tion of our proposed network and loss functions. Sect. IV
presents implementation details, evaluation metrics, experi-
mental results, and visualization analysis. Sect. V discusses
failure cases and Sect. VI concludes the article.

II. LITERATURE REVIEW

A. Traditional Road Crack Detection Methods

Traditional road crack detection methods are generally
based on visual features, with edges being a common choice.
For instance, bi-dimensional empirical mode decomposition
along with the Sobel edge detector was used in [12] to iden-
tify road cracks. Thresholding methods are also prevalently
employed for this task. Assuming that road cracks consist
of thin interconnected textures, in [13], crack textures were
extracted by analyzing the connectivity of luminance and
shape within the infiltrated regions. Texture analysis-based
techniques are another alternative. In [14], local binary pattern
operators were utilized to group road patterns and extract
distinctive local features for crack detection. Additionally,
wavelet-based approaches [15], [30] decompose road images
into different frequency sub-bands to enable the identification
of road cracks. Minimal path search-based methods [16], [31]
are also a popular choice for road crack detection. These
methods begin by identifying relatively dark pixels as the
endpoints of road cracks and subsequently compute minimal
paths between them using path planning techniques to generate
road cracks. Nevertheless, the aforementioned traditional road
crack detection methods are sensitive to environmental factors
and may occasionally prove ineffective, particularly when
faced with irregularly shaped road cracks.

B. Supervised Road Crack Detection Methods

CNNs developed for general computer vision tasks, such
as image classification, object detection, and semantic seg-
mentation, have been widely adopted in road crack detection.
Image classification networks are employed to categorize
road image patches as either negative (indicating healthy road
surfaces) or positive (indicating patches containing cracks)
[17], [20], while object detection networks further localize
road cracks with bounding boxes [22], [32], [33]. Although
these networks are unable to produce pixel-wise results, they
can be utilized in the preparation of datasets for our proposed
unsupervised road crack detection framework.

Semantic segmentation networks, trained through super-
vised learning, have the capacity to generate pixel-wise
road crack detection results. Deepcrack [3] incorporates a
side-output layer into the VGG-16 [34] model and utilizes con-
ditional random fields and guided filtering to achieve accurate
road crack detection results. Another Deepcrack version, pro-
posed in [1], fuses features from various scales of SegNet [35]
to acquire hierarchical information, leading to improved
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Fig. 1. An illustrative pipeline of our proposed UP-CrackNet.

road crack segmentation performance. RHA-Net [36] inte-
grates residual blocks and hybrid attention modules into an
encoder-decoder network for pixel-wise road crack detection.
Similarly, DMA-Net [37] integrates a multi-scale attention
module into the decoder of Deeplabv3+ [38] to dynamically
adjust weights across different feature maps for better crack
detection results. However, training such methods requires
a large amount of human-annotated pixel-level annotations,
which is a highly labor-intensive and time-consuming process.
Moreover, they often struggle with poor generalizability in
unseen datasets.

C. Unsupervised Anomaly Detection Methods Based on
Image Restoration

Unsupervised anomaly detection approaches based on
image restoration have been prevalently used for industrial
defect detection. These methods can be categorized into
autoencoder (AE)-based [39], [40], variational autoencoder
(VAE)-based [41], [42], and generative adversarial network
(GAN)-based [43]. Among them, GAN-based approaches
generate images with the highest quality. However, these
methods often generalize to abnormal samples or even degen-
erate into an identity mapping during the inference phase.
To overcome this limitation, researchers attempted to intro-
duce perturbations [44], [45], [46], [47], which help maintain
the dissimilarity between model inputs and outputs, thereby
improving the learning of contextual information from normal
samples. In [46], a semantic context-based anomaly detection
network (SCADN) based on striped masks was proposed.
It removes specific regions from the input images and trains a
GAN model to restore the corrupted regions. [47] proposed
a reconstruction-by-inpainting anomaly detection (RIAD)
method, using jumbled small square masks to randomly
remove regions of input images and training an AE model with
U-Net architecture to restore the corrupted regions. Drawing
inspiration from these approaches, we introduce UP-CrackNet,
a novel unsupervised pixel-wise road crack detection approach
based on adversarial image restoration. UP-CrackNet is trained

on undamaged road images during the training phase, without
the reliance on any human-annotated labels.

III. METHODOLOGY

A. Architecture Overview

The training and testing processes of our proposed
UP-CrackNet are illustrated in Fig. 1. During the training
phase, we first create corrupted images by performing the
Hadamard product operation between the input undamaged
road images and randomly generated square masks (where
mask values are set to either 0 or 1). Subsequently, we train the
proposed model to restore the corrupted regions by minimizing
a restoration loss and an adversarial loss. In the testing
phase, when provided with damaged road images, the model
generates restored images using the learned parameters. Error
maps are then obtained by computing the differences between
the damaged road images and the restored images. Finally,
post-processing techniques are applied to these error maps to
enhance the crack detection results.

B. Undamaged Road Image Random Corruption

When designing masks for the random corruption of input
undamaged road images, we take into consideration the need
for image regions to have an equal chance of being removed.
This ensures that all undamaged regions in the training set
have an equal probability of being learned by the model.
Specifically, an image is divided into H

k ×
W
k patches, where

H and W represent the height and width of input undamaged
road images, respectively, and k determines the density of
patches. We use a boolean logic strategy to design masks,
where pixel values are set to 0 or 1 to indicate the regions
that should be removed or retained, respectively. The ratio
between the removed and retained regions is 1 : 1. Given the
undamaged road crack training set IU , the random corruption
process can be formulated as Î

U
= IU

⊙ M, where IU
∈ IU

denotes the input undamaged road image, M denotes the
selected mask, ⊙ denotes the Hadamard product, and
Î

U
denotes the corrupted input undamaged image.
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C. Adversarial Image Restoration

Our proposed UP-CrackNet consists of a generator G and a
discriminator D. G is trained to restore the corrupted regions
by minimizing a restoration loss and an adversarial loss, while
D is designed to discriminate between input undamaged road
images and the restored images generated by G, with the aim
of maximizing the adversarial loss.

Generator G consists of an encoder and a
decoder. The encoder uses modules of the form
Convolution-BatchNorm-LeakyReLU, where the
BatchNorm layer performs normalization for each
mini-batch to expedite training, and the LeakyReLU
layer prevents the vanishing gradient problem by providing
small-slope outputs for negative inputs, ensuring that
potentially valuable information is retained. On the other
hand, the decoder uses two types of modules of the form
ConvTranspose-BatchNorm-Dropout-ReLU and
ConvTranspose-BatchNorm-ReLU. The Dropout
layer randomly deactivates half of the input units, introducing
stochasticity to enhance network generalization. Additionally,
we adopt the U-Net architecture as the backbone of G
to learn semantic context information. In a mathematical
formulation, G can be represented as ĨU

= Dec[Enc( Î
U

)],
where Enc denotes the encoder, Dec denotes the decoder,
and ĨU denotes the restored image.

Discriminator D also uses modules of the form
Convolution-BatchNorm-LeakyReLU. Nevertheless,
it takes two pairs of images concatenated together as input.
D is trained to distinguish between fake image (̃IU generated
from G) and real image (the input undamaged road image IU )
conditioned on the corrupted image Î

U
.

D. Road Crack Detection

In the testing phase, given a damaged road image I D ,
the detection results S can be obtained using the following
expression:

S = O[B((̃I D
− I D) ⊙ (̃I D

− I D))], (1)

where Ĩ D denotes the restored image, B denotes the bilateral
filtering [48] operation used to reduce small incorrectly
detected regions for improved road crack detection perfor-
mance, and O denotes the Otsu’s thresholding [49] operation
to binarize error maps for pixel-wise crack detection.

E. Loss Functions

The total loss function is as follows:

Ltotal = λresLres + λadvLadv, (2)

where λres and λadv are hyper-parameters used to balance
the restoration loss Lrec and the adversarial loss Ladv .
G is updated by minimizing Ltotal , while D is updated by
maximizing Ladv .

1) Restoration Loss: We use the mean average error (MAE)
loss to measure the difference between IU and ĨU :

LM AE = ∥̃IU
− IU

∥1. (3)

However, the MAE loss calculates the pixel intensity dif-
ferences independently, ignoring the correlation between
neighboring pixels. Therefore, we also use a structured sim-
ilarity index measure (SSIM) loss [50] and a multi-scale
gradient magnitude similarity (MSGMS) loss [47] to measure
the structural difference between them:

LSSI M =
1

H × W

H∑
i=1

W∑
j=1

[1 − SSI M(IU , ĨU
)(i, j)], (4)

LM SG M S =
1
4

4∑
l=1

1
Nl

Hl∑
i=1

Wl∑
j=1

[1 − G M S(IU , ĨU
)(i, j)], (5)

where SSI M refers to the SSIM value [50] between two
patches of IU and ĨU centered at pixel (i, j). The MSGMS
loss is calculated over an image pyramid of four different
scales, including the original image, and images that are 1

2 ,
1
4 , and 1

8 of the original size. Hl and Wl represent the height
and width of the image at scale l, respectively, and Nl denotes
the number of pixels at scale l, respectively. G M S refers to
the value of GMS map [51] of IU and ĨU at pixel (i, j).
Additionally, we employ a style loss [52] as follows:

Lstyle = Ei [|G
φ
i (̃IU

) − Gφ
i (IU )|] (6)

to measure the feature difference between IU and ĨU , where
Gφ

i represents a Ci × Ci gram matrix constructed from φi ,
which denotes the activation map of the i−th layer of the
pre-trained network. Therefore, the total restoration loss is
formulated as follows:

Lres = λmaeLM AE + λssimLSSI M

+ λgmsLM SG M S + λstyleLstyle, (7)

where λmae, λssim , λgms and λstyle are hyper-parameters used
to balance these losses.

2) Adversarial Loss: The adversarial loss is formulated as
follows:

Ladv(G, D) = E ˆIU ,IU [logD( ˆIU , IU )]

+ E
Î

U
,z
[log(1 − D( Î

U
, G( Î

U
, z)], (8)

where ĨU
= G( Î

U
, z) and z denotes random noise introduced

by the dropout layers.

IV. EXPERIMENTAL RESULTS

A. Datasets

The Crack500 [53] dataset contains 500 images (resolution:
2, 000×1, 500 pixels) of pavement cracks. These images have
been annotated at the pixel level. Each image is cropped into
16 non-overlapped image regions, with only those regions con-
taining more than 1,000 pixels of cracks being retained. This
process yields a total of 1,896 training images, 348 validation
images, and 1,124 test images. In our experiments, we use
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TABLE I
ABLATION STUDY RESULTS FOR PIXEL-WISE CRACK DETECTION PERFORMANCE USING FIVE LOSS FUNCTIONS WITH THE PROPOSED

UP-CrackNet ON THE CRACK500 DATASET [53]. THE SYMBOL!INDICATES THE SELECTED LOSS FUNCTION

the original dataset to train supervised methods. Additionally,
we crop 1,896 undamaged road images from the original
images to train unsupervised methods. It is important to note
that the Crack500 dataset poses significant challenges for
practical crack detection, as it includes shadows, occlusions,
and varying lighting conditions.

The DeepCrack [3] dataset contains 537 concrete surface
images (resolution: 544 × 384 pixels) with multi-scale and
multi-scene cracks. These images have also been annotated at
the pixel level. The dataset is divided into two subsets, with
300 images used for training and the remaining 237 images
used for testing. Similarly, we use the original dataset to train
supervised methods, and from the same dataset, we extract
300 undamaged road images to train unsupervised methods.

The CFD [54] dataset contains 118 concrete surface
images (resolution: 480 × 320 pixels), manually annotated
at the pixel level. These images exhibit diverse illumination
conditions, shadows, and stains, making the detection of
cracks challenging. We extract 200 image patches (resolution:
256 × 256 pixels) to evaluate the generalizability of both
supervised and unsupervised methods.

B. Implementation Details & Evaluation Metrics

Our experiments are conducted on a single NVIDIA
RTX3090. The models are trained for 200 epochs, with early
stopping if there is no performance improvement on the vali-
dation set for 20 consecutive epochs. All images are resized to
256 × 256 pixels, and data augmentation techniques including
scaling, cropping, and flipping are applied. Stochastic gradient
descent (SGD) is used to optimize networks, with a momentum
value of 0.9 and weight decay set to 10−4. The initial learning
rate is set to 0.01 and is dynamically adjusted using the poly
strategy. The training settings of UP-CrackNet follow the well-
known Pix2Pix [55], where an Adam optimizer [56] with
β1 = 0.5 and β2 = 0.999 is used to optimize the networks. The
initial learning rates for the generator G and discriminator D
are set to 0.0001 and 0.0004, respectively. During training,
the learning rates decay exponentially. The hyper-parameters
in the loss functions are set to λmae = λssim = λgms = 1,
λstyle = 10, λres = 100, and λadv = 1. In our implementation,
H and W are set to 256, and k is set to {128, 64, 32}.
For evaluation, we use precision, recall, accuracy, intersection
over union (IoU), and F1-score to quantitatively compare
UP-CrackNet with other methods.

TABLE II
ABLATION STUDY RESULTS USING DIFFERENT MODES OF MASKS

ON THE CRACK500 DATASET [53]

C. Ablation Study

To analyze the effectiveness of the five employed losses,
we conduct an ablation study on the Crack500 dataset. The
quantitative results presented in Table I suggest that each
loss contributes to improved road crack detection results, and
our method, incorporating all these losses, achieves the best
performance. Notably, the adversarial loss Ladv provides the
most significant improvement among these losses.

To validate the effectiveness of the designed multi-scale
square masks, we conduct another ablation study on the
same dataset using different modes of masks. The comparison
results are given in Table II, where MMul−S denotes our
designed multi-scale square masks, MStriped denotes striped
masks used in SCADN, and MJumbled denotes jumbled small
square masks used in RIAD. These results indicate that our
method achieves improvements of 2.876% and 13.080% in
F1-Score, as well as improvements of 2.951% and 12.513%
in IoU compared to using the other two types of masks.

D. Comparison With Other SoTA Methods

We compare our proposed UP-CrackNet with 11 general
supervised semantic segmentation methods, two supervised
crack detection-specific methods, and two general image
restoration-based unsupervised anomaly detection methods
on the Crack500 and Deepcrack datasets. The quantitative
and qualitative comparison results are shown in Table III,
Table IV, Fig. 2 and Fig. 3, respectively. It can be observed
that UP-CrackNet achieves satisfactory detection performance
compared with supervised methods and performs much bet-
ter than other general image restoration-based unsupervised
methods.

Specifically, on the Crack500 dataset, our proposed
UP-CrackNet has 1.185% − 6.355% and 8.194% − 9.877%
reduction in IoU than the general and crack detection-specific
supervised methods, respectively. On the Deepcrack
dataset [3], UP-CrackNet achieves better performance than all
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TABLE III
QUANTITATIVE EXPERIMENTAL RESULTS ON THE CRACK500 DATASET [53]

TABLE IV
QUANTITATIVE EXPERIMENTAL RESULTS ON THE DEEPCRACK DATASET [3]

TABLE V
QUANTITATIVE EXPERIMENTAL RESULTS ON THE CFD DATASET [54] (ALL TRAINED ON THE CRACK500 DATASET [53])

general supervised methods and has 4.665% − 6.814% reduc-
tion in IoU than specific supervised methods. Considering
supervised methods require a large amount of human-
annotated pixel-level labels, our proposed UP-CrackNet with
satisfactory detection performance has strong application
prospects. Compared with two unsupervised methods, our
proposed UP-CrackNet achieves an increase of 32.606% −

33.739% and 29.544% − 38.459% IoU improvement on the
Crack500 dataset [53] and Deepcrack dataset [3], respectively.

These results demonstrate that our designed model and losses
are more effective for unsupervised pixel-wise crack detection.

E. Generalizability Evaluation

To further evaluate the generalizability of the compared
methods, we assess the performance of networks trained on
the Crack500 dataset and the Deepcrack dataset on other
datasets. The quantitative comparison results are shown in
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Fig. 2. Examples of experimental results on the Crack500 dataset: (a) DeepLabv3+ [38]; (b) ENet [57]; (c) PSPNet [58]; (d) UperNet [59]; (e) SegResNet [35];
(f) UNet [60]; (g) BiSeNetv2 [61]; (h) DDRNet [62]; (i) Lawin [63]; (j) Deepcrack19 [3]; (k) Deepcrack18 [1]; (l) SCADN [46]; (m) RIAD [47];
(n) UP-CrackNet. The true-positive, false-positive, and false-negative pixels are shown in green, blue, and red, respectively.

Tables V, VI, VII, and VIII, respectively. These results indicate
that our proposed UP-CrackNet has superior generalizability
than other supervised and unsupervised methods.

When UP-CrackNet is trained on the Crack500 dataset
and tested on the Deepcrack dataset, it demonstrates IoU
improvements ranging from 3.067% to 45.892%. Conversely,
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Fig. 3. Examples of experimental results on the Deepcrack dataset [3]:(a) DeepLabv3+ [38]; (b) ENet [57]; (c) PSPNet [58]; (d) UperNet [59];
(e) SegResNet [35]; (f) UNet [60]; (g) BiSeNetv2 [61]; (h) DDRNet [62]; (i) Lawin [63]; (j) Deepcrack19 [3]; (k) Deepcrack18 [1]; (l) SCADN [46];
(m) RIAD [47]; (n) UP-CrackNet. The true-positive, false-positive, and false-negative pixels are shown in green, blue, and red, respectively.

when the training and test sets are switched, UP-CrackNet
still demonstrates substantial IoU improvements, ranging
from 1.315% to 34.552%. We attribute these improvements in

generalizability to the efficacy of unsupervised image restora-
tion, which allows the model to restore the corrupted regions
by analyzing the context provided by surrounding patches.
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TABLE VI
QUANTITATIVE EXPERIMENTAL RESULTS ON THE DEEPCRACK DATASET [3] (ALL TRAINED ON THE CRACK500 DATASET [53])

TABLE VII
QUANTITATIVE EXPERIMENTAL RESULTS ON THE CFD DATASET [54] (ALL TRAINED ON THE DEEPCRACK DATASET [3])

TABLE VIII
QUANTITATIVE EXPERIMENTAL RESULTS ON THE CRACK500 DATASET [53] (ALL TRAINED ON THE DEEPCRACK DATASET [3])

This capacity to capture meaningful semantic information
from neighboring contexts significantly enhances
UP-CrackNet’s performance across different datasets and
test scenarios. It is worth noting that although UP-CrackNet
performs slightly worse than Deepcrack19 when evaluated
on the CFD dataset, we believe this discrepancy is primarily
attributed to the dataset itself. The CFD dataset contains
small and thin road cracks, making it challenging for image
restoration-based algorithms to preserve the clear boundaries
of these cracks.

V. DISCUSSION

As discussed above, it is imperative to divide a given
road crack dataset into two sets of road image patches: one
containing road cracks and the other free of any cracks. This
separation is a fundamental step in training UP-CrackNet,
allowing the model to effectively restore undamaged road
regions. Fortunately, road crack detection is a relatively
easy image classification task, as has been quantitatively
demonstrated in [20]. Therefore, after extracting image
patches from the original images within road crack datasets,
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Fig. 4. Failure cases of UP-CrackNet on the Deepcrack dataset [3]. The
true-positive, false-positive, and false-negative pixels are shown in green, blue,
and red, respectively.

pre-trained crack classification networks can be employed to
accurately identify undamaged road image patches, which are
subsequently fed into UP-CrackNet.

We also present some instances where UP-CrackNet
encounters challenges on the Deepcrack dataset [3] in Fig. 4.
(a) and (b) illustrate situations where UP-CrackNet sometimes
does not perform as expected when detecting thin cracks.
This can occur because our method may occasionally cat-
egorize these small and thin cracks as undamaged regions,
resulting in their restoration to their original appearance and,
consequently, missed detection. (c) and (d) illustrate cases
where UP-CrackNet erroneously identifies image watermark
digits and shadows of flowers as damaged areas. This happens
because these patterns either do not appear or occur very rarely
in the training set. Consequently, UP-CrackNet fails to restore
them to their original appearance, leading to false detections.
To address these challenges, future work can focus on devel-
oping more advanced training mechanisms and network archi-
tectures to enhance the detection of thin cracks. Additionally,
improving the robustness and intelligence of UP-CrackNet to
distinguish between road cracks and other anomalies is an area
that warrants further research and development.

VI. CONCLUSION

This article introduced UP-CrackNet, a novel network
architecture and training paradigm designed to overcome the
limitations of previous supervised pixel-wise road crack detec-
tion algorithms. The training of UP-CrackNet was exclusively
performed using undamaged road image patches, where an
adversarial image restoration technique was applied to learn
corrupted regions in an unsupervised manner. The testing
process involves a series of conventional image processing
algorithms, including bilateral filtering and Otsu’s thresh-
olding. Extensive experiments conducted on three datasets
demonstrate the effectiveness of our UP-CrackNet in detecting
road cracks and its superior generalizability across different
datasets and scenarios. In the future, we intend to investi-
gate alternative training strategies and network architectures
to further improve UP-CrackNet’s performance in detecting
thin cracks. Additionally, conducting real-world experiments
involving automatic road inspection robots or vehicles is also
part of our future research endeavors.
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