
IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 29, 2020 897

Pothole Detection Based on Disparity
Transformation and Road Surface Modeling

Rui Fan , Member, IEEE, Umar Ozgunalp, Member, IEEE, Brett Hosking, Member, IEEE,

Ming Liu , Senior Member, IEEE, and Ioannis Pitas, Fellow, IEEE

Abstract— Pothole detection is one of the most important
tasks for road maintenance. Computer vision approaches are
generally based on either 2D road image analysis or 3D road
surface modeling. However, these two categories are always used
independently. Furthermore, the pothole detection accuracy is
still far from satisfactory. Therefore, in this paper, we present
a robust pothole detection algorithm that is both accurate and
computationally efficient. A dense disparity map is first trans-
formed to better distinguish between damaged and undamaged
road areas. To achieve greater disparity transformation efficiency,
golden section search and dynamic programming are utilized
to estimate the transformation parameters. Otsu’s thresholding
method is then used to extract potential undamaged road areas
from the transformed disparity map. The disparities in the
extracted areas are modeled by a quadratic surface using least
squares fitting. To improve disparity map modeling robustness,
the surface normal is also integrated into the surface modeling
process. Furthermore, random sample consensus is utilized to
reduce the effects caused by outliers. By comparing the difference
between the actual and modeled disparity maps, the potholes can
be detected accurately. Finally, the point clouds of the detected
potholes are extracted from the reconstructed 3D road surface.
The experimental results show that the successful detection
accuracy of the proposed system is around 98.7% and the overall
pixel-level accuracy is approximately 99.6%.

Index Terms— Pothole detection, computer vision, road sur-
face modeling, disparity map, golden section search, dynamic
programming, surface normal.

I. INTRODUCTION

ROAD potholes are considerably large structural failures
on the road surface. They are caused by contraction and
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expansion of the road surface as rainwater permeates into the
ground [1]. To ensure traffic safety, it is crucial and necessary
to frequently inspect and repair road potholes [2]. Currently,
potholes are regularly detected and reported by certified
inspectors and structural engineers [3]. This task is, however,
time-consuming and tedious [4]. Furthermore, the detection
results are always subjective, because they depend entirely on
personnel experience [5]. Therefore, automated pothole detec-
tion systems have been developed to recognize and localize
potholes both efficiently and objectively.

Over the past decade, various technologies, such as active
and passive sensing, have been utilized to acquire road data
and aid personnel in detecting road potholes [5]. For example,
Tsai and Chatterjee [6] mounted two laser scanners on a digital
inspection vehicle (DIV) to collect 3D road surface data. These
data were then processed using either semi or fully automatic
methods for pothole detection. Such systems ensure personnel
safety, but also reduce the need for manual intervention [6].
Furthermore, by comparing the road data collected over
different periods, the traffic flow can be evaluated and the
future road condition can be predicted [2]. The remainder
of this section presents the state-of-the-art pothole detection
algorithms and highlights the motivation, contributions and
outline of this paper.

A. State of the Art in Road Pothole Detection

1) 2D Image Analysis-Based Pothole Detection Algorithms:
There are typically four main steps used in 2D image
analysis-based pothole detection algorithms: a) image pre-
processing; b) image segmentation; c) shape extraction;
d) object recognition [5]. A color or gray-scale road image
is first preprocessed, e.g., using morphological filters [7],
to reduce image noise and enhance the pothole outline [5], [8].
The preprocessed road image is then segmented using
histogram-based thresholding methods, such as Otsu’s [9]
or the triangle [10] method. Otsu’s method minimizes the
intra-class variance and performs better in terms of separating
damaged and undamaged road areas [9]. The extracted region
is then modeled by an ellipse [10]. Finally, the image texture
within the ellipse is compared with the undamaged road area
texture. If the former is coarser than the latter, the ellipse is
considered to be a pothole [5].

However, both color and gray-scale image segmenta-
tion techniques are severely affected by various factors,
most notably by poor illumination conditions [11]. Therefore,
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some authors proposed to perform segmentation on the depth
maps, which has shown to achieve better performance when
separating damaged and undamaged road areas [6], [11]. Fur-
thermore, the shapes of actual potholes are always irregular,
making the geometric and textural assumptions occasionally
unreliable. Moreover, the pothole’s 3D spatial structure can-
not always be explicitly illustrated in 2D road images [12].
Therefore, 3D road surface information is required to measure
pothole volumes. In general, 3D road surface modeling-based
pothole detection algorithms are more than capable of over-
coming the aforementioned disadvantages.

2) 3D Road Surface Modeling-Based Pothole Detection
Algorithms: The 3D road data used for pothole detection is
generally provided by laser scanners [6], Microsoft Kinect
sensors [11], or passive sensors [4], [12]–[16]. Laser scanners
mounted on DIVs are typically used for accurate 3D road
surface reconstruction. However, the purchase of laser scan-
ning equipment and its long-term maintenance are still very
expensive [3]. The Microsoft Kinect sensors were initially
designed for indoor use. Therefore, they greatly suffer from
infra-red saturation in direct sunlight [17]. For this reason,
passive sensors, such as a single movable camera or multiple
synchronized cameras, are more suitable for acquiring 3D
road data and for pothole detection [12], [18]. For example,
Zhang and Elaksher [13] mounted a single camera on an
unmanned aerial vehicle (UAV) to reconstruct the road surface
via Structure from Motion (SfM) [18]. A variety of stereo
vision-based pothole detection methods have been developed
as well [15], [16]. The 3D point cloud generated from a dis-
parity map was interpolated into a quadratic surface using least
squares fitting (LSF) [15]. The potholes were then recognized
by comparing the difference between the 3D point cloud
and the fitted quadratic surface. In [16], the surface modeling
was performed on disparity maps instead of the point clouds,
and random sample consensus (RANSAC) [19] was used to
improve the pothole detection robustness.

B. Motivation

Currently, laser scanning is still the main technology used to
provide 3D road information for pothole detection, while other
technologies, such as passive sensing, are under-utilized [2].
However, DIVs are not widely used, primarily because of
the initial cost but also because their routine operation and
long-term maintenance are still very costly [10]. Therefore,
the trend is to equip DIVs with inexpensive, portable and
durable sensors, such as digital cameras, for 3D road data
acquisition. Stereo road image pairs can be used to calculate
the disparity maps [14], which essentially represent the 3D
road surface geometry. Recently, due to some major advances
in computer stereo vision, road surface geometry can be
reconstructed with a three-millimeter accuracy [4], [12]. Addi-
tionally, stereo cameras used for road data acquisition are
inexpensive, portable and adaptable for different DIV types.

So far, comprehensive studies have been made in both 2D
image analysis-based and 3D road surface modeling-based
pothole detection. Unfortunately, these algorithms are always
used independently [5]. Furthermore, pothole detection accu-
racy is still far from satisfactory [5]. Exploring effective

approaches for disparity map preprocessing, by applying 2D
image processing algorithms, is therefore also a popular area
of research that requires more attention. Only the disparities in
the potential undamaged road areas are then used for disparity
map modeling.

Moreover, the surface normal vector is a very important
descriptor, which is, however, rarely utilized in existing 3D
road surface modeling-based pothole detection algorithms.
In this paper, we improve disparity map modeling by eliminat-
ing the disparities whose surface normals differ significantly
from the expected ones.

C. Novel Contributions

In this paper, a robust stereo vision-based pothole detection
system is introduced. The main contributions are: a) a novel
disparity transformation algorithm; b) a robust disparity map
modeling algorithm; c) three pothole detection datasets which
have been made publicly available for research purposes.
These datasets are also used in our experiments for assessing
pothole detection accuracy.

Since the disparities in damaged road areas can severely
affect the accuracy of disparity modeling, we first transform
the disparity maps to better distinguish between damaged and
undamaged road areas. To achieve greater processing effi-
ciency, we use golden section search (GSS) [20] and dynamic
programming (DP) [21] to estimate the transformation para-
meters. Otsu’s thresholding method [22] is then performed on
the transformed disparity map to extract the undamaged road
areas, where the disparities can be modeled by a quadratic
surface using LSF. To improve the robustness of disparity map
modeling, the surface normal information is also integrated
into the modeling process. Furthermore, RANSAC is utilized
to reduce the effects caused by any potential outliers. By com-
paring the difference between the actual and modeled disparity
maps, the potholes can be detected effectively. Finally, differ-
ent potholes are labeled using connected component labeling
(CCL) [23] and their point clouds are extracted from the
reconstructed 3D road surface.

D. Paper Outline

The remainder of this paper is structured as follows:
Section II details the proposed pothole detection algorithm.
The experimental results for performance evaluation are illus-
trated in Section III. Finally, Section IV summarizes the paper
and provides recommendations for future work.

II. POTHOLE DETECTION ALGORITHM

The block diagram of the proposed pothole detection algo-
rithm is illustrated in Fig. 1, where the algorithm consists
of three main components: a) disparity transformation; b)
undamaged road area extraction; c) disparity map modeling
and pothole detection.

A. Disparity Transformation

The input of this procedure is a dense disparity map having
subpixel accuracy. Since the performance of disparity map
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Fig. 1. The block diagram of the proposed pothole detection algorithm.

Fig. 2. Disparity map when the roll angle does not equal zero: (a) stereo
road images, (b) disparity map, and (c) v-disparity map.

modeling relies entirely on the disparity estimation accuracy,
the dense disparity map was obtained from a stereo road
image pair (see Fig. 2(a)) through our disparity estimation
algorithm [12], where the stereo matching search range prop-
agates iteratively from the bottom of the image to the top, and
the subpixel disparity map is refined by iteratively minimizing
an energy function with respect to the interpolated correlation
parabolas. The disparity map is shown in Fig. 2(b), and its
corresponding v-disparity map is shown in Fig. 2(c). A v-
disparity map can be created by computing the histogram
of each horizontal row of the disparity map. The proposed
pothole detection algorithm is based on the work presented
in [16], where the disparities of the undamaged road surface
are modeled by a quadratic surface as follows:

g(u, ν) = c0 + c1u + c2ν + c3u2 + c4ν
2 + c5uν, (1)

where u and v are the horizontal and vertical disparity map
coordinates, respectively. The origin of the coordinate system
in (1) is at the center of the disparity map. Since in our

Fig. 3. Roll angle definition in a stereo vision system.

experiments the stereo rig is mounted at a relatively low height,
the curvature of the reconstructed road surface is not very high.
This makes the values of c1, c3 and c5 in (1) very close to
zero, when the stereo rig is perfectly parallel to the horizontal
road surface. In this case, the projection of the road disparities
on the v-disparity map can be assumed to be a parabola of the
form [21]:

g(ν) = α0 + α1ν + α2v2. (2)

However, in practice, the stereo rig baseline is not always
perfectly parallel to the horizontal road surface. This fact can
introduce a non-zero roll angle θ (see Fig. 3) into the imaging
process, where Tc and h represent the baseline and the height
of the stereo rig, respectively. oC

l and oC
r are the origins of the

left and right camera coordinate systems, respectively. OW is
the origin of the world coordinate system. An example of the
resulting disparity map is shown in Fig. 2(b), where readers
can clearly see that the disparity values change gradually in the
horizontal direction, which makes the approach of represent-
ing the disparity projection using (2) somewhat problematic.
In this regard, we first estimate the value of the roll angle. The
effects caused by the non-zero roll angle are then eliminated
by rotating the disparity map by θ . Finally, the coefficients
of the disparity projection model in (2) are estimated, and
the disparity map is transformed to better distinguish between
damaged and undamaged road areas.
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1) θ Estimation and Disparity Map Rotation: Over the past
decade, considerable effort has been made to improve the roll
angle estimation. The most commonly used device for this task
is an inertial measurement unit (IMU). An IMU can measure
the angular rate of a vehicle by analyzing the data acquired
using different sensors, such as accelerometers, gyroscopes
and magnetometers [24], [25]. In these approaches, the road
bank angle is always assumed to be zero, and only the
roll angle is considered in the estimation process. However,
the estimation of both these two angles is always required
in many real-world applications. Unfortunately, this cannot be
realized with the use of only IMUs [26], [27].

In recent years, many authors have turned their
focus towards estimating the roll angle from disparity
maps [21], [28]–[31]. For example, the road surface is
assumed to be a horizontal ground plane, and an effective roll
angle estimation algorithm was proposed based on v-disparity
map analysis [28], [29]. In [21], the disparities in a selected
small area were modeled by a plane g(u, v) = c0 + c1u + c2v.
The roll angle was then calculated as arctan(−c1/c2).
However, finding a proper disparity map area for plane fitting
is always challenging, because the selected area may contain
an obstacle or a pothole, which can severely affect the fitting
accuracy [30]. Furthermore, the above-mentioned algorithms
are only suitable for planar road surfaces. Hence, in this
subsection, we introduce a roll angle estimation algorithm,
which can work effectively for both planar and non-planar
road surfaces.

When the roll angle is equal to zero, the vector α =
[α0, α1, α2]�, storing the disparity projection model coeffi-
cients, can be estimated by solving a least squares problem as
follows:

α = arg min
α

E0, (3)

where

E0 = e�e, (4)

and

e = d − Vα. (5)

The column vector d = [d0, d1, · · · , dn]� stores the
disparity values. V is a matrix of size (n + 1) × 3 given as
follows:

V =

⎡
⎢⎢⎢⎣

1 ν0 ν0
2

1 ν1 ν1
2

...
...

...

1 νn νn
2

⎤
⎥⎥⎥⎦ . (6)

This optimization problem has a closed form solution:
α = (V�V )−1V�d. (7)

The minimum energy E0min can also be obtained by combin-
ing (4), (5) and (7):

E0min = d�d − d�V (V �V )−1V�d. (8)

However, when the roll angle does not equal zero, the disparity
distribution on each row becomes less compact (see Fig. 2(c)).

Fig. 4. E0min function versus θ .

This greatly affects the accuracy of least squares fitting and
produces a much higher E0min .

To rotate the disparity map around a given angle θ , each set
of original coordinates [u, v]� is transformed to a set of new
coordinates [x, y]� as follows [31]:

x = u cos θ + ν sin θ,

y = ν cos θ − u sin θ. (9)

(5) can now be rewritten as follows:
e(θ) = d − Y (θ)α(θ), (10)

where Y(θ) is an (n + 1) × 3 matrix:

Y(θ) =

⎡
⎢⎢⎢⎣

1 y0(θ) y0(θ)2

1 y1(θ) y1(θ)2

...
...

...

1 yn(θ) yn(θ)2

⎤
⎥⎥⎥⎦ . (11)

(7) is rewritten as follows:
α(θ) = (Y (θ)�Y(θ))−1Y(θ)�d. (12)

(4), (10) and (12) result in the following expression:
E0min(θ) = d�d − d�Y (θ)(Y(θ)�Y (θ))−1Y (θ)�d. (13)

Therefore, the main consideration of the proposed roll angle
estimation algorithm is to rotate the disparity map at different
angles, and find the angle which minimizes E0min . E0min

with respect to different θ is illustrated in Fig. 4. Giving
a set of coordinates [u, v]�, the new coordinate y can be
calculated using (9). The corresponding E0min can be computed
from (13). Due to the fact that cos(θ + π) = − cos θ and
sin(θ +π) = − sin θ , the disparity maps rotated around θ and
θ+π are symmetric with respect to the origin of the coordinate
system. Namely, (13) outputs the same E0min no matter how
the disparity map is rotated around θ or θ + π . Therefore,
we set the interval of θ to (−π/2, π/2]. The estimation of θ
is achieved by finding the position of the local minima between
−π/2 and π/2.

However, finding the local minima is a computationally
intensive task, because it involves performing the necessary
calculations through the whole interval of θ . Furthermore,
the step size εθ has to be set to a very small and practical
value, in order to obtain an accurate value of θ [31]. Hence
in this paper, GSS is utilized to reduce the searching times.
The procedure of the proposed θ estimation algorithm is given
in Algorithm 1, where κ = (

√
5 − 1)/2 is the golden section

ratio [20].
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Algorithm 1 θ Estimation Using GSS

Fig. 5. Elimination of the effects caused by the non-zero roll angle: (a) rotated
disparity map and (b) the y-disparity map of Fig. 5(a).

The disparity map is then rotated around θ , as illustrated
in Fig. 5(a). A y-disparity map (see Fig. 5(b)) can be created by
computing the histogram of each horizontal row of the rotated
disparity map. We can observe that the disparity values on each
row become more uniform. The evaluation of the proposed roll
angle estimation algorithm will be discussed in Section III-B.

2) α Estimation and Disparity Transformation: In this
subsection, we utilize DP [21] to extract the road disparity
projection model from the y-disparity map. For the purpose
of convenient notation, the projection model is also referred
to as the target path. The energy of every possible solution is
first computed as follows:

E1(d, y) = −m(d, y)+min
τ

[E1(d + 1, y + τ ) + λτ ]
s.t. τ ∈ [τmin, τmax], (14)

where m(d, y) represents the y-disparity value at the position
[d, y]� and λ is a positive smoothness term [21]. E1 repre-
sents the energy of a possible target path in the y-disparity
map. τmin is typically set to 0. τmax depends entirely on
α, and it is set to 10 in this paper. The target path M =
{(di , yi ), i = 0, 1, . . . , n} can be found by minimizing the
energy function in (14), where (di , yi ) stores the horizontal
and vertical coordinates of the target path, respectively.

By substituting the horizontal and vertical coordinates of
the target path into (3), (4), (10) and (11), we can obtain α.

Algorithm 2 Estimation Using DP

The disparity map can, therefore, be transformed using θ
and α. However, the outliers in the target path may greatly
affect the accuracy of α estimation. We, therefore, use
RANSAC to update the values in α. The full list of procedures
involved for α estimation are detailed in Algorithm 2.

RANSAC is iterated t times. Selecting a higher t raises
the possibility of finding the best α but also increases the
processing time. In order to minimize the trade-off between
speed and robustness, t is set to 50 in this paper. In each
iteration, we select p pairs of coordinates [d, y]� from the
target path to estimate α. For a smaller p, there is less chance
that any outliers will influence optimization. In this paper p is
set to 3, which is the smallest possible value for determining α.
The ratio η of inliers versus outliers can then be computed with
respect to a given tolerance εα. The best α corresponds to the
highest ratio η. However, the selection of an appropriate εα can
be challenging, as it is possible that there could be more than
one satisfying value for α. Hence, in this paper, the value of εα

also changes s times. In each iteration, the value of εα reduces
by half and η is computed. The best α can be determined by
finding the highest ratio η. In this paper, the values of εα and
s are both set to 4.

Finally, each disparity is transformed using the following
equation:

d̃(u, ν, d, θ)=[1 y(u, ν, θ) y(u, ν, θ)2]α(θ)−d+δ, (15)

where δ is a constant value set to guarantee that all the
transformed disparity values are non-negative. In this paper,
we set δ to 30. The transformed disparity map is shown
in Fig. 6(a). It can be clearly seen that the disparity values in
the undamaged road areas become more uniform, while they
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Fig. 6. Disparity transformation and undamaged road area extraction:
(a) transformed disparity map and (b) extracted undamaged road areas.

differ significantly from those in the damaged areas (potholes).
This makes the extraction of undamaged road regions much
simpler.

B. Undamaged Road Area Extraction

Next, we utilize Otsu’s thresholding method to segment
the transformed disparity map. The segmentation threshold To
can be obtained by maximizing the inter-class variance σ 2

o as
follows [22]:

σ 2
o (To) = P0(To)P1(To)[μ0(To) − μ1(To)]2, (16)

where

P0(To) =
To−1∑

i=d̃min

p(i), P1(To) =
d̃max∑
i=To

p(i) (17)

represent the probabilities of damaged and undamaged road
areas, respectively. p(i) is the probability of d̃ = i . The
average disparity values of the damaged and undamaged road
areas are given by:

μ0(To) = 1

P0(To)

To−1∑

i=d̃min

i p(i),

μ1(To) = 1

P1(To)

d̃max∑
i=To

i p(i). (18)

The segmentation result is shown in Fig. 6(b). We can see that
the undamaged road area is successfully extracted. However,
Otsu’s thresholding method will always classify the disparities
into two categories, even if the transformed disparity map
does not contain any road damage. We, therefore, carry
out disparity map modeling to ensure that the potholes are
correctly detected.

C. Disparity Map Modeling and Pothole Detection

A common practice in 3D modeling-based pothole detection
algorithms [15], [16] is to fit a quadratic surface to either a
3D point cloud or a 2D disparity map. In parallel axis stereo
vision, the point cloud is generated from the disparity map as
follows [21]:

XW = uTc

d
, Y W = νTc

d
, ZW = f Tc

d
, (19)

where f is the camera focal length. A disparity error larger
than one pixel may result in a non-negligible difference in the
point cloud [32]. Therefore, disparity map modeling can avoid

such errors generated from (19), producing greater accuracy
compared to point cloud modeling.

To model the disparity map, c = [c0, c1, c2, c3, c4, c5]�,
storing the quadratic surface model coefficients can be esti-
mated as follows:

c = (W�W)−1W�d, (20)

where

W =

⎡
⎢⎢⎢⎣

1 u0 ν0 u0
2 ν0

2 u0ν0

1 u1 ν1 u1
2 ν1

2 u1ν1
...

...
...

...
...

...
1 un νn un

2 νn
2 unνn

⎤
⎥⎥⎥⎦ . (21)

However, potential outliers can severely affect the accuracy
of disparity map modeling and therefore need to be discarded
beforehand. In this subsection, a disparity map point is deter-
mined as an outlier if it fulfills one of the following conditions:

• it is located in one of the damaged road areas.
• its surface normal vector differs greatly from the optimal

one.
• its disparity value differs greatly from the one computed

using Eq. 1.
In Section II-B, the undamaged road areas are successfully

extracted and we only use the disparities in this area to model
the disparity map. The rest of this subsection presents the
approaches for determining the outliers which satisfy the last
two conditions and the process of modeling the disparity map
without using these outliers.

1) Optimal Normal Vector Estimation: For each point pi =
[ui , νi , di ]� in the undamaged road area, we would like to
estimate a normal vector ni = [nui , nνi , ndi ]� from a set of k
points in its neighborhood Qi = [qi1, qi2, · · · , qik ]�, where
qi j �= pi . Here, we define the augmented neighbor matrix Q+

i
which contains all neighbors and the point pi itself as follows:

Q+
i = [ pi , Qi

�]�. (22)

Existing normal vector estimation methods are generally
classified into one of two categories: optimization-based and
averaging-based [33]. Although the performance of normal
vector estimation depends primarily on the application itself,
PlanePCA [34], an optimization-based normal vector estima-
tion method, has superior performance in terms of both speed
and accuracy. Hence in this subsection, we utilize PlanePCA
to estimate the normal vectors of the disparities. ni can be
estimated as follows:

ni = arg min
ni

∣∣∣
∣∣∣
[

Q+
i − Q̄

+
i

]
ni

∣∣∣
∣∣∣
2
, (23)

where

Q̄
+
i = 1k+1

( 1

k + 1
Q+

i
�

1k+1
)�

. (24)

1m represents an m × 1 vector of ones. Due to the fact that
the normal vectors are normalized, they can be projected
on a sphere, as shown in Fig. 7, where we can clearly see
that the projections are distributed in a small area. Therefore,
the optimal normal vector n̂ can be determined by finding the
position at which the projections distribute most intensively.
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Fig. 7. Surface normal vectors mapping on a sphere.

Since the projection of n̂ is also on the sphere, it can be
written in spherical coordinates as follows:
n̂ = [sin ϕ1 cos ϕ2, sin ϕ1 sin ϕ2, cos ϕ1]�

s.t. ϕ1 ∈ [0, π], ϕ2 ∈ [0, 2π). (25)

It can be estimated by minimizing E2:

E2 = 1n+1
�m, (26)

where

m = [−n0 · n̂, −n1 · n̂, · · · , −nn · n̂]�. (27)

By applying (25) and (27) to (26), the following expressions
are derived:

tan ϕ1 = 1n+1
�nu cos ϕ2 + 1n+1

�nν sin ϕ2

1n+1
�nd

, (28)

tan ϕ2 = 1n+1
�nν

1n+1
�nu

, (29)

where nu = [nu0, nu1, · · · , nun]�, nν = [nν0, nν1, · · · , nνn]�
and nd = [nd0, nd1, · · · , ndn]�. Due to the fact that ϕ2 is
between 0 and 2π , (29) will have two solutions:

ϕ2 = arctan
1n+1

�nν

1n+1
�nu

+ kπ, k ∈ {0, 1}. (30)

Substituting each ϕ2 into (28) produces a value for ϕ1. The
two pairs of [ϕ1, ϕ2]� correspond to the maxima and minima
of E2, respectively. By substituting each pair of [ϕ1, ϕ2]�
into (26) and comparing the two obtained values, we can find
the optimal normal vector. If the angle between n̂ and ni

exceeds a pre-set threshold εn, the corresponding disparity will
be considered as an outlier and will not be used for disparity
map modeling. In our experiments, we assume that the second
category of outliers account for 10% of the undamaged road
areas, and therefore, εn is set to π/36 rad. The outliers
satisfying the first two conditions can then be successfully
removed. The third category of outliers are removed along
with the disparity map modeling.

Fig. 8. Disparity map modeling and pothole detection: (a) modeled disparity
map and (b) detected potholes.

2) Disparity Map Modeling: To model the disparity map
with more robustness, we use RANSAC to reduce the
effects caused by the third category of outliers described in
Section II-C. Here, RANSAC is iterated t times. In each
iteration, a subset of disparities are selected randomly to
estimate c. To ensure uniform distribution of the selected
disparities, we equally divide the disparity map into a group
of square blocks and select one disparity from each block.
The disparity block size is r × r . As r becomes smaller, more
disparities will be used for surface fitting, which increases the
computational complexity. In contrast, selecting a higher value
for r results in less computational complexity, but potentially
increases noise sensitivity. In this paper, the value of r is set
to 125, which produces approximately 100 square blocks for
our disparity maps. In each iteration, the differences between
the actual and fitted disparities are computed and the ratio
η between the inliers and outliers are obtained. c which
corresponds to the highest η is then selected as the desirable
surface coefficients. Algorithm 2 presents more details on the
least squares fitting using RANSAC. The modeled disparity
map is shown in Fig. 8(a).

3) Pothole Detection: The potholes can then be detected by
finding the regions where the differences between the actual
and modeled disparities are larger than a pre-set threshold εd .
Before labeling different potholes using CCL, the connected
components containing fewer than w pixels are removed,
because they severely affect the pothole labeling accuracy.
Furthermore, the small holes in each connected component
are filled, as they are considered to be noise. The selection of
εd and w is discussed in Section III-D. The detected potholes
are shown in Fig. 8(b). Finally, the point clouds of the detected
potholes are extracted from the reconstructed 3D road surface.
The corresponding results are shown in Fig. 9.

III. EXPERIMENTAL RESULTS

In this section, the performance of the proposed pot-
hole detection algorithm is evaluated both qualitatively and
quantitatively. The proposed algorithm was implemented in
MATLAB on an Intel Core i7-8700K CPU using a single
thread. The following subsections provide details on the exper-
imental set-up and the evaluation of the proposed algorithm.

A. Experimental Set-Up

In this work, we utilized a ZED stereo camera1 to capture
stereo road images. An example of the experimental set-up is

1https://www.stereolabs.com/
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Fig. 9. The point clouds of the detected potholes.

Fig. 10. Experimental set-up for acquiring stereo road images.

shown in Fig. 10. The stereo camera is calibrated manually
using the stereo calibration toolbox in MATLAB R2018b.
Using the above-mentioned experimental set-up, we created
three datasets containing 67 pairs of stereo images. The image
resolutions of dataset 1, 2 and 3 are 1028 × 1730, 1030 ×
1720, 1028 × 1710 pixels, respectively. The disparity maps
are estimated using our previously published algorithm [12].
All datasets are publicly available and can be found at:
ruirangerfan.com.

The following subsections analyze the accuracy of roll angle
estimation, disparity transformation and pothole detection.

B. Evaluation of Roll Angle Estimation

In this subsection, we first analyze the computational com-
plexity of the proposed roll angle estimation algorithm. When
estimating the roll angle without using GSS, we have to
search through the whole interval of (−π

2 , π
2 ] to find the

local minima. Therefore, the computational complexity is
O( π

εθ
). In our method, GSS reduces the interval size expo-

nentially. As a result, the interval size then becomes κnπ
after the n-th iteration. Therefore, the proposed roll angle
estimation algorithm reduces the computational complexity
to O(logκ

εθ
π ). The proposed roll angle estimation algorithm

needs 21 iterations to produce a roll angle, with an accuracy
higher than π

18000 rad.
To evaluate the accuracy of the proposed roll angle esti-

mation algorithm, we utilize a synthesized stereo dataset from
EISATS [35], [36] where the roll angle is perfectly zero. Some
experimental results are shown in Fig. 11. The road areas
(see the magenta regions in the first row of Fig. 11) are
manually selected and the disparities in these areas are utilized
to estimate the roll angle θ̂ . The absolute difference between

Fig. 11. Experimental results of the EISATS synthesized stereo dataset:
(a) left stereo images (the areas in magenta are our manually selected road
areas), (b) ground truth disparity maps, and (c) transformed disparity maps.

the actual and estimated roll angles, i.e., �θ = |θ − θ̂ |,
is computed for each frame. The average �θ is approximately
1.129 × 10−4 rad which is lower than π

18000 rad. Therefore,
the proposed algorithm is capable of estimating the roll angle
with high accuracy.

C. Evaluation of Disparity Transformation

Since the datasets we created only contain the ground truth
of potholes, KITTI stereo datasets [37], [38] are utilized to
quantify the performance of our proposed disparity transfor-
mation algorithm (the numbers of disparity maps in the KITTI
stereo 2012 and 2015 datasets are 194 and 200, respectively).
Some experimental results are shown in Fig. 12. Due to the
fact that the proposed algorithm focuses entirely on the road
surface, we manually selected a region of interest (see the
purple areas in the first row) in each image to evaluate the
performance of our algorithm. The corresponding transformed
disparity maps are shown in the third row of Fig. 12, where
readers can clearly see that the disparities in the road areas
tend to have similar values. To quantify the accuracy of
the transformed disparity maps, we compute the standard
deviation σd of the transformed disparity values as follows:

σd =
√√√√ 1

m + 1

∥∥∥∥∥d̃ − d̃
�

1m+1

m + 1

∥∥∥∥∥
2

2

. (31)

where d̃ = [d̃0, d̃1, · · · , d̃m]� is a column vector storing
the transformed disparity values. The average σd values of the
two KITTI stereo datasets are provided in Table I.

In case 1, the effects caused by the non-zero roll angle are
eliminated, while in case 2, the roll angle is assumed to be
zero. From Table I, we can observe that the average σd values
of these two datasets reduce by approximately half when the
effects caused by the non-zero roll angle are eliminated. The
average σd value of these two datasets is only 0.5188 pixels.
Therefore, the proposed disparity transformation algorithm
performs accurately and the transformed disparity values
become very uniform. The runtime of disparity transformation
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Fig. 12. Experimental results of the KITTI stereo datasets: (a) left stereo images (the areas in purple are the labeled road regions), (b) ground truth disparity
maps, and (c) transformed disparity maps.

TABLE I

COMPARISON OF THE AVERAGE σd VALUES BETWEEN THE TWO CASES

Fig. 13. The sum of �nPD with respect to different εd and w.

is about 142 ms. In the next subsection, we will analyze the
accuracy of pothole detection.

D. Evaluation of Pothole Detection

In Section II-C, a set of randomly selected disparities are
modeled as a quadratic surface. The potholes are detected by
comparing the difference between the actual disparity map
and the modeled quadratic surface. If a connected component
contains more than w pixels and the disparity difference of
each pixel exceeds εd , it will be identified as a pothole. In our
experiments, we utilize the brute-force search method to find
the best values of εd and w. The search range for εd and w are
set to [3.0, 8.5] and [100, 5000], respectively. The step sizes
for searching εd and w are set to 0.1 and 100, respectively.

For the first step, we go through the whole search range and
record the number of detected potholes n̂PD in each frame. The
absolute difference �nPD between each n̂PD and the expected
pothole number nPD is then computed. The sum of �nPD with
respect to a pair of given εd and w can therefore be obtained,
as illustrated in Fig. 13. In our experiments, the least sum of
�nPD is equal to one and it is achieved only when εd = 6.2
and εd = 3100. The corresponding incorrect pothole detection
result is shown in Fig. 14. Incorrect detection occurs when the
middle of the first pothole subsides and the selected parameters
cause the system to detect two potholes instead of one.

Fig. 14. Experimental result of incorrect pothole detection: (a) left stereo
image, (b) transformed disparity map, (c) detection result, and (d) ground
truth.

Some examples of successful detection results are shown in
the fifth row of Fig. 15, and the corresponding ground truth
is shown in the sixth row.

We also compare our proposed algorithm with those pro-
duced in [15] and [16]. The pothole detection results obtained
using the algorithms presented in [15] and [16] are shown
in the third and forth rows of Fig. 15, respectively. The
comparative pothole detection results are provided in Table II,
where we can see that the successful detection accuracy
achieved using [15] and [16] are 73.4% and 84.8%, respec-
tively. Compared to them, our proposed algorithm can detect
potholes more accurately with a successful detection accuracy
of 98.7%.

We also compare the proposed algorithm with [15] and [16]
with respect to the pixel-level precision, recall, F-score and
accuracy:

precision = nTP

nTP + nFP
, (32)

recall = nTP

nTP + nFN
, (33)

F-score = 2 × precision × recall

precision + recall
, (34)
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Fig. 15. Experimental results of pothole detection: (a) left stereo images, (b) transformed disparity maps, (c) pothole detection results obtained using the
algorithm proposed in [15], (d) pothole detection results obtained using the algorithm presented in [16], (e) pothole detection results obtained using the
proposed algorithm, and (f) pothole ground truth.

TABLE II

COMPARISON OF SUCCESSFUL POTHOLE DETECTION ACCURACY

accuracy = nTP + nTN

nTP + nTN + nFP + nFN
, (35)

where nTP, nFP, nFN and nTN are true positive, false
positive, false negative and true negative pixel numbers,
respectively.

The comparisons with respect to these four indica-
tors are illustrated in Table III. It can be seen that our

proposed algorithm outperforms [15] and [16], in terms of
both pixel-level accuracy and F-score. It achieves an interme-
diate performance in terms of precision and recall. In addition,
the precision and recall achieved using our proposed algorithm
are very close to the highest values between [15] and [16].
Therefore, the proposed pothole detection algorithm performs
both robustly and accurately.
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TABLE III

COMPARISON OF PIXEL-LEVEL PRECISION,
RECALL, F-SCORE, AND ACCURACY

IV. CONCLUSION AND FUTURE WORK

The main contributions of this paper are a novel disparity
transformation algorithm and a disparity map modeling algo-
rithm. Using our method, undamaged road areas are better
distinguishable in the transformed disparity map and can
be easily extracted using Otsu’s thresholding method. This
greatly improves the robustness of disparity map modeling.
To achieve greater processing efficiency, GSS and DP were uti-
lized to estimate the transformation parameters. Furthermore,
the disparities, whose normal vectors differ greatly from the
optimal one, were also discarded in the process of disparity
map modeling, which further improves the accuracy of the
modeled disparity map. Finally, the potholes were detected
by comparing the difference between the actual and modeled
disparity maps. The point clouds of the detected potholes
were then extracted from the reconstructed 3D road surface.
In addition, we also created three datasets to contribute to
stereo vision-based pothole detection research. The experimen-
tal results show that the overall successful detection accuracy
of our proposed algorithm is around 98.7% and the pixel-level
accuracy is approximately 99.6%.

However, the parameters set for pothole detection cannot be
applied to all cases. Therefore, we plan to train a deep neural
network to detect potholes from the transformed disparity map.
Furthermore, road surfaces cannot always be considered to be
quadratic. Thus, we aim to design an algorithm to segment the
reconstructed road surfaces into a group of localized planes
prior to applying the proposed pothole detection algorithm.
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