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Abstract— In the emerging field of urban digital twins (UDTs),
there are extensive and captivating opportunities for leveraging
cutting-edge deep learning techniques. Particularly within the
specialized area of intelligent road inspection (IRI), a noticeable
gap exists, underscored by the current dearth of dedicated
research efforts and the lack of large-scale well-annotated
datasets. To foster advancements in this burgeoning field, we have
launched an online open-source benchmark suite, referred to
as UDTIRI. Along with this article, we introduce the road
pothole detection task, the first online competition published
within this benchmark suite. This task provides a well-annotated
dataset, comprising 1,000 RGB images and their pixel/instance-
level ground-truth annotations, captured in diverse real-world
scenarios under different illumination and weather conditions.
Our benchmark provides a systematic and thorough evaluation
of state-of-the-art object detection, semantic segmentation, and
instance segmentation networks, developed based on either con-
volutional neural networks or Transformers. We anticipate that
our benchmark suite will serve as a catalyst for the integration of
advanced UDT techniques into IRI. By providing algorithms with
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a more comprehensive understanding of diverse road conditions,
we seek to unlock their untapped potential and foster innovation
in this critical domain.

Index Terms— Urban digital twins, deep learning, intelligent
road inspection, benchmark suite, road pothole detection.

I. INTRODUCTION

IGITAL twin (DT) represents the forefront of technol-

ogy, including innovative algorithms that bridge physical
systems with digital networks [1]. This integration blurs
the boundaries between the physical and digital domains,
heralding a new era of interconnectedness and real-time ana-
Iytics [2]. With the rapid pace of digital transformation, the
applications of DT technology expand across diverse sectors,
from smart manufacturing [3] to intelligent urban planning [4]
and advanced medical healthcare [5]. An urban digital twin
(UDT) is fashioned by encoding the semantic and geospatial
properties of urban entities, such as buildings and roads [6].
These digital replicas of physical urban infrastructures are
indispensable to fulfill a diverse range of needs and uses,
as exemplified by applications such as intelligent road inspec-
tion (IRI) [7].

Traditional road inspection is typically conducted by struc-
tural engineers or certified inspectors [8]. However, this
process is fraught with challenges: it is perilous, inefficient,
costly, and tedious [9]. Additionally, the road inspection results
are often qualitative and subjective, relying solely on the
expertise of the individual inspectors [10]. With the advance-
ment of UDT techniques, especially deep neural networks,
there is an increasing appetite for data-driven IRI systems,
which generally undertake two primary tasks [11]: (1) road
data acquisition [12] and (2) road damage detection [13].
Developing a comprehensive, open-source, and well-annotated
online benchmark suite for evaluating UDT techniques applied
to IRI is, therefore, of paramount significance to the intelligent
transportation society.

Potholes, among the most prevalent types of road damage,
are considerably large structural defects on the road sur-
face [14]. Detecting these defects is not only vital for proactive
urban road maintenance but also imperative for autonomous
driving [15]. However, current autonomous driving perception
systems prioritize the detection of large objects of interest,
e.g., pedestrians, traffic signs, and vehicles, often sidelining

1558-0016 © 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: TONGJI UNIVERSITY. Downloaded on June 16,2024 at 05:15:08 UTC from IEEE Xplore. Restrictions apply.


https://orcid.org/0009-0003-5902-8489
https://orcid.org/0009-0005-8379-249X
https://orcid.org/0009-0005-4885-0850
https://orcid.org/0000-0002-4993-2293
https://orcid.org/0009-0003-5226-9044
https://orcid.org/0000-0001-6144-8923
https://orcid.org/0000-0002-0822-6261
https://orcid.org/0000-0001-5644-1188
https://orcid.org/0000-0003-2593-6596

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

1600 180

Conference Paper
1400 154 160

Journal Article
1200 12
Citations 117

140

1000
100
100
800
78 .
71 / &
600

Number of Citations

60

Number of Publications

49 48 | 0L

400
35 34 a1 38 = 40
29 27

200 19 19 20
0 0
2013 2014 2015 2016 2017 2018 2019 2020 2021 2022

Fig. 1. Publication and citation trends for road pothole detection over the past
decade. Conference papers are sourced from the Engineering Village database
(webpage: engineeringvillage.com), while journal articles and citations are
sourced from the Web of Science database (webpage: webofscience.com).

road damage. Nevertheless, driving quality, vehicle maneuver-
ability, fuel consumption, and tire longevity are all related to
road conditions. Therefore, accurate and efficient detection of
road potholes is crucial for improving both driving comfort
and safety [7].

Fig. 1 highlights the growing interest in road pothole
detection over the past decade, affirming its position as a
burgeoning research topic. Our recent survey article [11]
categorizes the existing road pothole detection algorithms
into three groups: (1) classical 2-D image processing-based,
(2) 3-D point cloud modeling and segmentation-based, and
(3) data-driven approaches. The first category of algorithms
generally utilizes explicit image processing algorithms to
segment road RGB or disparity/depth images [16]. Such
algorithms are often computationally demanding and sensitive
to various environmental factors, notably illumination and
weather conditions [17]. Additionally, the irregular shapes
of road potholes render the geometric assumptions made
in such approaches occasionally infeasible. Therefore, 3-D
point cloud modeling and segmentation-based algorithms have
become popular choices for road pothole detection [18]. These
algorithms typically consider the 3-D road point clouds, cap-
tured using a range sensor, as a quadratic surface. The raw
point clouds are then segmented by comparing the differences
between the modeled surface and the actual data [19]. How-
ever, these algorithms are still relatively underutilized. This
is primarily because accurate 3-D road imaging is costly, and
real-world road surfaces can be highly irregular and uneven,
sometimes rendering these techniques impractical. Data-driven
approaches, typically developed based on convolutional neural
networks (CNNs), have emerged as frontrunners, delivering
compelling road pothole detection results [9], [15], [20], [21].

Over the past decade, the advent of several online bench-
mark suites, such as KITTI [22] and Cityscapes [23], has
been playing a pivotal role in advancing the performance
of general visual perception algorithms. However, despite
the abundance of such datasets for general computer vision
research, the specific domain of IRI, especially when under-
pinned by cutting-edge UDT techniques, remains relatively
underexplored. A primary reason is that road defects such
as potholes are not ubiquitous, making the creation of
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large-scale datasets inherently challenging [14]. Furthermore,
most existing approaches in this area simply apply transfer
learning to fine-tune state-of-the-art (SoTA) object detection
or semantic segmentation models on relatively small road
inspection datasets. Moreover, previous studies in this research
area typically reported results based on experiments where
datasets were split randomly. Comparing algorithms on the
same dataset without consistent data splits can skew results,
as performance may be influenced by overlapping training and
validation data distributions. Finally, while all existing road
pothole detection datasets are created for either instance-level
object detection or pixel-level semantic segmentation, there is
a noticeable absence of large-scale datasets designed to accom-
modate both tasks simultaneously via instance segmentation.
Therefore, developing an online open-source benchmark suite
comprising a variety of IRI tasks, including but not limited
to road surface 3D reconstruction and road damage detection,
is a popular area of research that requires more attention.

In this article, we introduce the Urban Digital Twins for
Intelligent Road Inspection (UDTIRI) online benchmark
suite, accessible at https://udtiri.com. Road pothole detection,
the first online competition launched within this benchmark
suite, provides researchers with a large-scale, well-annotated
dataset for comprehensive evaluation of object detection,
semantic segmentation, and instance segmentation networks,
designed for this specific task. Similar to KITTI [22] and
Cityscapes [23], the ground-truth annotations (see Fig. 2)
are available for model training and validation, while the
evaluation metrics on the test set can be acquired by uploading
results to the UDTIRI benchmark suite. To set a reference
point, we have conducted extensive experiments with 14 SoTA
object detection networks, 30 SoTA semantic segmentation
networks, and 10 SoTA instance segmentation networks,
providing baseline results for road pothole detection. With
additional online competitions launched within this benchmark
suite in the near future, we believe that it will serve as a
catalyst for the integration of cutting-edge UDT methodologies
into IRI.

The remainder of this article is structured as follows: Sect. 11
presents a comprehensive review of SoTA object detection,
semantic segmentation, and instance segmentation networks.
Sect. III details our UDTIRI benchmark suite and road pothole
detection dataset. Sect. IV presents the conducted experiments
and provides both qualitative and quantitative comparisons of
the SOoTA networks. Sect. V discusses the potential limitations
of the compared networks. Finally, we summarize our contri-
butions in Sect. VI.

II. LITERATURE REVIEW
A. Object Detection Networks

Existing CNN-based object detection methods are predom-
inantly categorized into two groups: two-stage and one-stage
approaches. Two-stage methods first generate regions of inter-
est (Rols), which are then refined for both object classification
and bounding box regression. Nevertheless, the sequential
nature of two-stage methods can result in slower inference
speeds. On the other hand, one-stage methods formulate
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object detection as a direct bounding box regression task,
typically achieving higher computational efficiency yet some-
times sacrificing detection accuracy compared to two-stage
methods.

As a pioneering two-stage approach, R-CNN [24] intro-
duces region proposals, leverages a CNN to extract features
from these proposals, and classifies these proposals with a
support vector machine (SVM). Unfortunately, its multi-stage
training pipeline is computationally intensive. To address this
limitation, Fast R-CNN [25] streamlines the object detection
process by pooling CNN features associated with each region
proposal, significantly improving overall efficiency by sharing
computations for overlapping regions. However, it still relies
on the relatively slow selective search for region proposal
generation. Therefore, Faster R-CNN [26] addresses this draw-
back by introducing a region proposal network (RPN), which
directly generates region proposals, thereby enabling end-to-
end training.

One-stage methods, exemplified by the you only look once
(YOLO) series, single-shot multi-box detector (SSD) [27],
CenterNet [28], RetinaNet [29], and EfficientDet [30], have
gained increasing attention owing to their remarkable real-time
performance. These approaches can be broadly categorized
as anchor-free or anchor-based. The fundamental difference
between these two categories lies in their reliance on pre-
defined anchors to assist object detection. Anchor-based object
detection frameworks require careful anchor design to ade-
quately capture the scale and aspect ratio of specific object
classes. In contrast, anchor-free approaches forgo the use of
pre-defined anchors and instead directly predict a bounding
box for each object.

As the first anchor-free approach, YOLOv1 [31] simplifies
object detection into a direct bounding box regression task.
It utilizes a CNN for feature extraction and a fully connected
layer to regress object bounding box coordinates and classes.
Furthermore, YOLOV6 [32] incorporates the SCYLLA-IoU
(SIoU) [33] bounding box regression loss, which leads to
improved object detection accuracy when compared to earlier
anchor-based models, such as YOLOv2 through YOLOVS.
Additionally, CenterNet [28] represents each object as a single
point at the bounding box center, instead of regressing the
entire bounding box. This point-based representation generally
enhances model generalizability and can be readily extended
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Examples of the ground-truth annotations for the road pothole detection competition within the UDTIRI benchmark suite: (a) object detection;

to related tasks, such as 3D object detection, instance segmen-
tation, and keypoint estimation.

Among the anchor-based YOLO series, YOLOv2 [34]
employs a high-resolution classifier and anchor boxes to
improve object detection accuracy. Nevertheless, YOLOv2
struggles with fine-grained localizations, overlapping objects,
and potential loss of spatial information, even though it
achieves real-time performance. YOLOv3 [35] addresses
these limitations by making predictions across three different
scales, capturing more comprehensive semantics to improve
object detection performance. YOLOv4 [36] incorporates a
cross-stage partial network [37] into its backbone, notably
enhancing learning capability while also reducing compu-
tational complexity compared to YOLOv2 and YOLOv3.
Moreover, YOLOvVS5 [38] utilizes an embedded anchor box
selection mechanism to improve training and inference speed
compared to YOLOv4. YOLOv7 [39] introduces an extended
efficient layer aggregation network to further boost inference
speed. It achieves the most favorable trade-off between effi-
ciency and accuracy when compared to all previous versions
of YOLO. SSD [27] was also developed with the primary
aim of achieving a balance between speed and accuracy
by utilizing pre-defined anchors and multi-scale features.
Additionally, EfficientDet [30] optimizes the trade-off among
model complexity, speed, and accuracy by adjusting net-
work depth, width, and input resolution. Unfortunately, most
one-stage detectors still lag behind two-stage models in accu-
racy, primarily due to sensitivity to foreground-background
class imbalances. RetinaNet [29] addresses this limitation by
employing focal loss to focus on “hard” samples, allowing it to
maintain high-speed processing while remaining competitive
with SoTA one-stage methods.

DETR [40] employs an encoder-decoder Transformer archi-
tecture along with a set-based global loss to produce an
optimal bipartite matching between predicted and ground-truth
objects. This loss function uniquely associates each predic-
tion with a specific target object, ensuring invariance to the
order of predictions. Inspired by the deformable convolution,
Deformable DETR [41] incorporates sparse spatial sampling
to overcome the challenges of slow training convergence and
high computational complexity inherent in DETR. Specifically,
it utilizes a deformable attention module to focus on a small
set of key sampling points around a reference point, regardless
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of the spatial size of the feature maps. This addresses a
limitation in the standard Transformer attention mechanism,
which typically considers all possible spatial locations and thus
converges slowly during training.

B. Semantic Segmentation Networks

Fully convolutional network (FCN) [42] marked a pio-
neering milestone in the use of CNNs for end-to-end
semantic segmentation. However, its segmentation does not
fully account for pixel relationships, resulting in segmenta-
tion results that lack spatial consistency. Additionally, FCN
also significantly amplifies memory usage and computational
complexity. To address these limitations, Fast FCN [43]
extracts high-resolution feature maps through upsampling
convolutions. This approach effectively addresses the spatial
inconsistency issue and significantly reduces computational
complexity by more than threefold.

Recent approaches [44], [45], [46], [47], [48], [49] have
made significant strides in enhancing performance by expand-
ing the receptive fields using pyramid-based multi-resolution
techniques. Pyramid scene parsing network (PSPNet) [49]
performs spatial pyramid pooling (SPP) at multiple scales,
achieving exceptional performance across several semantic
segmentation benchmarks. Similarly, based on Mask R-CNN
[50] and feature pyramid network (FPN) [51], panoptic
FPN [44] utilizes a lightweight semantic segmentation branch
for dense pixel prediction. Furthermore, DeepLabv3 [46]
employs several parallel atrous SPP (ASPP) modules to gather
contextual information across multiple scales. Nevertheless,
the stride operations used in DeepLabv3 may lead to the
loss of object boundary details. To address this limitation,
DeepLabv3+ [47] introduces a concise yet effective decoder
into DeepLabv3, significantly improving semantic segmenta-
tion results, particularly along label boundaries. Additionally,
dynamic multi-scale network (DMNet) [48] learns variable-
scale features through dynamic multi-scale filters. It is more
adaptable and flexible, as each branch can capture a unique
scale of features relevant to the input image.

U-Net [52] features a U-shaped encoder-decoder structure,
originally designed for biomedical image segmentation prob-
lems. In contrast to symmetric encoder-decoder architectures
utilized in the following studies [52], [53], [54], efficient
neural network (ENet) [55] adopts a larger encoder paired
with a smaller decoder. The encoder effectively handles data
with lower resolutions, thereby providing the decoder with
fine-grained features. Subsequently, the decoder samples these
features and refines boundary details. SegResNet [56], another
asymmetric encoder-decoder architecture, replaces the encoder
of SegNet [54] with ResNet blocks. Moreover, it incorporates
a variational autoencoder branch to regularize the shared
encoder by reconstructing input images. Unlike these prior
arts [42], [52], [53], [54], [55], [56] that focus on the
recovery of high-resolution feature maps from low-resolution
representations, high-resolution network (HRNet) [57] main-
tains high-resolution representations throughout the entire
feature extraction and fusion process, resulting in more accu-
rate predictions, achieved through progressive and repetitive
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multi-scale feature fusion, conducted by multi-resolution sub-
networks in parallel.

Attention mechanisms have been playing a pivotal role in
recent semantic segmentation networks [58], [59]. As two
notable approaches, the non-local neural network (Non-local)
[60] obtains the attention mask by computing the correla-
tion matrix between each point in the feature maps, and
PSANet [61] learns the mask by aggregating context infor-
mation for each specific point in a self-adaptive manner.
However, the extensive computational demands of attention
mechanisms have limited their application in various real-
world scenarios. To overcome this challenge, the asymmetric
non-local neural network (ANN) [62] samples only a few
representative points from the feature maps, significantly
reducing computational complexity. Additionally, the attention
computation can be decomposed into a pair-wise term and a
unary term, which can be challenging to learn independently.
The disentangled non-local network (DNLNet) [63] addresses
this issue by decoupling the tight relationship between these
two components. Most attention-based approaches [61], [64]
use adaptive weights to compute pair-wise similarity or learn
pixel-wise attention maps. However, they tend to overlook the
importance of global guidance from the feature extractors.
To address this limitation, adaptive pyramid context network
(APCNet) [65] estimates the degree of sub-region contribution
from local and global representations and leverages multi-scale
representations with a feature pyramid, resulting in improved
overall performance.

While attention mechanisms have demonstrated superior
performance compared to ASPP [46], large convolutional
kernels, and stacked convolutional layers, their heightened
demand for GPU memory can often be prohibitively expen-
sive. Therefore, several networks have emerged with a primary
focus on further minimizing these computational require-
ments. Criss-cross network (CCNet) [66] introduces fully
spatial attention, while interlaced sparse self-attention network
(ISANet) [67] factorizes the dense affinity matrix into the
product of two sparse affinity matrices. Furthermore, instead
of treating all pixels as reconstruction bases [60], [61], the
expectation maximization attention network (EMANet) [68]
finds a more compact basis set, leading to a substantial
reduction in computational complexity. Additionally, context
encoding network (ENCNet) [69] selectively highlights the
class-dependent feature maps, thereby infusing the scene-
relevant prior information into the network. This technique
simplifies the generation of large attention maps while notably
reducing memory consumption.

Vision Transformer (ViT) [70] has been gaining momentum
in recent years. Swin Transformer [71], Segmenter [72], and
Twins [73] are all developed based on ViT [70]. Swin Trans-
former designs a hierarchical Transformer architecture that
computes representations with shifted windows. Inspired by
DETR [40], Segmenter develops a mask Transformer decoder,
capable of capturing global context at each layer during
both encoding and decoding stages. To improve semantic
segmentation at both global and local scales, Twins [73]
adopts a two-branch architecture: one captures global con-
textual information, while the other one focuses on the
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local boundary details of the segmented regions. Further-
more, SegFormer [74] aggregates information from various
layers, effectively combining both local and global attention
to produce robust representations. To improve the learned rep-
resentations, ResNeSt [75] combines channel-wise attention
with multi-path representation into a single unified split-
attention block. Similar to the self-attention mechanism used
in ViT, object-contextual representation (OCR) [76] character-
izes pixels by exploiting the representations of corresponding
object classes. The conventional multi-scale context schemes,
such as SPP [77] and ASPP [46], only differentiate pixels
with different spatial positions, while OCR [76] distinguishes
between contextual pixels of the same object class and those
of different object classes.

C. Instance Segmentation Networks

Similar to object detection networks, instance segmentation
networks can also be broadly categorized as either two-stage
and one-stage ones [78]. The former networks [50], [79], [80],
[81], [82] first detect bounding boxes for each instance and
then perform pixel classification within each bounding box to
generate the final mask. In contrast, one-stage networks [83],
[84], [85], [86] directly propose prediction boxes from the
input images without a region proposal step [87]. Although
one-stage methods are more suitable for applications requir-
ing real-time performance due to their concise and efficient
architectures, two-stage methods typically achieve higher seg-
mentation accuracy, primarily attributed to the second refined
stage [88].

Mask R-CNN [50] is a pioneering two-stage framework that
extends Faster R-CNN [26] by adding an additional branch to
predict pixel-level masks in parallel with the existing branch
that recognizes bounding boxes. Its architecture consists of a
CNN backbone, a RPN, and two heads separately for object
classification and prediction. The introduction of the Rol align
(abbreviated as RolAlign) module ensures that the extracted
features are correctly aligned, thus eliminating the misalign-
ment issues caused by quantization errors present in previous
methods [26]. Cascade R-CNN [79] is another extension
of Faster R-CNN [26], which improves instance detection
accuracy through a cascade of multiple stages. Unlike the
methods [26], [50], [79] that usually predict mask quality score
based on the confidence of instance segmentation networks,
Mask Scoring R-CNN [80] takes both the instance feature and
the corresponding predicted mask into account to regress the
intersection over union (IoU) score for masks. This approach
considers the accuracy of both semantic categories and the
instance masks, presenting a novel method for scoring the
instance segmentation quality and offering a new perspective
on the evaluation of instance segmentation performance.

Unlike Mask R-CNN [50] that relies on Rol operations
(typically RolAlign) to obtain the final instance masks,
YOLACT [81] decouples Rol detection from the feature
maps used for mask prediction. Additionally, instead of using
instance-wise Rols as inputs to a network with fixed weights,
CondInst [89] employs dynamic instance-aware networks
conditioned on instances. This approach offers two notable

advantages: (1) it eliminates the need for Rol cropping and fea-
ture alignment through an FCN module; (2) with the increased
capacity of dynamically generated conditional convolutions,
the compact mask head leads to significantly faster inference
speed. The same research group also proposed BoxInst [82],
which realizes instance segmentation with the use of two
losses: (1) a surrogate loss that focuses on minimizing the
discrepancy between the projections of the ground-truth box
and the predicted mask, and (2) a pair-wise loss that supervises
the label consistency in proximal pixels, determining whether
two pixels have the same labels or not.

As a representative one-stage instance segmentation net-
work, segmenting objects by locations (SOLO) [83] uses a
similar paradigm to semantic segmentation for the instance
segmentation task. Basically, the mask branch predicts soft
masks for all potential objects, while the category branch
subsequently determines the object classes, enabling effi-
cient instance segmentation without utilizing Rol operations.
Nonetheless, SOLO struggles to segment small instances.
To overcome this limitation, SOLOv2 [84] dynamically pre-
dicts mask kernels based on the input and assigns appropriate
location categories to different pixels. Additionally, to pre-
vent duplicate predictions, it employs “matrix non-maximum
suppression (NMS)”, which dramatically boost the model’s
inference speed.

Capturing contextual information and long-range depen-
dencies is crucial for instance segmentation. Global context
network (GCNet) [85] simplifies the non-local network [60] by
explicitly utilizing a query-independent attention map appli-
cable to all query positions. GCNet has proven to deliver
impressive performance, primarily due to its capacity to model
pixel-level long-range dependencies while simultaneously
mapping channel-wise attention. Additionally, to address the
challenge of capturing long-range dependencies, deformable
convolutional network (DCN) [90] introduces deformable
convolution, which offers dynamic and learnable receptive
fields, effectively adapting to the image content. It solves
the inherent limitations of geometric transformations in CNNs
and has demonstrated exceptional performance across various
computer vision tasks.

III. UDTIRI BENCHMARK SUITE

Our initial aim is centered around the creation of an online
open-source benchmark suite, designed to offer comprehensive
evaluations of cutting-edge UDT techniques applied to tackle
IRI problems. These evaluations involve various general visual
perception algorithms, including but not limited to object
detection (instance-level perception), semantic segmentation
(pixel-level perception), and instance segmentation (percep-
tion at both instance and pixel levels) networks. However,
it is worth noting that these general models have rarely
been evaluated specifically for IRI tasks, primarily due to
the lack of a public dataset that includes diverse forms
of ground-truth annotations and provides reasonable data
partitions. Therefore in this paper, we take the initial step
by launching a road pothole detection competition based
on a large-scale, well-annotated, multi-purpose, real-world
dataset.
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Prior to introducing our newly developed road pothole
detection dataset, we first provide a brief overview of the
relevant existing datasets that have been created for the
evaluation of visual perception algorithms. Labeling object
detection ground truth is relatively inexpensive and can result
in larger datasets. For example, a dataset! [91] was created for
object detection-based pothole detection, which contains 3,777
RGB images for training and 628 RGB images for testing.
However, in the context of road inspection, our primary focus
is on acquiring accurate information (e.g., shapes and sizes)
of road potholes. This objective inherently requires accurate
pixel-level annotations. In our previous work [13], we pub-
lished the first pixel-level road pothole detection dataset,
which contains 67 collections of RGB images (resolution:
800 x 1,312 pixels), subpixel disparity images, transformed
disparity images, and ground-truth annotations. Furthermore,
we published a relatively larger dataset, referred to as the
Pothole-600 dataset® [15], which contains 600 pairs of RGB
images and transformed disparity images. While the datasets
mentioned above are suitable for the evaluation of semantic
segmentation algorithms, they were created under rather lim-
ited illumination and weather conditions. Moreover, the road
potholes in these datasets are comparatively easy to recognize
from such scenarios.

To address the absence of large-scale, multi-functional,
well-annotated road pothole datasets, we collect road data
with respect to diverse pothole depths, sizes, and shapes,
captured using different cameras mounted on different vehicles
and under various weather and illumination conditions. These
comprehensive data are not only suitable for model training
in each of these individual tasks but can also be leveraged
for multi-task learning, thereby setting our dataset apart from
existing options. Within our dataset, the road potholes have a
wide range of scales, as depicted in Fig. 3. Based on these
statistical analyses, we categorize the road potholes into large,
medium, and small ones. In our experiments, we conduct a
comprehensive performance evaluation of object detection and
instance segmentation networks with respect to the different
scales of road potholes.

All the images in our dataset have been annotated and are
available in various formats. For object detection, we utilize

1 kaggle.com/sovitrath/road-pothole-images-for-pothole-detection
2 github.com/ruirangerfan/stereo_pothole_datasets
3sites. google.com/view/pothole-600
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the VOC [92] and COCO [93] formats. In the case of
semantic segmentation, the VOC format is employed, while for
instance segmentation, we utilize the COCO format. We have
made our training and validation sets, along with ground-truth
annotations, publicly available. To evaluate the performance
of algorithms on our test set, researchers can submit their
results via our online benchmark suite. This feature serves dual
purposes: it not only streamlines the process of comparing and
validating various algorithms but also cultivates a collaborative
environment within the research community, promoting the
exchange of methods and results. Through its automated
and standardized evaluation mechanism, we believe that our
benchmark suite represents a vital advancement in this field.

IV. EXPERIMENTAL RESULTS
A. Experimental Setup

We conduct extensive baseline experiments using 14 object
detection networks, 30 semantic segmentation networks, and
10 instance segmentation networks. All networks are imple-
mented in PyTorch. All experiments are conducted on an
NVIDIA RTX 3090 GPU and an Intel Xeon Platinum 8255C
CPU. Each network is trained for 150 epochs. We keep the
default settings of each network. The quantitative results of
object detection, semantic segmentation, and instance seg-
mentation are presented in Tables I, II, and III, respectively.
Additionally, the qualitative experimental results of object
detection, semantic segmentation, and instance segmentation
are shown in Figs. 4, 5, and 6, respectively.

B. Evaluation Metrics

We use average precision (AP) and mean IoU (mloU) as the
evaluation metrics in the object detection task. Furthermore,
we utilize accuracy (Acc), IoU, precision (Pre), recall (Rec),
and Fl-score (Fsc) to quantify the performance of semantic
segmentation networks. Moreover, we use AP as the evaluation
metric in the instance segmentation task.

Following the evaluation on the MS COCO [93] dataset,
we compute AP with respect to different sizes of road pot-
holes: small (denoted as APg), medium (denoted as APs), and
large (denoted as AP;). We use two proportion thresholds to
determine small, medium, and large road potholes. Referring
to Fig. 3, the first 300 potholes are considered small (with
a pothole area proportion of less than 1.12%). The potholes
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TABLE I
QUANTITATIVE COMPARISON OF OBJECT DETECTION NETWORKS, WITH THE BEST RESULTS SHOWN IN BOLD TYPE

Validation Set Test Set
Network Params FPS
APg (%) T APpg (%) APy (%) T AP 4 (%) T mloU (%) 1 APg (%) 1 AP (%) T APy (%) T AP 4 (%) T mloU (%) 1

YOLOvI [31] 2849 M 84.36 13.40 32.10 45.10 35.10 54.70 10.70 25.20 45.10 33.60 53.90
YOLOV2 [34] 28.52M 23.67 14.30 39.90 53.80 42.10 60.50 11.20 28.10 46.10 34.50 57.60
YOLOV3 [35] 61.52M 55.33 24.20 44.80 55.90 47.40 69.70 26.60 43.00 56.00 47.50 66.00
YOLOV4 [36] 63.94M 36.05 31.10 47.60 66.80 56.60 76.70 31.30 49.00 61.30 52.60 74.30
YOLOVS [38] 46.14M 36.84 42.70 60.20 74.10 65.30 76.60 40.70 56.50 67.60 59.80 73.60
YOLOV6 [32] 5847M 48.73 48.60 66.10 77.10 69.60 83.90 52.20 66.60 76.40 69.60 82.90
YOLOvV7 [39] 37.20M 49.20 45.30 59.70 73.90 65.50 82.70 44.90 57.90 74.90 65.40 78.80
Faster R-CNN [26] 136.6 M 25.29 21.40 52.30 64.40 55.00 77.00 21.30 54.00 63.50 53.30 75.30
RetinaNet [29] 3633 M 34.78 25.90 51.40 58.20 50.50 58.00 22.70 40.70 54.90 45.50 56.30
CenterNet [28] 191.24M 23.38 27.80 53.40 66.30 55.90 75.60 29.50 52.70 64.30 55.10 74.30
SSD [27] 23.61 M 136.73 29.10 54.80 69.90 59.30 79.90 30.80 53.90 70.00 59.10 78.10
EfficientDet [30] 801 M 12.89 41.20 54.50 74.20 63.60 79.60 40.60 57.40 73.30 64.10 79.00
DETR [40] 41.30M 30.80 43.20 62.40 80.50 68.90 85.90 4530 61.00 74.40 65.40 81.30
Deformable DETR [41] 39.85M 31.60 50.20 63.50 79.60 69.50 82.60 56.40 61.50 75.00 68.10 80.60

YOLOv1 Faster R-CNN
YOLOvV2 RetinaNet
YOLOV3 CenterNet
YOLOv4 SSD
mt! ?#!:'.f

YOLOV5S EfficientDet
YOLOvV6 DETR
YOLOVT Deformable

DETR

Fig. 4. Qualitative experimental results of object detection. The green areas in the image represent true-positive predictions, the blue areas represent

false-positive predictions, and the red areas represent false-negative predictions.

numbered from 301 to 600 (with a pothole area proportion
between 1.12% and 3.72%) are considered medium, while the
remaining potholes are considered large (with a pothole area
proportion greater than 3.72%). Additionally, AP4 represents
an average AP score that provides a comprehensive evaluation
of the model’s performance across all pothole sizes.

C. Object Detection Network Performance

The quantitative results obtained from the object detec-
tion networks, as outlined in Table I, reveal the following
insights: (1) YOLOv6 achieves the highest AP4 and APy,
and Deformable DETR achieves the highest APg on both the
validation and test sets; (2) regarding APy and mloU, DETR
outperforms others on the validation set, while YOLOv6
leads with the highest scores on the test set; (3) YOLOv6

demonstrates real-time performance, and is slightly faster than
DETR and Deformable DETR.

Although most networks are capable of detecting larger
potholes, they often struggle with medium and smaller ones.
Transformer-based networks, such as DETR and Deformable
DETR, consistently outperform CNN-based networks in
detecting small potholes. This superiority can be attributed
to the fact that small potholes might become undetectable
after passing through multiple convolution layers in CNN-
based models. In contrast, Transformer-based approaches, with
a self-attention mechanism, can effectively capture information
from all positions without relying on pooling operations,
allowing them to preserve important details relevant to small
potholes. However, the generalizability of Transformer-based
networks is limited, likely due to data availability con-
straints. While these networks show promise for small object

Authorized licensed use limited to: TONGJI UNIVERSITY. Downloaded on June 16,2024 at 05:15:08 UTC from IEEE Xplore. Restrictions apply.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

8 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS

FCN PSANet
Fast FCN ANN
PSPNet DNLNet
Panoptic DANet
FPN

UperNet APCNet
Deeplabv3 CCNet
DeepLabv3+ [ ' ISANet
DMNet EMANet
U-Net ENCNet
LinkNet OCR
SegNet Swin

ENet Segmenter
SegResNet SegFormer
HRNet Twins
Non-local ResNeSt

Fig. 5. Qualitative experimental results of semantic segmentation. The green areas in the image represent true-positive predictions, the blue areas represent
false-positive predictions, and the red areas represent false-negative predictions.

detection, further research and data collection efforts may It is also worth noting that YOLOvV6 demonstrates a
be necessary to enhance their performance across diverse higher occurrence of false-positive regions during night time,
scenarios. as illustrated in Fig. 4. This indicates its potential limitations
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TABLE I
QUANTITATIVE COMPARISON OF SEMANTIC SEGMENTATION NETWORKS, WITH THE BEST RESULTS SHOWN IN BOLD TYPE

Network Params FPS Validation Set Test Set
ToU (%) 1 Fsc (%) 1 Pre (%) 1T Rec (%) 1 Acc (%) T ToU (%) 1 Fsc (%) 1 Pre (%) 1T Rec (%) 1 Acc (%) 1
FCN [42] 49.48 M 16.54 79.60 88.64 91.81 85.69 85.69 74.96 85.96 87.39 84.05 97.25
Fast FCN [43] 87.85M 10.47 81.28 89.67 92.33 87.17 96.93 76.63 86.77 88.57 85.04 97.47
PSPNet [49] 48.98 M 16.14 81.90 90.05 92.23 87.96 97.34 74.93 85.67 85.05 86.30 97.18
Panoptic FPN [44] 2851 M 18.46 77.14 87.10 90.91 83.59 96.61 73.23 84.55 85.14 83.69 97.07
UperNet [45] 4140 M 17.20 79.97 88.87 89.97 87.81 96.99 73.72 84.87 84.51 85.24 96.98
DeepLaby3 [46] 68.11 M 13.07 79.79 88.76 91.81 85.90 97.02 76.86 86.90 81.75 86.10 97.43
DeepLabv3+ [47] 43.58 M 16.15 81.16 89.60 89.64 89.57 97.16 75.88 86.28 84.52 88.13 97.28
DMNet [48] 53.28M 14.52 79.82 88.78 92.63 85.23 97.05 74.39 85.32 89.11 81.83 97.23
U-Net [52] 29.06 M 12.10 69.42 81.92 83.35 80.62 94.57 64.12 78.15 78.74 78.13 94.41
LinkNet [53] 44.00 M 11.70 76.23 86.51 86.42 86.57 96.14 72.83 84.24 84.25 84.27 95.72
SegNet [54] 21296 M 123 71.62 83.44 84.73 82.21 95.11 66.93 80.10 81.32 79.06 94.42
ENet [55] 136 M 21.98 74.23 85.10 86.21 83.93 95.70 74.91 85.62 86.95 84.38 96.03
SegResNet [56] 20431 M 245 81.91 90.14 90.91 82.65 97.13 79.25 88.34 88.53 88.29 96.82
HRNet [57] 65.86 M 22.46 80.46 89.17 91.77 86.73 97.12 76.63 86.77 88.57 85.04 97.73
Non-local [60] 50.03M 14.13 80.82 89.40 89.07 89.72 97.09 71.99 83.72 83.12 84.32 96.74
PSANet [61] 48.98 M 12.57 80.67 89.30 93.10 85.80 97.19 76.43 86.64 86.91 86.37 97.36
ANN [62] 46.23 M 15.18 80.91 89.44 88.50 90.41 97.08 76.70 86.82 87.94 85.72 97.43
DNLNet [63] 50.13M 10.15 79.36 88.49 90.95 86.16 96.93 73.26 84.57 86.75 82.49 97.01
DANet [64] 49.82M 14.37 74.47 85.37 91.03 80.37 96.23 73.19 84.52 85.75 83.33 97.01
APCNet [65] 56.46 M 14.16 81.05 89.53 94.06 85.42 97.27 75.23 85.87 88.66 83.24 97.27
CCNet [66] 49.83 M 15.70 80.40 89.13 92.43 86.07 97.13 75.93 86.32 89.27 83.56 97.36
ISANet [67] 37.69M 18.85 80.60 89.26 91.24 87.19 97.13 76.15 86.46 88.99 84.07 97.40
EMANet [68] 42.09M 18.17 80.71 89.32 93.16 85.79 97.19 75.02 85.73 90.01 81.83 97.29
ENCNet [69] 3589 M 17.99 79.90 88.83 91.66 86.17 97.04 74.12 85.13 84.68 85.59 97.10
OCR [76] 12.08 M 27.76 63.57 71.73 81.26 74.50 94.16 62.59 76.99 76.09 7191 95.35
Swin [71] 121.3M 6.55 82.70 90.53 90.45 90.16 97.41 77.98 87.63 85.04 90.37 97.47
Segmenter [72] 102.5M 9.52 83.21 90.81 91.26 90.41 97.50 80.74 89.34 87.25 91.54 97.83
SegFormer [74] 375M 15.51 73.43 84.68 87.99 81.61 95.96 74.91 85.65 87.11 84.25 97.27
Twins [73] 4758 M 7.96 81.57 89.85 91.32 88.42 97.27 79.02 86.38 87.94 84.87 97.36
ResNeSt [75] 9091 M 9.48 79.66 88.68 91.34 86.18 96.99 79.03 88.29 88.83 87.75 97.69
TABLE III
QUANTITATIVE COMPARISON OF INSTANCE SEGMENTATION NETWORKS, WITH THE BEST RESULTS SHOWN IN BOLD TYPE
Network Params FpS Validation Set Test Set
APg (%) 1 AP (W) AP (%) APy ()T | APg ()1 APp ()T APp (B)T AP, (%) 1
Mask R-CNN [50] 4397M 31.00 41.30 29.40 61.70 53.70 31.00 55.60 62.40 52.10
DCN [90] 97.30M 15.20 5.10 25.10 59.30 50.10 5.00 24.20 55.10 46.30
GCNet [85] 100.00 M 12.40 15.60 34.10 60.90 53.60 10.10 30.30 57.20 49.50
YOLACT [81] 3473 M 2.80 22.10 24.20 53.40 45.70 2.00 17.80 39.10 33.10
Cascade R-CNN [79] 77.02M 24.20 33.20 33.20 61.20 54.10 12.70 30.60 54.80 4770
Mask Scoring R-CNN [80] 60.23 M 30.40 46.60 32.00 58.80 51.60 12.20 32.80 55.30 48.60
SOLO [83] 36.12M 30.40 0.80 15.60 52.70 42.80 1.70 18.50 45.70 37.80
SOLOV2 [84] 46.23 M 31.70 8.30 20.00 49.80 41.50 2.00 21.10 48.80 40.70
CondInst [89] 3416 M 26.00 31.70 27.40 58.20 49.80 4.50 26.70 53.30 45.00
BoxlInst [82] 3496 M 21.70 8.90 22.60 52.80 44.40 6.10 22.50 48.20 40.60

when dealing with extreme or low-light situations. However,
we still recommend YOLOV6 as the preferred choice for object
detection-based road pothole detection, primarily due to its
advantageous balance between speed and accuracy.

D. Semantic Segmentation Network Performance

As shown in Table II, Segmenter consistently achieves the
highest IoU, Fsc, Rec, and Acc on both the validation and
test sets. The results presented in Fig. 5 further illustrate
that Segmenter can yield the most accurate boundaries, with
minimal occurrences of false-positive regions, even under poor
illumination conditions. Additionally, APCNet and EMANet
stand out by achieving the highest Pre on the validation and
test sets, respectively. Unfortunately, all these networks fall
short in achieving real-time performance, which imposes lim-
itations on their practical applicability in real-world scenarios.

This article represents a pioneering effort in utiliz-
ing Transformer-based networks for road pothole detec-
tion. Except for SegFormer, Transformer-based networks

demonstrate superior performance compared to the CNN-
based approaches. This superiority can be attributed to two
key factors. First, Transformers are inherently designed to
efficiently capture long-range dependencies and global con-
text. In semantic segmentation, understanding the relationships
between distant pixels or objects holds significant importance.
Transformers are adept at modeling these global relationships,
allowing for more context-aware segmentation. Furthermore,
Transformers rely on attention mechanisms that can cap-
ture fine-grained spatial relationships within an image. This
capability can lead to more precise and context-aware segmen-
tation, particularly when dealing with densely packed objects
or those with intricate shapes.

We also compare the generalizability of these networks.
DeepLabv3, ENet, SegResNet, DANet, OCR, Segmenter, Seg-
Former, Twins, ResNeSt demonstrate comparable performance
on both the validation and test sets, with the IoU fluctuating
within a range of 0.06% to 2.93%. Among them, ENet
achieves the best generalizability on our UDTIRI benchmark.
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Fig. 6. Qualitative experimental results of instance segmentation. Different road potholes are shown in different colors.

E. Instance Segmentation Network Performance

The results presented in Table III reveal that Mask Scoring
R-CNN, GCNet, Mask R-CNN, and Cascade R-CNN achieve
the highest APs, APy, APy, and AP4, on the validation set,
respectively, while Mask R-CNN outperforms all other models
across all evaluation metrics on the test set. These findings sug-
gest the superior segmentation accuracy of two-stage models
when compared to one-stage models. Additionally, as illus-
trated in Fig. 6, Mask R-CNN consistently produces accurate
road pothole boundaries, even under challenging conditions
characterized by high humidity and strong light reflections.
Furthermore, it is worth highlighting that Mask R-CNN
demonstrates comparable efficiency to one-stage approaches,
such as SOLO and SOLOv2, making it a practical choice,
especially for resource-limited hardware. Nonetheless, it is
evident that all the instance segmentation networks compared
in this study achieve unsatisfactory performance, particularly
when segmenting small road potholes, underscoring the critical
need for further research and improvement in this area.

V. DISCUSSION

This study has two notable limitations. First, the current
benchmark primarily focuses on single-model road pot-
hole detection, without exploring the potential benefits of
multi-sensor data fusion. Future iterations of our benchmark
will incorporate additional spatial geometric information and
comprehensively investigate data-fusion networks, providing
a more comprehensive evaluation of model performance.
Secondly, our benchmark currently focuses exclusively on pot-
holes, omitting the inclusion of other common road damages,
such as cracks. Detecting cracks is essential not only for urban
road maintenance but also for automated driving perception
systems. To enhance the comprehensiveness of our benchmark
and align it more closely with real-world scenarios, it is
crucial to incorporate additional datasets comprising various
road damage types and evaluate a wider range of models for
crack detection.

VI. CONCLUSION

In this article, we introduced an online open-source bench-
mark suite, referred to as UDTIRI, within which the first
intelligent road inspection competition — road pothole detec-
tion was launched. The competition provides a large-scale,
well-annotated dataset that can be used for the training and
evaluation of object detection, semantic segmentation, and
instance segmentation networks. The annotations for the train-
ing and validation sets are made accessible to researchers,
where a comprehensive performance evaluation of their devel-
oped networks on the test set can be obtained by submitting the
results through our online benchmark platform. Furthermore,
we provided extensive baseline experimental results using
14 object detection networks, 30 semantic segmentation net-
works, and 10 instance segmentation networks. With upcoming
IRI competitions set to be introduced within the UDTIRI
benchmark, we believe that our benchmark will act as a
driving force, encouraging the integration of advanced UDT
techniques into IRI.
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