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Multiple Lane Detection Algorithm Based on Novel
Dense Vanishing Point Estimation

Umar Ozgunalp, Rui Fan, Xiao Ai, and Naim Dahnoun

Abstract—The detection of multiple curved lane markings is
still a challenge for advanced driver assistance systems today,
due to interference such as road markings and shadows cast by
roadside structures and vehicles. The vanishing point Vp contains
the global information of the road image. Hence, Vp-based lane
detection algorithms are quite insensitive to interference. When
curved lanes are assumed, Vp shifts with respect to the rows of
the image. In this paper, a Vp for each individual row of the image
is estimated by first extracting a Vpy (vertical position of the Vp)
for each individual row of the image from the v-disparity. Then,
based on the estimated Vpy’s, a 2-D Vpx (horizontal position
of the Vp) accumulator is efficiently formed. Thus, by globally
optimizing this 2-D Vpx accumulator, globally optimum Vp s for
the road image are extracted. Then, estimated Vp s are utilized for
multiple curved lane marking detection on nonflat road surfaces.
The resultant system achieves a detection rate of 99% in 1862
frames of six stereo vision test sequences.

Index Terms—Lane detection, stereo vision, v-disparity, dynamic
programming, vanishing point detection.

I. INTRODUCTION

ACCORDING to statistics [1], around 70% of all reported
road accidents in Great Britain are a result of driver

error or slow reaction time. Fortunately, the computation power
available today makes it possible to utilize ADAS to prevent
or minimize the consequences of these accidents. By using
specialized algorithms, ADAS predicts driver intent, warns the
driver about possible lane departure or collision, as well as
many more functionalities.

Lane detection is one of the key elements of ADAS [2] and it
is necessary for lane departure warning. Due to the changing en-
vironment, the input image can be noisy and lane detection can
be a challenging task. For example, changing light conditions
or the lack of consistent painting can affect the lane detection
significantly. Thus, some assumptions are commonly made in
the algorithms to increase the performance such as constant
road width, constant lane painting width, consistent road texture
and a flat road [3]. For instance, in [4], assuming parallel lanes,
parallel road models are fitted into the novel feature map using
RANSAC to minimize the effect of the local noise and decrease
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the computational complexity (fewer parameters to estimate if
road models are parallel to each other). An important property
of the input image is perspective mapping. During the image
capturing process, the vision sensor maps the three dimen-
sional world information into a two dimensional image. During
this process, all parallel lines in the world coordinate system
converge on a vanishing point (Vp) in the image coordinate
system. Under the assumption that the lanes are parallel to
each other, Vp can be used to improve the system robustness
significantly. Thus, many researchers [5]–[9] are focused on
Vp based lane detection algorithms, since Vp contains global
information and Vp based algorithms are less sensitive to local
noise, such as occlusions or shadows. Previously developed
Vp based lane detection algorithms demonstrated robust results
by first detecting Vp and then detecting lanes based on this
global information. However, they still have limitations, such
as having a flat road assumption, a straight lane model or the
ability to detect only the current lane.

In [7], the algorithm assumes intrinsic and extrinsic parame-
ters of the camera are known and that the vehicle is travelling
parallel to the road. Thus, Vp can be estimated from these
parameters and lines crossing Vp can be searched by using
the 2D Hough transform. In [5] and [6], the algorithms first
detect and track Vp (including the horizon line). Therefore,
this eliminates the assumption of knowing extrinsic camera
parameters and the assumption of the vehicle traveling parallel
to the road. As a second step, the algorithms search for line
pairs crossing Vp for each lane (a lane is a light stripe on a
darker background. Thus, each lane has two boundaries).

With a single Vp, only a linear lane model can be used and
algorithms using a single Vp are only suitable for the roads
with limited curvature, such as motorways. In [8] and [9],
Vps are detected by segmenting the image into horizontal bands
and detecting Vps iteratively, starting from the bottom band and
moving through the upper bands. In each iteration, a new Vp

is detected by restricting the search range depending on the
previous detections from the lower bands. In [10] and [11],
multiple Vps are detected by segmenting the image into hor-
izontal image bands and creating a Vp accumulator for each
band. Then, starting from the bottom band and moving through
the top band, Vp is tracked by a particle filter. Existing Vp based
lane detection algorithms detect either a single [5]–[7] Vp or a
few [8]–[11] Vps. While single Vp based algorithms are based
on only the linear lane model, multiple Vp based algorithms
utilize a non-global iterative approach to detect multiple Vps.

In [12], estimating the horizon line from stereo vision is
proposed. This algorithm uses a 3D input and, independent of
the lane markings in the image, can detect the horizon line
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robustly and accurately. Based on the detected horizon line
from the stereo vision, Vpx (the horizontal position of Vp)
can be detected more robustly and accurately. Furthermore, the
computational complexity of the Vp detection algorithm would
also decrease, since the 2D Vp detection problem could be
reduced into a 1D detection problem. However, the algorithm
described in [12] still has limitations. A single horizon line
in the complete image restricts the algorithm to a flat road
assumption.

In [13] and [14], a ridge detector as a feature extractor
followed by a modified sequential RANSAC is used, where a
reliable feature extractor can improve the overall system per-
formance greatly. In [15], a compositional hierarchical model
is used to remove hard constrains on the lane geometry as
imposed by lane models such as clothoids and splines. Thus,
the algorithm can detect lanes with a wide range of lane
topologies. The methods mentioned above use a single sensor
as an input. However, by incorporating multiple sensors, more
robust results can be obtained. For instance in [16], information
from multiple sensors such as a Global positioning System
(GPS), Internal Measurement Unit (IMU), Light Detection and
Ranging (LIDAR), and a camera are fused together for lateral
distance measurement. Also, in [17], based on the fusion of
LIDAR and vision data, an optimal-drivable-region and lane
detection system is described, where the proposed algorithm
can handle both structured and unstructured roads.

In this paper, the main purpose of the proposed algorithm
is to detect the painted lane markings on the road, where
the proposed algorithm can be extended to detect both the
painted lane markings and the road boundaries as indicated in
Section VII. The novel elements proposed in this paper include
a global way to estimate Vp using dynamic programming (both
in the horizontal direction (Vpx) and in the vertical direction
(Vpy) for each individual row of the image, utilization of this
Vp curve for multiple curved lane detection on non-flat surfaces,
estimating the change in lateral offset of the car in a global way
(in pixels) and utilizing this lateral offset for Signal to Noise
Ratio (SNR) improvement.

II. EXPERIMENTAL SET-UP AND CALIBRATION

A. Experimental Set-Up

In our stereo camera rig, two Point Grey Flea3 (FL3-GE-
13S2C-CS) cameras have been used. These cameras have
3.75 μm sensors and they can capture up to 1.3 MP images
at 31 fps. Synchronization has been achieved by triggering the
cameras using a pulse width modulation signal (the same signal
for both of the cameras) using an Arduino board. The base line
of the cameras is set to 34 cm. An example set-up is illustrated
in Fig. 1.

B. Disparity Map Estimation

The initial component of the algorithm is the disparity map
estimation [18]. The disparity map estimation, which outputs
the 3D world information, is useful for both extracting the
vertical profile of the road and segmenting it. Although there
are several applicable stereo vision algorithms available in the

Fig. 1. Example experimental set-up.

Fig. 2. Disparity map estimation from stereo images.

literature, only a limited number of algorithms can achieve
good accuracy while working in real-time, such as [19] and
[20]. In this paper, we have used our previously published
algorithm [21] to acquire the disparity map. This algorithm is
suitable for our application due to its good accuracy and high
computational efficiency. In Fig. 2, input stereo images and
their corresponding calculated disparity map are illustrated.

C. v-disparity Map and Roll Angle Correction

In the previous section, 3D world information is extracted by
stereo vision. Then, this information can be used for extracting
the road profile of the road. There are various approaches in the
literature to estimate the road profile. For instance, in [22], the
road model estimation is based on fitting a 2D quadratic road
surface model to the depth map, where outlier elimination is
achieved by a RANSAC based approach. Similar to this ap-
proach, in our previous paper [23], the road model is estimated
by fitting a 2D quadratic road surface model to the depth map,
where outliers are eliminated based on efficiently estimated
surface normals. Quadratic surface fitting is an accurate method
to estimate the road model. Thus, this is mainly adopted for
applications that need high precision, such as for detection of
small obstacles with a height in terms of few centimeters or pot-
hole detection such as we described in our previous paper [24].

Another widely applied method for road model estimation is
the v-disparity map estimation [25]–[27]. The v-disparity map
estimation algorithm creates a histogram of disparities for each
row of the image and then maps them to the 2D v-disparity
map. This can be seen from Fig. 3. In Fig. 3(a), the input image
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Fig. 3. v-disparity map. (a) Input image. (b) Disparity map of the input image.
(c) v-disparity map created using the estimated disparity map.

is shown. In Fig. 3(b), the disparity map of the input image
is shown, and in Fig. 3(c), the estimated v-disparity map is
shown, where the vertical axis of the v-disparity map is the row
number and the horizontal axis of the v-disparity map is the
accumulated disparity values.

In the Euclidean coordinate system, the road can be modeled
with a road surface model, where x and z are the coordinate
variables for estimating y [22]. When the roll angle is zero and
the road is assumed to be flat in the x-axis, the road model can
be defined by only z (distance) vs. y (height). A point in the
disparity domain [u, v, d], can be converted to a point in the
Euclidean domain [x, y, z] with the following equations [28]:

z =
f.bs
d

, x =
u.z

f
, y =

v.z

f
(1)

where f is the focal length, bs is the base line, v is the vertical
coordinate of the pixel, u is the horizontal coordinate of the
pixel, d is the disparity, and [x, y, z] is the coordinate of the
pixel in Euclidean space (the origin of the image coordinate
system is set to the centre of the image). From the equations
above, it can be seen that the disparity (d) is inversely propor-
tional to the distance (z) and v is directly proportional to y.
Thus, the road profile can be estimated using the v-disparity
map (d vs. v), which corresponds to estimating (z vs. y) in
the Euclidean domain, where the transformation between these
domains is not linear.

The main advantage of using the v-disparity map is to reduce
the road model estimation from 2D quadratic surface estimation
into line estimation. This greatly reduces the computational
complexity. However, it assumes all the road pixels on the same
row of the disparity map have the same or similar disparity
values. This means that the roll angle needs to be zero, where
the roll angle is one of the extrinsic camera parameters (camera
height (h), pitch angle (θ), yaw angle (ψ) and roll angle (γ)).
In Fig. 4, extrinsic camera parameters are illustrated.

Many state of the art road model estimation algorithms [29]
only estimate the road profile in the z-axis while assuming the
road profile in the x-axis is linear and the roll angle is zero.
Since, the roll angle does not change significantly over time
(not more than a few degrees), this is a fair assumption for
calibrated cameras. For instance, many available data-sets such
as KITTI data-sets are already calibrated and there is no need

Fig. 4. Extrinsic camera parameters, where camera height h, pitch angle θ,
yaw angle ψ, and roll angle (γ) are illustrated.

for roll angle estimation for v-disparity map based road model
estimation. However, the experimental set-up used in this paper
is manually installed onto the vehicle using air-suction pads,
as can be seen in Fig. 1, and a large amount of roll angle can
be introduced due to this initial installation. Although the roll
angle does not change significantly over time, the roll angle
introduced during camera installation onto the vehicle needs to
be estimated as a part of the calibration process.

For the reasons discussed above, while estimation of other
extrinsic camera parameters is not necessary, the roll angle
needs to be estimated for the initial frame to minimize distortion
on the v-disparity map due to the roll angle introduced during
the camera installation. Thus, the roll angle is only estimated
in the first frame and the same roll angle is used for the rest
of the video sequence. In this paper, the roll angle is estimated
by fitting a plane (d(r, c) = p1 + p2.c+ p3.r) to a small patch
from the near field in the disparity map, where d stands for
the disparity value, r stands for the row value in the disparity
image, c stands for the column value in the disparity map, and
p1, p2, and p3 are the estimated parameters of the plane. The
reason a patch from the near field is used rather than a patch
from the far field is it is less likely to appear on an obstacle.
Then, since tan(γ) = δr/δc, the roll angle is calculated as
γ = a tan(−p2/p3). Using the estimated roll angle, both the
input image and the disparity map are rotated using the affine
transform. A high roll angle introduced by manually installing a
stereo camera onto a vehicle can introduce high distortion. With
the roll angle correction, it is seen that the algorithm can remove
this distortion from the v-disparity map and create a better
v-disparity map. In Fig. 5(a), the original road image is shown.
In Fig. 5(b), the disparity map of the image is shown and the
patch used for the roll angle estimation is depicted by the black
box. In Fig. 5(c), the rotated road image is shown. In Fig. 5(d),
the rotated disparity is shown. In Fig. 5(e), the v-disparity map
of the original image is shown and, in Fig. 5(f), the v-disparity
of the rotated disparity map is shown. As is seen from
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Fig. 5. Roll angle correction. (a) Input image. (b) Disparity map of the input
image. The patch used for the roll angle estimation is depicted by the black
box. (c) Road image after roll angle correction. (d) Disparity map after roll
angle correction. (e) v-disparity map of the original image. (f) v-disparity map
after roll angle correction.

Fig. 6. Example road image with a lack of lane painting in the near field [30].

Fig. 5(e) and (f), after the roll angle correction, the v-disparity
map becomes sharper. Thus, the vertical profile of the road can
be estimated more accurately and the road can be segmented
more precisely.

III. DENSE AND GLOBAL VANISHING POINT ESTIMATION

A. Energy Minimization Based on Dynamic Programming

Traditionally, for the Vpx estimation of curved lanes, algo-
rithms segment the image into a few horizontal image bands
and, iteratively, detect Vpx of the bands from the bottom band
to the upper bands (assuming the road is flat and, therefore, Vpy

is the same for all the bands). However, this approach is not
global and, while estimating Vpx of the current band, the algo-
rithms completely ignore the information supplied in the upper
bands. This non-global approach may lead to misdetection. For
example, misdetection will occur if there is a higher level of
noise in the near field or lack of lane painting. An example of
such a case is demonstrated in Fig. 6, where there is no lane
painting in the near field. However, there is enough information
in the complete image to detect the lanes.

In this section, an optimization algorithm based on dy-
namic programming is described. In the proposed algorithm,
energy minimization using dynamic programming is utilized

twice (in this section while optimizing v-disparity map and in
Section III-D while optimizing Vpx accumulator).

In the proposed algorithm, Vp is optimized globally by mini-
mizing the energy function in equation (2) (Please note that, the
v-disparity map and the vpx accumulator are multiplied by −1
for the sake of being consistent with literature and “minimize”
energy instead of “maximize”). The data term, Edata, penalizes
the disagreement in Vp. In other words, it depends on the total
vote each accumulator gets. The road profile can be assumed
to be piecewise smooth. Thus, Vp should also be piecewise
smooth. The smoothness term,Esmooth, penalizes the change in
Vp and ensures smoothness, where λ is a smoothness constant

E(r) = Edata(r) + λEsmooth(r). (2)

The first stage in which dynamic programming [31] has been
used is in optimizing the v-disparity map to extract the vertical
profile of the road. Dynamic programming has been used to
search a path in the v-disparity map which starts from the
right and goes to the left (starting from the left would also
give exactly the same result). Since the upper rows are further
away from the camera, they should have either a decreasing
disparity value or the same disparity value (the input disparity
map does not have sub-pixel accuracy). Thus, only this pattern
is searched.

The v-disparity has two axes, r (row number) and d
(disparity). Let m(r)d be a value on the v-disparity map with
a position of row number of r and disparity of d. Then,
equation (2) can be solved iteratively (column by column in the
v-disparity, starting fromd=dmax to d=1). In the first iteration,
there is no Esmooth. Thus, E = Edata and equation (2) can be
estimated as

E(r)d=dmax = m(r)d=dmax. (3)

Please note that r is variable and E(r)d=dmax has a different
value for each r. Then, for the following iterations, E can be
estimated based on previous iterations as:

E(r)d = m(r)d +
range−
min
τ=0

[E(r + τ)d+1 + λ · τ ] . (4)

While moving through the upper rows of the image, z
(distance) of the road should increase. Since the disparity (d)
is inversely proportional to the distance (z), while moving
through the upper rows of the image, the disparity value should
be either the same or decreasing. Thus, while optimizing the
v-disparity map, the range in equation. (4) is set to [−7, 0].
In each iteration (d is decremented and the v-disparity map is
processed column by column), index values of the minimum
(which gives direction information) are saved into a buffer
with the same size of v-disparity map (shown by the arrows
in Fig. 7 and there is a different index for each r). Then, once
E(r) is calculated for the final column which corresponds to
E(r)d=1 (depicted by the brown line in Fig. 7), a minimum
is selected (depicted by the red dot). Then, the algorithm
backtracks along the path starting from the last column to the
first column by using previously recorded directions (in Fig. 7,
the tracked path is illustrated by green arrows). In this way,
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Fig. 7. Vertical road profile estimation using dynamic programming on the
v-disparity map, where indexes saved into a buffer are illustrated by the arrows.
When the global minimum is estimated in the last iteration, depicted by the red
dot at the end, the algorithm estimates the path by following the indexes saved
previously into a buffer. For instance, in the illustrated figure, the algorithm
followed indexes indicated by the green arrows.

dynamic programming searches all possible paths efficiently
with connectivity restriction and the resultant path would have
energy as described in equation (2).

In this algorithm, if the far field is occluded, due to the
smoothness term in equation (2), the estimated path would have
a flattened region at the end. Thus, the unreliable area in the far
field can be estimated. Once this region is removed from the
estimated Vpys, the 1D output (a Vpy for each row, i.e. the blue
line in Fig. 7) is fitted to a quadratic equation. The advantages of
the fitting stage include the estimation of the road profile at the
far field and reducing the number of the output parameters from
a few hundred (depends on the image resolution) to a few. Thus,
tracking in the time domain would be much more efficient.

B. Horizon Line Calculation for Each Row of the Image

The horizon line (Vpy) estimation is an important step for
Vp detection. Some algorithms assume it is fixed and can
be estimated by camera parameters [8] (ignoring the camera
shakes) and some algorithms estimate a single horizon line [6].
For a flat road, a single horizon line can be estimated. However,
for a non-flat road, the horizon line is continually changing
according to the elevation of the road. [25], and [32] described
a solution to the pitch angle estimation based on stereo vision
which is essentially the same as estimating the horizon line for
a flat road. In this section, estimating the horizon line for each
row of the image for non-flat roads is proposed. Projection of
the flat road to the v-disparity map is a straight line since the
disparity of the road should decrease linearly and the road pro-
file in this case can be estimated by using straight line detectors
such as the Hough transform. However, for a non-flat road, the
projection of the road is not a straight line (for example, it can
be modeled with a quadratic model). The approach taken in
this paper is to estimate the horizon line by taking two points
from the boundaries of a band (their disparity values are already
estimated using dynamic programming as in Section III-A) and,
since they are close to each other, the change in elevation is
small and that piece of the road can be assumed to be flat. By
using these two points, a line equation can be calculated and

Fig. 8. Estimation of a horizon line for an image section based on a known
vertical road profile.

the cross section of this line and the column on the v-disparity
map which has 0 disparity value is the horizon line for that
section of the road. After calculating the horizon line for this
section, another 2 points are taken which are shifted one row
above and the same process is applied to estimate a horizon
line for this section. This process is iteratively calculated until
the last estimated row of the road (see Fig. 8). Alternatively
a derivative can be used to estimate the line equation of the
locally planar surface. However, in this paper, the shifting band
approach is preferred, since the shifting band approach is used
in Vpx estimation with known boundaries which will be further
discussed in Section III-C.

C. Forming Accumulator for Vpx

Vp is composed of two values, Vpx and Vpy . In the previous
sections, Vpy is already estimated for each individual row of
the image. The initial step of the proposed approach is to take
a segment from the near field of the image and to form an
accumulator for Vpx. Then, all the edge points are voted to
this accumulator according to each edge point’s orientation and
position. This initial step (forming the 1D Vpx accumulator) is
similar to the method used in our previous paper [8]. In this
work, instead of using a fixed horizon line, it is estimated by
relying on the 3D information acquired by stereo vision.

The proposed approach then shifts the current band slightly
up and creates another vanishing point accumulator. Computa-
tional efficiency is achieved by adding the edge point’s votes
which appear one row above the current band to the initially
calculated accumulator and subtracting the edge point votes
which appear on the bottom row of the current band from the
initially calculated accumulator.

Furthermore, the far field of the road may contain a higher
curvature. So, thinner bands are desirable for the upper bands
of the image. Formation of thinner bands is achieved during
the shifting process by subtracting more than one row from the
bottom of the previous band, while adding only one row to the
top of the previous band. As a result, the initial band to final
band thickness ratio is adjustable.
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Fig. 9. Creating the 2-D Vpx accumulator. (a) Input image. (b) Estimated
feature map after postprocessing (see Section IV for more details). (c) Creating
1-D Vpx accumulators and updating it (after saving the 1-D accumulator into
a 2-D accumulator according to its row number) iteratively for efficiency.
(d) Created 2-D Vpx accumulator, where the optimization result is shown by
a blue line on the accumulator.

By this approach, instead of creating an accumulator from
scratch for every band, the algorithm updates the previous one
by only processing and adding the top row (the vote positions
of the bottom band are already calculated when adding them.
Only subtraction is needed). Once an accumulator is updated
for a band, the algorithm saves it to a 2D accumulator.

This process is demonstrated in Fig. 9. In Fig. 9(a), the
input image is shown. In Fig. 9(b), the extracted feature im-
age is shown (feature map segmentation will be described in
Section IV). In Fig. 9(c), the process of creating the 2D Vpx

accumulator is demonstrated. In Fig. 9(d), the extracted 2D Vpx

accumulator is shown (the blue line in Fig. 9(d) is the estimated
Vpx

s and the estimation method will be introduced in the next
section).

D. Estimating Vpx

The vanishing point can be described as the cross section
point between the tangent line of the lane and the horizon line.
Thus, if the road model is a polynomial with an order of n, then,

the projection of this road model should also be the same order
polynomial, as shown in

V px(r) = u(r)− d

dr
u(r) · (r −Hz) (5)

where u(r) is the equation of the lane model. Thus, we can
assume the vanishing point is changing gradually instead of
having sudden jumps. In previous sections, the 2D Vpx accu-
mulator has already been constructed. Similar to Section III-A,
this 2D accumulator can be optimized for a gradually changing
output by dynamic programming to estimate the best path and
acquiring a Vpx for each row. For this purpose, equation (3) and
equation (4) can be rewritten as equation (6) and equation (7),
where the range is set to [−4, 4]

E(Vpx)r=rmax =m(Vpx)r=rmax (6)

E(Vpx)r =m(Vpx)r+
range+

min
τ=range−

[
E(Vpx+τ)r+1+λ · τ

]
.

(7)

For the feature map in Fig. 9(b), the resultant 2D Vpx

accumulator is shown in Fig. 9(d). In Fig. 9(d), a 2D Vpx versus
row position accumulator is demonstrated. The more votes a
cell gets the darker it seems and the blue line on the top of the
figure is the optimization result for this accumulator.

By scanning the images as described in the previous sections,
a series of Vp is estimated and each calculated vanishing point
is estimated as for the row which is in the middle of the
corresponding band. In this way, each Vp is estimated except
the rows under the middle of the first band. However, these rows
are in the near field where the lanes tend to be straight and they
can be estimated as the same as the Vp of the first band.

IV. POST PROCESSING ON EDGE MAP

The feature map used for the lane detection is the edge map.
In this paper, to minimize salt and pepper noise, a variable
kernel size median filter is used. Consequently, the median filter
used has a large size in the near field and its size decreases
directly proportionally to the estimated road disparity value for
each image row (estimated using v-disparity).

For lane detection purposes, edges can be classified into
a few categories: edges on the sky, the obstacles, the lane
markings, the road markings and noise on the road such as
caused by cracks and shadows. Since the vertical profile of
the road is already calculated, this information can be used
to eliminate further noise on the edge map and increase the
SNR before calculating the horizontal profile of the road. Since
some noise such as road cracks, shadows and road markings
(apart from lane markings) appear on the road with the same
disparity as the road, such noise cannot be eliminated by using
the vertical profile of the road. However, most of the edge points
caused by the obstacles and sky can be segmented. This is done
by eliminating the edge points which have different disparity
values (more than a few pixels) from the ones calculated by
dynamic programming for their rows in the v-disparity map.
Especially for the urban environment, this process can dramat-
ically improve the SNR of the edge map, as seen in Fig. 10.
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Fig. 10. Feature map segmentation. (a) Input disparity map. (b) Segmented
disparity map using the estimated vertical profile of the road. (c) Input left
image. (d) Segmented left image using the segmented disparity map as a mask.
(e) Estimated feature map. (f) Segmented feature map using the segmented
disparity map as a mask.

In Fig. 10(a), the calculated disparity map is shown. In
Fig. 10(b), the calculated disparity is segmented for the road.
In Fig. 10(c), the original image is shown. In Fig. 10(d), the
original image is segmented by using the segmented disparity
map. In Fig. 10(e), the original edge map is shown and, in
Fig. 10(f), the edge map is segmented by using the segmented
disparity map.

V. LANE DETECTION USING ESTIMATED DENSE

VANISHING POINT

A. Forming the Likelihood Function

In the previous sections, a series of Vp is estimated. Vp can
give direction and curvature information of the lanes. However,
lateral positions of the lanes still remain unknown. There is only
one unknown variable left to detect for the lane detection. A 1D
accumulator has been formed with a width of 2∗image width.
This approach is similar to the paper presented by [5]. For
each possible value of intersection point (constructed candidate
lane and bottom row of the image), a likelihood value is
calculated by allowing edge points underneath the constructed
lane vote for individual starting points. Each edge point (e)
votes according to the following equation:

V (e) = ∇(e) · cos
(
θe − θVp

)
(8)

where, for each individual edge point, V is the vote, ∇(e) is the
gradient, θe is the angle of the edge point and θVp

is the angle
between the edge point and the vanishing point (in the future,
inclusion of the connectivity is also planned). For the image in
Fig. 11(a), the green area is the segmented road area and only
the edge points in this area are used for voting. The red lines on
Fig. 11(a) are created road patterns for some example starting
points. In Fig. 11(b), the estimated 1D accumulator is illustrated
for the image in Fig. 11(a).

Fig. 11. Creating 1-D accumulators. (a) For an example input image, the
ground plane is illustrated with the green area (excluding obstacles, sky and
occluded areas in the disparity map), and some of the candidate lane markings
are illustrated with red lines. (b) Projection of candidate lane markings to
the 1-D accumulator (the size of this signal is twice of the image width).
(c) One-dimensional signal after plus–minus peak pair selection. (d) Lane
detection result.

B. Peak Pair Selection

Due to the dark-light-dark transition of the lane markings, a
lane marking is projected into a 1D likelihood accumulator as a
plus–minus peak pair. This property can be seen in Fig. 11(b).

To detect these peak pairs, the algorithm initially finds plus
and minus peak points and, secondly, for each plus peak point,
finds minus peak points within a range and creates a Dirac
function at the middle of the peak-pair in another accumulator.
This process can be seen in Fig. 11. For the initial accumulator
in Fig. 11(b), a new accumulator is created for peak pairs,
as is seen in Fig. 11(c). Then, lateral offsets of the lanes are
selected from this new accumulator. Starting from the highest
peak, the algorithm eliminates all other peaks within the range
(±1 m) and, then, detects the next highest peak from the
signal and eliminates all other peaks within the range (±1 m).
The algorithm iterates until the detected peak is lower then
the selected threshold. The detected lanes for Fig. 11(b) are
illustrated in Fig. 11(d).

C. 1D Signal Noise Reduction

The proposed algorithm can detect multiple lanes. However,
compared to the lane in which the vehicle is traveling, the lanes
further from the vehicle are harder to detect, especially when
these lanes are dashed. To detect multiple lanes consistently,
a noise reduction step is applied. In this paper, via the estimated
Vps, the lane detection is reduced to a 1D problem. Let the
noise-free signal be x(n) and the estimated signal be

Si(n) = x(n) + w(n) (9)
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TABLE I
DETECTION RESULTS OF THE PROPOSED ALGORITHM

where w(n) is white noise. For instance, w(n) can be artifacts
on the road which are directed to the Vp but, however, do
not consistently appear on consecutive frames. If the road
thicknesses are the same for two consecutive frames, the noise-
free signal for frame i − 1 would be x(n− L) where L is the
change in lateral offset. Thus, the estimated signal for frame
i− 1 can be defined as in

Si−1(n) = x(n− L) + w(n). (10)

Thus, the change in lateral offset (L) between two consec-
utive frames can be estimated by applying cross-correlation
between these two signals via equation (11). In this way, before
detecting the lanes, the lateral offset change can be estimated

ri,i−1(k) =

N∑

n=0

Si(n) · Si−1(n+ k). (11)

The probability density function (PDF) of the change in
lateral offset (L) is then estimated by normalizing ri,i+1(k) for
the range of k

PDFi,i−1(k) =
ri,i−1(k)

T
(12)

where

Ti,i−1(k) =

20∑

k=−20

ri,i−1(k). (13)

Finally, signal alignment can be achieved by convolving PDF
of L with the next signal. For random noise reduction (improve-
ment in SNR), a few signals for a few consecutive frames are
iteratively aligned and added together as

STi(n) = Si(n) + Si−1(n) ∗ PDFi,i−1. (14)

VI. EXPERIMENTAL RESULTS

The proposed algorithm is compared with our previously
published lane detection algorithm described in [8] (excluding
the tracking step), where lanes are detected based on vanishing
point estimation. To quantify the performance of the algorithm,
we first tested the lane detection ratio.

To quantify the robustness of the system, the detection ratio
of the algorithm is also estimated on sample sequences from
KITTI datasets [33], and from the video sequences recorded
by our camera and compared with [8]. Detailed results are
shown in Tables I and II (only the closest lanes are taken into

TABLE II
DETECTION RESULTS OF [8]

account in this table and detection rates on these sequences are
subjectively estimated).

Sample detection results are illustrated in Figs. 12 and 13
(a sample video sequence will also be available at http://
ieeexplore.ieee.org). In Fig. 12, the first four rows consist of
results from the KITTI data-sets, where lane detection results
are demonstrated under dense traffic and shadows. In Fig. 12,
the second two rows consist of detection results from the video
sequences recorded by our experimental set-up, where lane
detection results are demonstrated for the cases when there are
no road markings, when the vehicle is on the bridge with a
vertical curve, when the vehicle is entering and leaving under
a bridge, when there is only one painted lane, when there is
saturation in the image due to exposure time adjustment after
leaving under a bridge, and when there are road markings.
Failure cases are demonstrated in the last two figures, where
in the first one, the lane edges disappear due to the image
saturation and cause the algorithm to misdetect lanes, and in the
second one the algorithm detected the road marking instead of
the lane marking. Road markings are also light stripes parallel
to the vanishing point. Thus, they can cause the algorithm to
fail. In the future, adding a tracking step to the algorithm is
planned to be able to cope with such cases.

In Fig. 13, detection results under dense shadow are shown,
where estimated feature maps (on the left) and the resultant
detection results (on the right) are shown side by side. In
this figure, the input video sequence is recorded with a single
camera. Thus, a fixed horizon line is manually selected and
given to the algorithm as an input. To estimate the feature map,
the Sobel edge detector with a threshold of 80 is used. Although
a relatively higher threshold can be used, as can be seen from
the figure on the top left corner, almost all lane feature points
are eliminated under shadow. In this sequence, the proposed Vp

detection itself only failed in 4 frames, resulting detecting lanes
(both left and right) with incorrect shapes and 29 lane markings
are misdetected when only ego lane markings are considered
(out of 2092 frames).

As stated by the survey paper [3], there are no ground
truth data-sets available for lane detection and there is a lack
of accepted test protocols. Thus, many lane detection papers
reported their results only qualitatively. For this reason, the
detection of multiple lane markings is evaluated qualitatively.
To do so, the intersection point between the detected lanes and
the bottom row of the image are plotted for each frame, where,
if there is an incorrect detection, a sudden jump is expected.
The inputs of Fig. 14(a)–(c) are recorded using a stereo vision
camera, where the input of Fig. 14(d) is recorded with a
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Fig. 12. Experimental results using video sequences recorded by stereo vision cameras, where the top four rows consist of detection results using the KITTI data
set as the input and the bottom two rows consist of detection results using video sequences recorded by our stereo vision camera rig.

Fig. 13. Experimental results using a video sequence recorded by a single camera, where sample detection results are demonstrated under dense shadow. For the
input frames, the estimated feature maps are shown on the left, and the lane detection results using these feature maps are shown on the right.

single camera (3D input is not available). In Fig. 14(a), robust
results are demonstrated for multiple lane detection under dense
traffic. In this figure, there are also incorrect detections for the

ego-lane. This error is due to the consistent artifact on the road
with dark-light-dark transition. In Fig. 14(b), while ego-lane is
separated with painted lanes, the other lane is separated with
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Fig. 14. The plots for intersection between the detected lane markings and the bottom row of the image for four different sequences are illustrated, where the
example incorrect detections are illustrated with red ellipses. The inputs of (a), (b), and (c) are recorded with a stereo vision camera, where the input of (d) is
recorded with a single camera.

only a curb. Apart from the dark-light-dark transition, curbs
have similar properties to the lanes (curbs are also oriented
to the Vp and they are not very much higher than the road).
Although detecting road boundaries is included in the future
work (See Section VII for details), currently curbs are consid-
ered as incorrect detections. The input of Fig. 14(d) is recorded
with a single camera (3D input is not available). Thus the
extrinsic camera parameters are assumed to be known (the
horizon line is manually selected and given as an input to
the algorithm. Also, the road is assumed to be flat). Although
the algorithm detected lanes robustly especially for the ego-
lane, the road barrier next to the road is also incorrectly detected
for many frames as a lane. The edges of the road barrier are
directed to the Vp and furthermore due to the illumination,
dark-light-light transition can be occurred. Thus, the proposed
algorithm detected the side of the road barrier as a lane. This
sequence was recorded with a single camera and 3D input
was not available. However, it would be possible to eliminate

these errors with using 3D input and segmenting the road
area. With this sequence, the robustness of the algorithm under
dense shadow and the ability to run using a single camera
input is demonstrated, if stereo vision input is not available.
However, since the 3D input would eliminate several assump-
tions and eliminate noise from the objects above the ground,
it is desirable to use this information. Furthermore, the lane
detection is an ADAS application, where it is expected that
many other algorithms would already need 3D input. The
proposed algorithm is implemented both in MATLAB and C
languages. The run-time of the algorithm for a single frame
with a resolution of 1242 by 375 is 2.41 seconds in MATLAB,
and 0.26 seconds in C language (using a single thread with the
Intel I5-5300U CPU). The given run time excludes the disparity
map estimation and the disparity map is assumed to be given as
an input to the algorithm. However, many steps of the algo-
rithm such as dynamic programming are suitable for parallel
processing.
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VII. FUTURE WORK

In this paper, the algorithm searches for dark-light-dark
patterns for the lanes which is a more robust way (compared
to searching for a single boundary) to detect lanes and currently
it can only detect painted lanes. In Fig. 11(a), it can be seen that
there are both lane marking and a road boundary on the right
hand side of the road. This is projected to the 1D likelihood
accumulator, as in Fig. 11(b), as peaks. In that position, there
is a plus peak just after the plus–minus peak pair, where the
plus–minus peak pair is due to the lane marking and the plus
peak just after this peak pair is due to the road boundary. If
there were not any painted lane markings, there would be only
a positive peak. To detect this road boundary, it is possible to
modify the peak pair selection in an ad-hoc manner. Such as,
if no lane is detected on either side of the road, the algorithm
should also search for the single high peaks. Thus, the algorithm
would be able to detect painted lanes robustly by using the
dark-light-dark pattern of the lanes and, at the same time, it
would be able to detect road boundaries, when painted lane
markings are not available. Currently, the algorithm detects
lanes accurately and robustly. However, further improvement
is possible by applying tracking. For this purpose, it is also
planned to fit estimated Vpx values and Vpy values of a frame
into spline models and track estimated control points. Thus,
tracking lanes would be possible by tracking a few parameters.

VIII. CONCLUSION

In this paper, a novel lane detection algorithm is presented.
The main novel elements of this paper include dense vanishing
point estimation, the use of estimated vanishing points to detect
lanes, estimating the change in lateral offset of the car in a
global way and utilizing this estimation for SNR improvement.
The Vp contains the global information of the road image.
Hence, Vp based lane detection algorithms are quite insensi-
tive to interference and they demonstrate robust results. The
algorithm described in this paper, proposes a global approach
for dense vanishing point estimation and it can detect multiple
lanes with both horizontal and vertical curvature. Experimental
results show that the proposed algorithm works robustly and
accurately even in dense traffic. The run-time of the algo-
rithm for a single frame with a resolution of 1242 by 375 is
2.41 seconds when implemented in MATLAB, and 0.26 sec-
onds when implemented in C language (using a single thread
with the Intel I5-5300U CPU). Furthermore, due to the flexi-
bility of the described system, the user can simply plug a stereo
camera rig (experimental set-up) onto a vehicle without concern
about any of the external camera parameters (i.e. camera height,
pitch, yaw or roll angle).
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