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Abstract— Existing road pothole detection approaches can be
classified as computer vision-based or machine learning-based.
The former approaches typically employ 2D image analysis/
understanding or 3D point cloud modeling and segmentation
algorithms to detect (i.e., recognize and localize) road potholes
from vision sensor data, e.g., RGB images and/or depth/disparity
images. The latter approaches generally address road pothole
detection using convolutional neural networks (CNNs) in an
end-to-end manner. However, road potholes are not necessarily
ubiquitous and it is challenging to prepare a large well-annotated
dataset for CNN training. In this regard, while computer
vision-based methods were the mainstream research trend in
the past decade, machine learning-based methods were merely
discussed. Recently, we published the first stereo vision-based
road pothole detection dataset and a novel disparity trans-
formation algorithm, whereby the damaged and undamaged
road areas can be highly distinguished. However, there are no
benchmarks currently available for state-of-the-art (SoTA) CNNs
trained using either disparity images or transformed disparity
images. Therefore, in this paper, we first discuss the SoTA
CNNs designed for semantic segmentation and evaluate their
performance for road pothole detection with extensive experi-
ments. Additionally, inspired by graph neural network (GNN),
we propose a novel CNN layer, referred to as graph attention
layer (GAL), which can be easily deployed in any existing
CNN to optimize image feature representations for semantic
segmentation. Our experiments compare GAL-DeepLabv3+, our
best-performing implementation, with nine SoTA CNNs on three
modalities of training data: RGB images, disparity images, and
transformed disparity images. The experimental results suggest
that our proposed GAL-DeepLabv3+ achieves the best overall
pothole detection accuracy on all training data modalities. The
source code, dataset, and benchmark are publicly available at
mias.group/GAL-Pothole-Detection.
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I. INTRODUCTION

APOTHOLE is a large structural road failure [1]. Its
formation is due to the combined presence of water and

traffic [2]. Water permeates the ground and weakens the soil
under the road surface while traffic subsequently breaks the
affected road surface, resulting in the removal of road surface
chunks [3]. Road potholes, besides being an inconvenience,
are also a safety hazard because they can severely affect
driving comfort, vehicle condition, and traffic safety [3].
Therefore, frequently inspecting and repairing road potholes is
a crucial road maintenance task [1]. Currently, road potholes
are regularly detected and reported by certified inspectors [4].
This manual visual inspection process is tedious, danger-
ous, costly, and time-consuming [3]. Moreover, manual road
pothole detection results are qualitative and subjective as
they depend entirely on individual inspectors’ experience [5].
Consequently, there is an ever-increasing need for automated
road pothole detection systems, especially ones developed
based on state-of-the-art (SoTA) computer vision and machine
learning techniques.

In [3], we published the world’s first multi-modal road
pothole detection dataset, containing RGB images, subpixel
disparity images, and transformed disparity images. An exam-
ple of these three modalities of road vision data is shown
in Fig. 1. It can be observed that the damaged road areas are
highly distinguishable after disparity transformation, making
road pothole detection much easier. However, there lacks a
benchmark for road pothole detection based on SoTA semantic
segmentation convolutional neural networks (CNNs), trained
on spatial vision data, e.g., disparity/depth images, other than
road RGB images. Therefore, there is a strong motivation
to provide a comprehensive comparison for SoTA CNNs
w.r.t. different modalities of road vision data. Additionally,
some semantic segmentation approaches [6], [7] combine
CNNs with graph models, such as conditional random fields
(CRFs), to improve the image segmentation performance. Such
CRF-based approaches are nevertheless very computationally
intensive, and thus they can only be deployed on the final
semantic probability map. Therefore, a graph attention layer
that can produce additional weights based on the relational
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Fig. 1. An example of the multi-modal road vision data provided in [3]:
(a) left road image; (b) right road image; (c) dense subpixel disparity image
estimated from (a) and (b) using the stereo matching algorithm presented
in [8]; (d) transformed disparity image yielded from (c) using the disparity
transformation algorithm introduced in [3].

inductive bias to refine image feature representations is also a
research topic that requires more attention.

We introduce a novel graph model-based semantic seg-
mentation CNN for road pothole detection, of which the
effectiveness is demonstrated with extensive experiments. The
contributions of this paper are summarized as follows:

• A benchmark of all SoTA semantic segmentation CNNs
trained on the three aforementioned modalities of vision
data for road pothole detection;

• Graph attention layer (GAL), a novel graph layer inspired
by graph neural network (GNN) [9], which can be
easily deployed in any CNN to optimize image feature
representations for semantic image segmentation;

• A novel CNN, referred to as GAL-DeepLabv3+, incor-
porating the proposed GAL in DeepLabv3+ [10].
It outperforms SoTA CNNs for road pothole detection.

The remainder of this paper is structured as follows:
Section II reviews the SoTA road pothole detection approaches
and semantic segmentation CNNs. Section III introduces our
proposed methodology. In Section IV, we compare the perfor-
mance of our proposed method with the SoTA CNNs reviewed
in Section II. Section V discusses the implications and prac-
tical application of this work. Finally, Section VI summarizes
the paper and provides recommendations for future work.

II. LITERATURE REVIEW

A. Road Pothole Detection

The existing road pothole detection methods can be cate-
gorized into two groups: explicit programming-based [3] and
machine learning-based [4].

Explicit programming-based methods detect potholes via
either two-dimensional (2D) image analysis/understanding or
three-dimensional (3D) road point cloud modeling and seg-
mentation [3]. As an example, a Microsoft Kinect sensor
is used to capture road depth images [11], which are then
segmented using image thresholding method for road pot-
hole detection. In order to ensure the applicability of image

thresholding method, the Microsoft Kinect sensor has to be
mounted as perpendicularly as possible to the road surface as
it requires uniformly distributed background (undamaged road
areas) depth values [11]. The 3D road point cloud modeling
and segmentation approaches [12] typically interpolate a road
surface point cloud into an explicit mathematical model, e.g.,
a quadratic surface. The road potholes can then be effectively
detected by comparing the difference between and actual and
the interpolated 3D road surfaces. Recently, [3] introduced
a hybrid road pothole detection system developed based on
disparity transformation and modeling. The disparity transfor-
mation algorithm can not only estimate the stereo camera’s
roll and pitch angles but also transform the disparity image
into a quasi-inverse perspective view, where the background
disparity values become very similar [13]. This algorithm does
not require the depth sensor’s optical axis to be perpendicular
to the road surface, greatly enhancing the robustness and
adaptability of depth/disparity image segmentation algorithms.
Subsequently, a quadratic surface is fitted to the disparities
in the undamaged road regions for accurate road pothole
detection.

Machine learning-based methods generally train CNNs on
well-annotated vision data for end-to-end road pothole detec-
tion [14]. Any general-purpose semantic/instance segmentation
CNN can be easily applied to detect road potholes from RGB
or disparity/depth images. For example, mask region-based
CNN (R-CNN) is employed in [15] to detect road potholes
from RGB images. In [16], DeepLabv3+ [10] is utilized to
segment RGB images for road pothole detection. In [4], five
single-modal and three data-fusion CNNs are compared in
terms of detecting road potholes from RGB and/or transformed
disparity images, where an attention aggregation framework
and an adversarial domain adaptation technique are used to
boost the CNN performance.

B. Semantic Segmentation Networks

A fully convolutional network (FCN) [17] is an end-to-end,
pixel-to-pixel semantic segmentation network. It converts all
fully connected (FC) layers to convolutions. An FCN typically
consists of a downsampling path and an upsampling path. The
downsampling path employs a classification network as the
backbone to capture semantic/contextual information, while
the upsampling path fully recovers the spatial information
using skip connections. FCN-32s, FCN-16s, and FCN-8s are
three main variants having different upsampling strides to
provide coarse, medium-grain, and fine-grain semantic image
segmentation results, respectively. In the paper, FCN-8s is used
for road pothole detection.

U-Net [18] was designed based on FCN. It was extended to
work with fewer training samples while yielding more accurate
segmentation results. U-Net consists of a contracting path and
an expansive path. The contracting path has a typical CNN
architecture of convolutions, rectified linear units (ReLUs),
and max pooling layers. At the same time, the expansive path
combines the desired visual features and spatial information
through a sequence of upconvolutions and concatenations.
The skip connection between the contracting path and the
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expansive path helps restore small objects’ locations better.
Compared with FCN, U-Net has a large number of feature
channels in upsampling layers, allowing it to propagate context
information to the layers with higher resolution.

SegNet [19] has an encoder-decoder architecture. The
encoder network employs VGG-16 [20] to generate high-level
feature maps, while the decoder network upsamples its input
to produce a sparse feature map, which is then fed to a softmax
classifier for pixel-wise classification. Therefore, SegNet has
a trainable decoder filter bank, while an FCN does not. The
network depth k determines the image downsampling and
upsampling by an overall factor of 2k × 2k .

DeepLabv3+ [10] is developed based on DeepLabv1 [21],
DeepLabv2 [22] and DeepLabv3 [23]. It combines the advan-
tages of both the spatial pyramid pooling (SPP) module and
the encoder-decoder architecture. Compared to DeepLabv3,
it adds a simple yet efficient decoder module to refine the
semantic segmentation. Additionally, it employs depth-wise
separable convolution to both atrous SPP (ASPP) and
decoder modules, making its encoder-decoder structure much
faster.

Although ASPP can generate feature maps by concatenating
multiple atrous-convolved features, the resolution of these
maps is typically not dense enough for applications requiring
high accuracy [22]. In this regard, DenseASPP [24] was
developed to connect atrous convolutional layers (ACLs) more
densely. The ACLs are organized in a cascade fashion, where
the dilation rate increases layer by layer. Then, DenseASPP
concatenates the output from each atrous layer with the
input feature map and the outputs from lower layers. The
concatenated feature map is then fed into the following layer.
DenseASPP’s final output is a feature map generated by
multi-scale and multi-rate atrous convolutions. DenseASPP is
capable of generating multi-scale features that cover a larger
and denser scale range without significantly increasing the
model size.

Different from the CNNs mentioned above, the pyramid
attention network (PAN) [25] combines an attention
mechanism and a spatial pyramid to extract accurate visual
features for semantic segmentation. It consists of a feature
pyramid attention (FPA) module and a global attention
upsample (GAU) module. The FPA module encodes the
spatial pyramid attention structure on the high-level output and
combines global pooling to learn better feature representations.
The GAU module provides global context as a guidance for
using low-level visual features to select category localization
details.

As discussed above, the recent CNNs with encoder-decoder
architectures typically perform bilinear upsampling in the last
decoder layer for final pixel-wise region prediction. However,
simple bilinear upsampling limits the recovered pixel-wise
prediction accuracy because it does not take pixel predic-
tion correlations into account [26]. DUpsampling was there-
fore introduced to recover the pixel-wise prediction from
low-resolution CNN outputs by exploiting the redundancy in
the semantic segmentation label space. It allows the decoder
to downsample the fused visual features to the lowest feature
map resolution before merging them. This approach not only

reduces the decoder computation cost but also decouples fused
feature resolution from the final prediction.

Although most deep CNNs have achieved compelling
semantic segmentation results, large networks are generally
slow and computationally intensive. ESPNet [27] was designed
to resolve this issue. An efficient spatial pyramid (ESP)
module consists of point-wise convolutions to help reduce the
computational complexity, and a spatial pyramid of dilated
convolutions to resample the feature maps to learn the repre-
sentations from the large effective receptive field. The ESP
module’s large effective field introduces gridding artifacts,
which are then removed using hierarchical feature fusion.
A skip-connection between the input and output is also added
to improve the information flow.

Unlike the above-mentioned CNNs, gated shape CNN
(GSCNN) [28] leverages a two-branch architecture. The reg-
ular branch can be any backbone CNN, while the shape
branch processes shape information in parallel to the regular
branch through a set of residual blocks and gated convolutional
layers. Furthermore, GSCNN uses higher-level activations in
the regular branch to gate the lower-level activations in the
shape branch, effectively reducing noise and helping the shape
branch to focus only on the relevant boundary information.
This, in turn, efficiently improves the performance of the
regular branch. GSCNN then employs an ASPP to combine
the information from the two branches in a multi-scale fashion.
The experimental results demonstrate that this architecture
can produce sharper predictions around region boundaries and
can significantly boost the semantic segmentation accuracy for
thinner and smaller objects.

Graph models can produce useful representations for pixel
relations, which greatly helps to improve the semantic segmen-
tation performance. As discussed in Section I, the CRF-based
approaches are computationally intensive, and can only be
deployed on the final semantic probability map. To solve this
disadvantage, we propose GAL, which is capable of produc-
ing additional weights based on the relational inductive bias
to refine image feature representations in a computationally
efficient manner.

III. METHODOLOGY

The architecture of our introduced semantic segmentation
network for road pothole detection is shown in Fig. 2. An ini-
tial feature is learned from the input image by the backbone
CNN. It is then fed into our proposed GAL to produce a
refined feature, which is concatenated with the input feature
and sent to the following ASPP module.

A. Graph Attention Layer

A graph is commonly defined as a three-tuple G (u,V ,E ),
where u is a global attribute, V = {vk}k=1:Nv is the vertex
set, and E = {(ek, rk, sk)}k=1:Ne is the edge set (rk and
sk represents the index of the receiver and sender vertex,
respectively) [9].

As illustrated in Fig. 3, our proposed GAL consists of
two main components: a feature generator, which generates
the representations of both vertex and edge features, and
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Fig. 2. The overview of our proposed GAL-DeepLabv3+. GAL takes the feature from the backbone as the input and it outputs the refined feature, which
is then concatenated with the input feature and sent to the following ASPP module and the decoder.

Fig. 3. An illustration of our proposed GAL, which utilizes a feature generator and a feature updater to optimize the input feature of size H × W × C and
output the refined feature of size H × W × C �.

a feature updater which updates these two types of feature
representations based on our proposed GNN block. Then,
we implement our GAL in DeepLabv3+ [10] and refer to it
as GAL-DeepLabv3+, as illustrated in Fig. 2. The remaining
subsections detail the feature generator and updater of our
GAL, as well as our GAL-DeepLabv3+, separately.

1) GAL Feature Generator: As shown in Fig. 3, the input
of our GAL is a tensor (feature representation) T of size
H × W × C . T is first converted to a graph G (u,V ,E ),
where V = {vk}k=1:H W C and E = {(ek, rk, sk)}k=1:4H W C

(only four closest neighbors are considered for each vertex).
These are then considered as the vertex and edge features,
respectively. An illustration of the edge feature generation is
shown in Fig. 4, where it can be seen that there exist two
special cases: corners and boundaries. When a given vertex
is at the graph corner, the vertexes at another two corners
are considered to be its neighbors. Moreover, when a given
vertex is on the graph boundary, the vertex itself will be
considered as one of its four neighbors. The generated vertex
and edge feature will then be updated using a simplified
GNN block.

2) GAL Feature Updater: A general full GNN block is
illustrated in Fig. 5. It can be seen that it consists of three

Fig. 4. An illustration of the edge feature generation, where only four closest
neighbors are considered for each vertex. Moreover, when the vertex locates
at a corner or on a boundary, the corresponding special neighbors are marked
with blue and green lines, respectively.

sub-blocks: an edge block, a vertex block, and a global block.
Each full GNN block also contains three update functions φe,
φv , and φu of the following forms [9]:

e�
k = φe(ek, vrk , vsk ,u), (1)

v�
i = φv(ē�

i , vi ,u), (2)

u� = φu(ē�, v̄�,u), (3)
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and three aggregation functions ρe→v , ρe→u , and ρv→u of the
following forms [9]:

ē�
i = ρe→v (E �

i ), (4)

ē� = ρe→u(E �), (5)

v̄� = ρv→u(V �), (6)

where E �
i = {(e�

k, rk, sk)}rk=i,k=1:Ne , V � = {v�
i }i=1:Nv , and

E � = ⋃
i E �

i = {(e�
k, rk , sk)}k=1:Ne .

According to [8], a collection of random variables X =
{xv1, . . . , xvNv } depending entirely on their local neighbors
in the graph are considered to be in a Markov random field
(MRF). Pairwise MRF (pMRF) models are generally used to
represent the vertex relations and infer the vertex posterior
beliefs [29]. A pMRF over a graph is associated with a set of
vertex potentials as well as edge potentials [30]. The overall
distribution is the normalized product of all vertex and edge
potentials [29]:

P(X ) = 1

Z

∏
vi∈V

ϕ(xvi )
∏

(e,r,s)∈E

ψ(xvr , xvs ), (7)

where Z is a normalizer, ϕ represents the vertex potential
of vi , and ψ denotes the edge compatibility between the sender
vs and the receiver vr . Belief propagation (BP) is commonly
used to approximate the posterior belief of a given vertex.
The message m(t)

rs (xvr ) sent from vs to vr in the t-th iteration
is [29]:

m(t)
rs (xvr ) = ϕ(xvs )ψ(xvr , xvs )

∏
k∈N (vs)\vr

m(t−1)
sk (xvs ), (8)

where N (vs) is the neighborhood system of vs . The posterior
belief of a vertex xvi is proportional to the product of the factor
and the messages from the variables, namely

P(t)(xvi ) ∝ ϕi (xvi )
∏

k∈N (vi )

m(t)
ik (xvi ). (9)

It can be found from (8) and (9) that the posterior belief of
xvi is only related to its vertex potential and the edge com-
patibility between vi and its neighbors. Therefore, the global
attribute u in Fig. 5 can be omitted. The simplified GNN block
is shown in Fig. 6. In this paper, each vertex is considered
to have relations with its four closest neighboring vertexes.
(1) and (2) can, therefore, be rewritten as

e�
k = φe(ek, vrk , vsk ), (10)

and

v�
i = φv(ē�

i , vi ), (11)

where the multi-layer perceptron is used for φ. Our fea-
ture updater then produces an updated vertex feature Rv of
size (H W ) × C � and an updated edge feature Re of size
(4H W )×C �. These updated features are then processed by an
FC layer, a multiplication and a reshaping operator, as shown
in Fig. 3, to generate an updated tensor (feature representation)
T � of size H×W×C �, which can be considered as a refinement
of the input tensor T . Considering the balance between the

Fig. 5. An illustration of a full GNN block, which consists of an edge block,
a vertex block and a global block.

Fig. 6. An illustration of our proposed simplified GNN block, which only
consists of an edge block and a vertex block.

performance improvement and the memory cost, we set the
output feature channels to half of the input feature channels,
i.e., C � = 1

2 C .

B. GAL-DeepLabv3+
We implement the developed GAL in DeepLabv3+ [10] and

build a new architecture referred to as GAL-DeepLabv3+,
as shown in Fig. 2. We adopt several residual blocks [31]
as the backbone, and the output feature size from Block5 (the
last block) of the adopted backbone is H

16 × W
16 ×C5. Then, our

GAL takes the feature from Block5 of the backbone as input
and outputs the refined feature, which is then concatenated
with the input feature and sent to the following ASPP module
and the decoder, separately.

IV. EXPERIMENTAL RESULTS AND DISCUSSION

A. Dataset and Experimental Setup

We use our recently published road pothole detection
dataset [3] to compare the performance of the nine SoTA
CNNs mentioned in Section II-B and our introduced
GAL-DeepLabv3+. This dataset contains 55 samples of
RGB images (RGB), subpixel disparity images (Disp), and
transformed disparity images (T-Disp), which correspond to
14 potholes. The image resolution is 800 × 1312 pixels.
The 13th and 14th potholes have only one sample each,
and therefore they are only used for CNN cross-validation.
The remaining 53 samples are divided into 12 sets, which
correspond to 12 different potholes. The sample numbers in
these 12 sets are: 13, 9, 5, 4, 3, 2, 3, 3, 2, 2, 2, and 5.

In our experiments, we employ the 12-fold cross-validation
strategy [32] to quantify the CNNs’ performances, i.e.,
the performance of each CNN is evaluated 12 times. Each
time, a CNN was trained using RGB, Disp, and T-Disp,
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Fig. 7. Examples of the experimental results of the nine SoTA CNNs and GAL-DeepLabv3+: (a) FCN [17]; (b) U-Net [18]; (c) DenseASPP [24];
(d) DUpsampling [26]; (e) GSCNN [28]; (f) SegNet [19]; (g) DeepLabv3+ [10]; (h) PAN [25]; (i) ESPNet [27]; (j) our developed GAL-DeepLabv3+, where
the true-positive, false-positive, and false-negative pixels are shown in green, blue and red, respectively.

separately. To quantify the CNNs’ performances, we compute
the pixel-level precision (Pre), recall (Rec), accuracy (Acc),
F-score (Fsc), and intersection over union (IoU). We compute
the mean value across the 12 sets for each metric, denoted as
mPre, mRec, mAcc, mFsc and mIoU.

Additionally, stochastic gradient descent with momen-
tum (SGDM) optimizer [33] is used for CNN training. The
maximum epoch for the experiments on RGB, Disp, and
T-Disp is set to 150, 100, and 100, respectively. Each network
is trained on two NVIDIA GeForce RTX 2080Ti GPUs.
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Fig. 8. An example of the experimental results of the nine SoTA CNNs without and with GAL embedded: (a) pothole detection results; (b) the corresponding
mean activation maps of the features after the last layers of the encoders.

We also leverage common training data augmentation tech-
niques, such as random flip, rotation, and translation, to further
improve the CNNs’ robustness and accuracy.

Next, we conduct ablation studies in Section IV-B to
demonstrate the effectiveness of our GAL. Then, a road
pothole detection benchmark that provides a detailed perfor-
mance comparison between the nine SoTA CNNs and our
GAL-DeepLabv3+ on the three modalities of training data
is presented in Section IV-C. To further understand how
our GAL improves the overall performance for road pothole
detection, we implement it in all SoTA CNNs and analyze the
feature variation with and without our GAL, as discussed in
Section IV-D.

B. Ablation Study

We adopt DeepLabv3+ [10] as the baseline to conduct
ablation studies because it outperforms all other SoTA CNNs.
It inputs T-Disp because this modality of vision data is most

TABLE I

ABLATION STUDIES: (A) SHOWS THE BASELINE RESULTS; (B) SHOWS

THE RESULTS OF THE BASELINE WITH GAL EMBEDDED; AND

(C) SHOWS THE RESULTS OF THE BASELINE WITH RESNET-101
USED AS THE BACKBONE. THE BEST RESULTS

ARE SHOWN IN BOLD TYPE

informative [4]. Table I shows the results of the ablation study,
where (A) shows the baseline performance, (B) shows the
performance of the proposed approach, and (C) shows the
performance of the baseline with ResNet-101 as the back-
bone (abbreviated as ResNet101-DeepLabv3+). Compared
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Fig. 9. Examples of the experimental results of GSCNN [28] and DeepLabv3+ [10] with and without GAL embedded.

TABLE II

THE ROAD POTHOLE DETECTION BENCHMARK CONDUCTED WITH NINE SoTA CNNs AND OUR PROPOSED GAL-DEEPLABV3+ON THREE MODALITIES

OF TRAINING DATA. THE BEST RESULTS ARE SHOWN IN BOLD TYPE

to ResNet50-DeepLabv3+, our developed GAL-DeepLabv3+
presents a much better performance. One exciting fact is
that our developed GAL-DeepLabv3+ with ResNet-50 as
the backbone performs even slightly better than ResNet101-
DeepLabv3+. This demonstrates the effectiveness of our
proposed GAL.

C. Road Pothole Detection Benchmark
This subsection presents a road pothole detection bench-

mark with quantitative and qualitative comparisons among
nine SoTA CNNs and GAL-DeepLabv3+ trained on the three
modalities of vision data. Some examples of the experimental
results are shown in Fig. 7. It can be observed that the CNNs
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trained on RGB can be easily misled by noise, such as a stain
on the road (see Fig. 7, Example 1). The CNNs trained on Disp
perform slightly better but still produce many false-negative
predictions (see Fig. 7, Example 2). By comparison, the CNNs
trained on T-Disp perform much more robustly. This is due to
that the disparity transformation algorithm makes the damaged
road regions become highly distinguishable [3]. Furthermore,
Fig. 7 shows that our developed GAL-DeepLabv3+ outper-
forms all other SoTA CNNs on all three modalities of vision
data.

Additionally, the quantitative comparisons are given
in Table II, where it can be seen that the mIoU increases
by ∼11-28%, while the mFsc goes up by ∼8-28% when the
CNNs are trained on T-Disp rather than RGB. These results
further validate the effectiveness of the disparity transforma-
tion algorithm, which converts road disparity information into
a more informative format. Furthermore, GAL-DeepLabv3+
outperforms all other SoTA CNNs by ∼6-17% on the mIoU
and by ∼4-13% on the mFsc, when trained on T-Disp.
This demonstrates that GAL can effectively improve the road
pothole detection performance.

D. Further Discussion on GAL

To further understand how GAL improves the CNN’s overall
performance for road pothole detection, we implement it in
each of the nine SoTA CNNs. It should be noted here that
we implement GAL after the encoder’s last layer for each
CNN. The quantitative and qualitative comparisons are given
in Table III and Fig. 8, respectively. It can be observed that
the CNNs with GAL embedded generally perform better than
themselves without GAL embedded.

To explore how GAL refines the feature representations,
we visualize the mean activation maps of the features output
from the encoders’ last layers with and without GAL embed-
ded, as shown in Fig. 8(b). These maps suggest that GAL
can help CNNs concentrate more on the target (road pothole)
areas. We believe this is because GAL can be considered as a
weight modulation operator, which can effectively augment the
activation values in the target areas and reduce the activation
values in the background areas. A typical convolutional layer
can be formulated as follows:

y(x) =
N∑

n=1

wn · x(n). (12)

Now, with GAL embedded, we can formulate this process
as follows:

y(x) =
N∑

n=1

wn ·
(

x̄(n) ·�we

)
, (13)

where �we is obtained from the updated edge features, and
x̄(n) is the updated vertex features from x(n). Based on (12)
and (13), we can conclude that GAL can be considered as an
effective and efficient weight modulation operator, which can
greatly refine the feature representations, thus improving the
CNN’s overall performance for road pothole detection.

TABLE III

THE EXPERIMENTAL RESULTS OF THE SOTA CNNS WITH AND WITHOUT
GAL EMBEDDED. THE BEST RESULTS FOR EACH CNN ARE

SHOWN IN BOLD TYPE

TABLE IV

THE EXPERIMENTAL RESULTS OF GSCNN [28] AND DEEPLABV3+ [10]
WITH AND WITHOUT OUR GAL EMBEDDED ON THE CITYSCAPES [34]

AND ADE20K [35] DATASETS. THE BEST RESULTS FOR

EACH CNN ARE SHOWN IN BOLD TYPE

V. DISCUSSION

Potholes are a common type of road distress. The detection
of other categories of road distresses, such as cracks, typically
requires different kinds of computer vision algorithms. For
example, the SoTA road crack detection algorithms [36]–[38]
commonly leverage image classification CNNs instead of
semantic segmentation CNNs to identify whether an image
patch contains cracks because road cracks cannot be eas-
ily identified from depth/disparity images, and the semantic
segmentation CNN is challenging to retain highly accurate
semantic content for such tiny objects. Furthermore, although
different types of road distress can be recognized and classified
with SoTA object detection algorithms, such as YOLO-v3 [39]
utilized in [40], such road distress detection results can only be
at instance level instead of pixel level. The measurement of a
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road pothole’s volume typically requires pixel-level predictions
instead of a region of interest.

In addition to road pothole detection, our introduced GAL
can also be embedded in CNNs to solve other semantic
image segmentation problems. To demonstrate its feasibility
in other challenging multi-class scene understanding appli-
cations, we train GSCNN [28] and DeepLabv3+ [10] both
with and without GAL embedded on the Cityscapes [34]
and ADE20K [35] datasets. The Cityscapes dataset [34] was
created for semantic urban scene understanding, while the
ADE20K dataset [35] (including diverse scenarios) was cre-
ated for general scene parsing. The qualitative and quantitative
results are given in Fig. 9 and Table IV, respectively. It can be
observed that both CNNs with GAL embedded can produce
more accurate results, where the mIoU increases by ∼4% and
the mFsc increases by ∼3%. These results suggest the general-
izability of our proposed GAL for other challenging semantic
segmentation tasks. Therefore, we believe our proposed GAL
can be easily incorporated into any existing CNN to achieve
SoTA semantic scene understanding performance.

VI. CONCLUSION AND FUTURE WORK

In this paper, we provided a comprehensive study on road
pothole detection including building up a benchmark, develop-
ing a novel layer based on GNN, and proposing an effective
and efficient CNN for road pothole detection. Experiments
verify that our proposed GAL can effectively refine the feature
representations and thus improve the overall semantic seg-
mentation performance. Moreover, the transformed disparity
images can make road potholes highly distinguishable and
benefit all CNNs for road pothole detection. Compared with
the SoTA CNNs, our proposed GAL-DeepLabv3+ achieves
superior performance and produces more robust and accurate
results. We believe that the provided benchmark and our
proposed models are helpful to stimulate further research
in this area. Furthermore, our proposed techniques can also
be employed to solve other general semantic segmenta-
tion/understanding problems. In the future, we will continue
to explore graph-based architectures that can optimize the
feature representations effectively and efficiently for semantic
segmentation.
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