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Road Surface 3D Reconstruction Based on Dense
Subpixel Disparity Map Estimation
Rui Fan , Graduate Student Member, IEEE, Xiao Ai, and Naim Dahnoun

Abstract— Various 3D reconstruction methods have enabled
civil engineers to detect damage on a road surface. To achieve
the millimeter accuracy required for road condition assessment,
a disparity map with subpixel resolution needs to be used.
However, none of the existing stereo matching algorithms are
specially suitable for the reconstruction of the road surface.
Hence in this paper, we propose a novel dense subpixel disparity
estimation algorithm with high computational efficiency and
robustness. This is achieved by first transforming the perspective
view of the target frame into the reference view, which not only
increases the accuracy of the block matching for the road surface
but also improves the processing speed. The disparities are then
estimated iteratively using our previously published algorithm,
where the search range is propagated from three estimated
neighboring disparities. Since the search range is obtained from
the previous iteration, errors may occur when the propagated
search range is not sufficient. Therefore, a correlation maxima
verification is performed to rectify this issue, and the subpixel
resolution is achieved by conducting a parabola interpolation
enhancement. Furthermore, a novel disparity global refinement
approach developed from the Markov random fields and fast
bilateral stereo is introduced to further improve the accuracy
of the estimated disparity map, where disparities are updated
iteratively by minimizing the energy function that is related
to their interpolated correlation polynomials. The algorithm is
implemented in C language with a near real-time performance.
The experimental results illustrate that the absolute error of the
reconstruction varies from 0.1 to 3 mm.

Index Terms— 3D reconstruction, road condition assessment,
subpixel disparity estimation, parabola interpolation, Markov
random fields, fast bilateral stereo.

I. INTRODUCTION

THE condition assessment of asphalt and concrete civil
infrastructures, e.g., bridges, tunnels and pavements,

is essential to ensure their usability while still providing
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maximum safety for the users. It also allows the govern-
ment to allocate the limited resources for maintenance and
appraise long-term investment schemes [1]. The manual visual
inspections performed by either structural engineers or certi-
fied inspectors are cost-intensive, time-consuming and cum-
bersome [2]. In 2014, a one-off investment of £12bn was
suggested by the Asphalt Industry Alliance to improve the road
condition across England and Wales [3]. Over the last decade,
various technologies such as remote sensing, vibration sensing
and computer vision have been increasingly applied in civil
engineering to assess the physical and functional condition of
the infrastructures such as potholes, cracking, etc.

The remote sensing methods which have been used in satel-
lites, airplanes, unmanned aerial vehicles or multi-purpose sur-
vey vehicles have indeed reduced the workload of inspectors.
However, the traditional geotechnical methods can never be
entirely replaced by the remote sensing approaches [4]. Using
accelerometers and GPS for data acquisition, vibration-based
methods always cause distress misdetection in spite of their
advantages of small storage requirements, cost-effectiveness
and real-time performance [2]. As for the approaches based
on 2D computer vision, the spatial structure of the road
surface cannot be illustrated explicitly [2]. Therefore, 3D
reconstruction-based methods are more feasible to overcome
these disadvantages and simultaneously provide an enhance-
ment in terms of detection accuracy and processing efficiency.

3D reconstruction methods can be classified as laser
scanner-based, Microsoft Kinect-based and passive sensor-
based. The laser scanner collects the reflected laser pulse from
an object to construct its accurate 3D model [4]. Although it
provides accurate modeling results, the laser scanner equip-
ment used for road condition analysis is still costly [2]. As for
the methods based on the Microsoft Kinect sensor, the depth
measurement for the outdoor environment is somewhat inef-
fective, especially for materials which strongly absorb the
infrared light [5]. Therefore, the passive sensor-based methods,
e.g., stereo vision, are more capable of reconstructing the 3D
road surface for condition assessment or damage detection.

To reconstruct a real-world environment with passive sens-
ing techniques, multiple camera views are required [6]. Images
from different viewpoints can be captured using either a single
movable camera or an array of cameras [7]. In this paper,
we use a ZED stereo camera to acquire a pair of images
for road surface 3D reconstruction. Since the stereo rig is
assumed to be well-calibrated, the main work performed in
this paper is the disparity estimation. The algorithms for
disparity estimation can be classified as local, global and
semi-global. Local algorithms simply match a series of blocks
and select the correspondence with the lowest cost or the
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Fig. 1. Stereo vision-based road surface 3D reconstruction system workflow.

highest correlation. This optimization is also known as winner-
take-all (WTA). Unlike local algorithms, global algorithms
process the stereo matching using some more sophisticated
optimization techniques, e.g., Graph Cut (GC) [8] and Belief
Propagation (BP) [9]. These algorithms are commonly devel-
oped based on the Markov Random Fields (MRF) [10], where
finding the best disparities is formulated as a probability
maximization problem. This is later addressed by energy
minimization approaches. Semi-global matching (SGM) [11]
approximates the MRF inference by performing cost aggre-
gation along all directions in the image and this greatly
improves the accuracy and efficiency of stereo matching.
However, the occlusion problem always makes it difficult to
find the optimum value for the smoothness parameters: over-
penalizing the smoothness term can help avoid the ambiguities
around discontinuities but on the other hand can lead to
errors for continuous areas [12]. Therefore, some authors have
proposed to break down the global problem into multiple
local problems, each of which is affected by uncertainties
to a lesser extent [13]. For instance, one alternative way of
setting smoothness parameters is to group pixels in the image
into different slanted planes [13]–[15]. Disparities in different
plane groups are estimated with local constraints. However,
this results in high computational complexities, making real-
time performance challenging.

In order to further improve the trade-off between speed
and accuracy, seed-and-grow local algorithms have been used
extensively. In these algorithms, the disparity map is grown
from a selection of seeds to minimize expensive computations
and reduce mismatches caused by ambiguities. For example,
Sara [16], [17] and Cech and Sara [18] presented an efficient
quasi-dense stereo matching algorithm, named growing cor-
respondence seeds (GCS), to estimate disparities iteratively
with the search range propagated from a collection of reliable
seeds. Similarly, various Delaunay triangulation-based stereo
matching algorithms (DTSM) have been proposed in [19]–[21]
to estimate tunable semi-dense disparity maps with the support
of a piecewise planar mesh. Our previous algorithm [22], [23]
also provides an efficient strategy for local stereo matching
whereby the search range on row v is propagated from three
estimated neighboring disparities on row v + 1. Our algorithm
performs better than GCS and DTSM in terms of estimating
dense disparity maps for road scenes where the road disparities
decrease gradually from the bottom to the top, while the
disparities of obstacles remain the same. The aim of this
paper is to reconstruct the road scenes for pothole detection.
In this regard, the proposed disparity estimation algorithm is

developed based on our previous work in [23]. To assess the
condition of a road surface, millimeter accuracy is desired
in 3D reconstruction and thus disparities in subpixel resolution
are inevitable. Therefore, the correlation costs around the ini-
tial disparity are interpolated into a parabola and the position
of the extrema is selected as the subpixel disparity.

However, the subpixel disparity maps obtained from
parabola interpolation are still unsatisfactory because the cor-
relation costs of neighborhood systems are not aggregated
before finding the best disparities. To aggregate neighboring
costs adaptively, some authors have proposed to filter the
whole cost volume with a bilateral filter since it provides a
feasible solution for the initial message passing problem on a
fully connected MRF [12]. These algorithms are also known as
Fast Bilateral Stereo (FBS) [24]–[26]. However, the intensive
computational complexity introduced when filtering the whole
cost volume severely impact on the processing speed. In this
regard, we believe that only the candidates around the best
disparities need to be processed and a novel disparity refine-
ment approach is proposed in this work. The workflow of our
stereo vision-based road surface 3D reconstruction system is
depicted in Fig. 1.

Firstly, the perspective view of the road surface in the
target image is transformed into its reference view, which
greatly enhances the similarity of the road surface between the
two images. Since the propagated search range is sometimes
insufficient, the desirable disparities have to be further verified
to ensure they possess the highest correlation costs. The latter
ensures the feasibility of parabola interpolation-based subpixel
enhancement. To further optimize the obtained subpixel dis-
parity map, the interpolated parabola functions f (d) are set
as the labels in the MRF because they contain the information
of both disparity values and correlation costs. By updating the
parabola functions f (d) and subpixel disparities ds iteratively,
a disparity in a continuous area becomes smooth but it is
preserved when discontinuities occur. Finally, each 3D point
on the road surface is computed based on its projections
on the left and right images. The reconstruction accuracy
is evaluated using three sample models (see section VI-A
for more details). Our datasets are publicly available at:
http://www.ruirangerfan.com.

The rest of the paper is structured as follows: section II
presents a novel perspective transformation (PT) method.
In section III, we describe a subpixel disparity estimation
algorithm. A disparity map global refinement approach is
introduced in section IV. In section V, the disparity map
is post-processed and the 3D road surface is reconstructed.
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In section VI, the experimental results are illustrated and the
performance of the proposed algorithm is evaluated. Finally,
section VII summarizes the paper and provides some recom-
mendations for future work.

II. PERSPECTIVE TRANSFORMATION

In this paper, the proposed algorithm focuses entirely on
the road surface which can be treated as a ground plane (GP).
To enhance the accuracy of stereo matching, we first draw
on the concept of ground plane constraint in [27] and [28]
to transform the perspective views of two images before
estimating their disparities. GP constraint is commonly used in
a wide range of obstacle detection systems, where the image
on one side is set as the reference and the other image is
transformed into the reference view. Pixels arising from the GP
satisfy the same affine transformation while an object above
the GP will not be transformed successfully [27]. Referring to
the experimental results in [28], pixels from an obstacle are
distorted in the transformed image. Nevertheless, the GP in the
transformed image looks more similar to its reference view.
Therefore, a perspective transformation makes the obstacle
areas noisy and unreliable but greatly enhances the similarity
of the road surface between two images. In this paper, the road
surface is defined as:

n� Pw + β = 0 (1)

where Pw = [Xw,Yw, Zw]� is an arbitrary 3D point on the
road surface. Its projections on the left image πl and the right
image πr are pl = [ul, vl ]� and pr = [ur , vr ]�, respectively.
n = [n0, n1, n2]� is the normal vector of the road surface.
The planar transformation between p̃l = [ul , vl , 1]� and p̃r =
[ur , vr , 1]� is given in Eq. 2 [6]. Here, p̃ = [u, v, 1]� denotes
the homogeneous coordinate of p = [u, v]�.

p̃r = Hrl p̃l (2)

Hrl ∈ R
3×3 denotes a homograph matrix, which is gener-

ally used to distinguish obstacles from the road surface [27].
It can be decomposed as [6]:

Hrl = Kr

(
Rrl − Trl n�

β

)
Kl

−1 (3)

where Rrl is a SO(3) matrix and Trl is a translation vector.
Pl in the left camera coordinate system can be transformed to
Pr in the right camera coordinate system according to Pr =
Rrl Pl + Trl . Kl and Kr are intrinsic matrices of the two
cameras. For a well-calibrated stereo system, Rrl , Trl , Kl and
Kr are already known. We only need to estimate n and β
for Hrl . Generally, Hrl can be estimated with at least four
pairs of correspondences pl and pr [6]. Hattori et al. proposed
a pseudo-projective camera model where several assumptions
are made about road geometry to simplify the estimation of
Hrl [27]. In this paper, we improve on their algorithm by
considering the following hypotheses:

• Kl and Kr are identical.
• Rrl is an identity matrix.
• Trl is in the same direction as the Xw-axis.
• the road surface is a horizontal plane: n1Yw + β = 0.

Fig. 2. BRISK-based on-road keypoints detection and matching between the
left and right images.

Algorithm 1 Perspective Transformation

• rotation of the stereo rig is only about the Xw-axis.

For a perfectly-calibrated stereo rig, vl = vr = v. The
disparity is defined as d = ul − ur . The projection of a
horizontal plane on the v-disparity map is a linear pattern [29]:

d = − Tcn1

β
( f sin θ − v0 cos θ)− v

Tcn1

β
cos θ = α0 + α1v

(4)

where θ is the pitch angle between the stereo rig and the road
surface (an example can be seen in Fig. 7 (a)), f is the focus
length of the cameras, Tc is the baseline, and (u0, v0) is the
principal point in pixels. When θ = π/2, d = − f Tcn1/β is a
constant. Otherwise, d is proportional to v [29]. This implies
that a perspective distortion always exists for the GP in two
images, which further affects the accuracy of block matching.
Therefore, the PT aims to make the GP in the transformed
image similar to that in the reference frame.

Now, the PT can be straightforwardly realized using para-
meters α = [α0, α1]�. The proposed PT is detailed in
algorithm 1. α can be estimated by solving a least squares
problem with a set of reliable correspondences Ql =
[ pl1, pl2, . . . , plm]� and Qr = [ pr1, pr2, . . . , prm]�. In this
paper, we use BRISK (Binary Robust Invariant Scalable
Keypoints) to detect and match Ql and Qr . It allows a
faster execution to achieve approximately the same number of
correspondences as SIFT (Scale-Invariant Feature Transform)
and SURF (Speeded-Up Robust Features) [30]. An example
of on-road keypoints detection and matching is illustrated
in Fig. 2.

Since outliers can severely affect the accuracy of least
squares fitting, we first remove the less reliable correspon-
dences before estimating α, where ε is proposed to be 1. For
the left disparity map �l f estimation, each point on row v in πr

is shifted α0 +α1v−δ pixels to the right, where δ is a constant
set to 20 (for dataset 1 and 2) or 30 (for dataset 3) to guarantee
that all the disparities are positive. Similarly, each point in πl

is shifted α0 + α1v − δ pixels to the left when πr is served
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Fig. 3. Perspective transformation. (a) left image. (b) right image. (c) trans-
formed right image. (d) transformed left image. (a) and (c) are used as the
input left and right images for the left disparity map estimation. (d) and (b) are
used as the input left and right images for the right disparity map estimation.

as the reference. An example of perspective transformation is
presented in Fig. 3. The performance improvements achieved
by using the PT will be discussed in section VI.

III. SUBPIXEL DISPARITY MAP ESTIMATION

As compared to many other stereo matching algorithms
which aim at automotive applications, the trade-off between
speed and precision has been greatly improved in our previous
work [22], [23]. The subpixel accuracy can be achieved by
conducting a parabola interpolation for the correlation costs
around the initial disparity [24]. The subpixel disparity global
refinement will be discussed in section IV.

A. Stereo Matching

In this paper, our previous algorithm [22] is utilized to
estimate integer disparities, where the NCC (Normalized
Cross-Correlation) is used to compute the matching costs,
and the search range S R for pixel at (u, v) is propagated
from three estimated neighboring disparities on row v + 1.
To accelerate the NCC execution, we rearrange the NCC
equation as follows:

c(u, v, d)= 1

nσlσr

(x=u+ρ∑
x=u−ρ

y=v+ρ∑
y=v−ρ

il(x, y)ir(x −d, y)−nμlμr

)

(5)

where c(u, v, d) is defined as the correlation cost between two
square blocks selected from πl and πr , and a higher c(u, v, d)
corresponds to a better matching and vice-versa. il or ir is the
intensity of a pixel in πl or πr . The edge length of the square
block is 2ρ + 1, and n represents the number of pixels in it.
(u, v) and (u−d, v) are the centers of the left and right blocks,
respectively. μl and μr denote the means of the intensities
within the two blocks. σl and σr are their standard deviations.

From Eq. 5, μ and σ only matter for each independent block
selected from πl or πr , and d determines a pair of blocks
for matching. Therefore, the calculation of μl , μr , σl and
σr will always be repeated in conventional NCC-based stereo
matching algorithms. In [23], we propose to pre-calculate the
values of μ and σ and store them in a static program storage

Algorithm 2 Correlation Maxima Verification

for direct indexing. Thus, the computational complexity of the
NCC is simplified to a dot product, making stereo matching
more efficient. More details on the implementation procedure
are available in [23].

1) Search Range Propagation (SRP): Since the concept
of “local coherence constraint” was proposed in [31], many
researchers have turned their focus on seed-and-grow algo-
rithms for stereo matching. Either semi-dense or quasi-dense
disparity maps can be estimated efficiently with the guidance
from a collection of reliable feature points [16]–[21]. In this
paper, the road surface is treated as a GP whose disparities
change gradually from the bottom of the image to its top,
which makes our previous algorithm [22] more efficient than
other methods in terms of estimating an accurate dense dispar-
ity map. The proposed algorithm propagates the search range
S R iteratively row by row from the bottom of the image to its
top. In the first iteration, the disparity estimation performs a
full search range. Then, S R at (u, v) is propagated from three
estimated neighboring disparities using Eq. 6, where τ is the
bound of S R and is set as 1 in this paper. The left and right
disparity maps, �l f and �rt , are shown in Fig. 4 (a) and (b),
respectively.

SR =
u+1⋃

k=u−1

{sr |sr ∈ [�(k, v + 1)− τ, �(k, v + 1)+ τ ]} (6)

2) Correlation Maxima Verification (CMV): Since the
search range propagates using Eq. 6, errors may occur in
subpixel enhancement when c(u, v, d − 1) or c(u, v, d + 1) is
not computed and compared with c(u, v, d). Therefore, CMV
will run until the correlation cost of the disparity is a local
maxima. More details are provided in algorithm 2.

B. Left-Right Consistency (LRC) Check

Due to the fact that each pair of correspondences from
two images is unique, if we select an arbitrary pixel (u, v)
from the left disparity map �l f , there should exist at most one
correspondence in the right disparity map �rt [12]:

�l f (u, v) = �rt (u − �l f (u, v), v) (7)
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Fig. 4. Subpixel disparity map estimation. (a) left disparity map. (b) right dis-
parity map. (c) left disparity map processed with the LRC check. (d) subpixel
disparity map.

Pixels that are only visible in one disparity map are marked
as uncertainties. A LRC check is performed to remove these
half-occluded areas. Although the LRC check doubles the
computational complexity by re-projecting the estimated dis-
parities from one disparity map to the other one, most of the
infeasible conjugate pairs can be removed, and an outlier in
the disparity map can be found. The left disparity map after
the LRC check processing is illustrated in Fig. 4 (c).

C. Subpixel Enhancement

In this paper, the road surface application requires a mil-
limeter accuracy in 3D reconstruction. A disparity error larger
than one pixel may result in a non-neglected difference in the
reconstructed road surface [32]. Therefore, subpixel resolution
is inevitable to achieve a highly accurate result.

For each pixel whose disparity d is �(u, v), we fit a
parabola to three correlation costs c(u, v, d − 1), c(u, v, d)
and c(u, v, d +1) around the initial disparity d . The centerline
of the parabola is selected as the subpixel displacement ds as
follows [26]:

ds = d + c(u, v, d − 1)− c(u, v, d + 1)

2c(u, v, d−1)+ 2c(u, v, d+1)− 4c(u, v, d)
(8)

Since the CMV guarantees that c(u, v, d) is larger than both
c(u, v, d − 1) and c(u, v, d + 1), ds will be between d − 1
and d + 1. Fig. 4 (c) after the subpixel enhancement is given
in Fig. 4 (d).

IV. DISPARITY MAP GLOBAL REFINEMENT

A. Markov Random Fields and Fast Bilateral Stereo

Unlike the principle of WTA applied in local stereo match-
ing algorithms, the matching costs from neighboring pixels
are also taken into account in global algorithms, e.g., GC and
BP. The MRF is a commonly used graphical model in these
global algorithms. An example of the MRF model is depicted
in Fig. 5.

The graph G = (P, E) is a set of vertices P connected
by edges E , where P = { p11, p12, · · · , pmn} and E =
{( pi j , pst) | pi j , pst ∈ P}. Two edges sharing one common

Fig. 5. Markov random fields.

vertex are called a pair of adjacent edges [33]. Since the MRF
is considered to be undirected, ( pi j , pst ) and ( pst , pi j ) refer
to the same edge here. Ni j = {n1 pi j , n2 pi j , · · · , nk pi j | n pi j ∈
P} is a neighborhood system for pi j .

For stereo vision problems, P is a m × n disparity map
and pi j is a vertex (or node) at the site of (i, j) with a
label of disparity di j . Because more candidates taken into
consideration usually make the inference of a true disparity
intractable, only the neighbors adjacent to pi j are considered
for stereo matching [10]. This is also known as a pairwise
MRF. In this paper, k = 4 and N is a four-connected
neighborhood system. E1 = ( pi j , n1 pi j ), E2 = ( pi j , n2 pi j ),
E3 = ( pi j , n3 pi j ) and E4 = ( pi j , n4 pi j ) are adjacent edges
sharing the vertex pi j . The disparity of pi j tends to have
a strong correlation with its vicinities, while it is linked
implicitly to any other random nodes in the disparity map.
In [10], the joint probability of the MRF is written as:

P( p, q) =
∏

pi j ∈P
�( pi j , q pi j )

∏
n pi j ∈Ni j


( pi j , n pi j ) (9)

where q pi j represents the intensity differences, �(·) expresses
the compatibility between possible disparities and the corre-
sponding intensity differences, and 
(·) expresses the compat-
ibility between pi j and its neighborhood system. Now, the aim
of finding the best disparity is equivalent to maximizing the
probability in Eq. 9. This can be realized by formulating Eq. 9
as an energy function [10]:

E( p) =
∑

pi j ∈P
D( pi j , q pi j )+

∑
n pi j ∈Ni j

V ( pi j , n pi j ) (10)

D(·) and V (·) are two energy functions. D(·) corresponds
to the matching cost and V (·) determines the aggregation from
the neighbors. In the MRF model, the method to formulate an
adaptive V (·) is important because the intensity in discontinu-
ous areas usually varies greatly from that of its neighbors [34].
Since Tomasi et al. introduced the bilateral filter in [35],
many authors have investigated its applications to aggregate
the matching costs [24]–[26]. These methods are also grouped
into fast bilateral stereo, where both intensity difference and
spatial distance provide a weight to adaptively constrain the
aggregation of discontinuities. A general representation of the
cost aggregation in FBS is represented as follows:

cagg(i, j, d) =
∑i+ρ

x=i−ρ
∑ j+ρ

y= j−ρ ωd (x, y)ωr (x, y)c(x, y, d)∑i+ρ
x=i−ρ

∑ j+ρ
y= j−ρ ωd (x, y)ωr (x, y)

(11)
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where ωd is based on the spatial distance and ωr is based
upon the color similarity. The costs c within a square block
are aggregated adaptively to obtain cagg.

Although the FBS has shown a good performance in terms
of matching accuracy, it usually takes a long time to process
the whole cost volume. Therefore, we propose an improved
adaptive aggregation method to optimize the subpixel disparity
map iteratively.

B. Subpixel Disparity Refinement With Energy Minimization

In this paper, the local algorithm proposed in section III
greatly minimizes the trade-off between accuracy and speed.
A precise subpixel disparity map can be estimated with a near
real-time performance. Compared to conventional MRF-based
algorithms, our global refinement method only aggregates the
costs around the best disparity and updates the disparity map
in a more efficient way. The proposed disparity refinement
algorithm is developed based on the following assumptions:

• the subpixel disparity map obtained in section III is
acceptable.

• for an arbitrary pixel, its neighbors (excluding disconti-
nuities) in all directions have similar disparities.

• the interpolated parabola f (d) = β0 + β1 d + β2 d2 in
section III-C is locally smooth.

Before going into further details about our disparity refine-
ment approach, we first rewrite the energy function in Eq. 10
in a more general way as follows [36]:

E( p) = Edata( pi j )+ λEsmooth( pi j , n pi j ) (12)

where the term Edata penalizes the solutions that are incon-
sistent with the observed data, Esmooth enforces the piecewise
smoothness and λ is the smoothness parameter. For conven-
tional MRF-based stereo matching algorithms, Edata denotes
the matching cost and Esmooth is the cost aggregation from
the neighborhood system. By minimizing the global energy of
the whole random field, a disparity map can be estimated.

In section III-C, we fit a parabola f (d) = β0 + β1 d +
β2 d2 to three correlation costs c(u, v, d − 1), c(u, v, d) and
c(u, v, d + 1) to get the subpixel disparity ds . The parabola
function f (d) contains the information of both subpixel dis-
parity and correlation costs. Since f (d) is assumed to be
locally smooth, the neighboring pixels tend to have similar
parabola parameters. However, when an abrupt change occurs,
they vary significantly and in this case, the condition for
uniform smoothness is no longer valid. Therefore, we use
function f (d pi j ) as the label in MRF. By adaptively aggregat-
ing functions f (dn pi j

) of the neighborhood system to f (d pi j ),
f (d pi j ) is updated iteratively.

In order to ensure energy minimization rather than energy
maximization as widely presented in literature, the term Edata

is defined as:

Edata( pi j ) = − f (d pi j ) (13)

λ has a value of 1/
√

2 in this paper. Using the same strategy
of adaptive aggregation in FBS, we define the smoothness
energy Esmooth( pi j , n pi j ) as the adaptive sum of negative

Fig. 6. Disparity map global refinement and post-processing. (a) subpixel
disparity map after the third iteration. (b) post-processed disparity map.

interpolated parabolas − f (dn pi j
) of spatially varying horizon-

tal and vertical nearest neighbors:

Esmooth( pi j , n pi j ) = −
k∑

m=1

ω( pi j , nm pi j ) f (dnm pi j
) (14)

where

ω( pi j , nm pi j ) = exp

{
−||Em||22

σd
2

}
exp

{
−
(dnm pi j

− d pi j )
2

σr
2

}

(15)

The weighting coefficient ω is determined by both the spa-
tial distance ||Em ||2 between nmpi j and pi j and the difference
between dnmpi j

and d pi j . σd and σr are two parameters used
to control ω and they are respectively set to 1 and 5 in
this paper. If dnmpi j

is similar to d pi j , the weight for cost
aggregation is higher. The energy function with respect to the
correlation costs is updated iteratively. The subpixel disparity
map is optimized by approximating the minima of the updated
energy functions. In this paper, the proposed process is iterated
three times, and the result after the third iteration is shown
in Fig. 6 (a).

V. POST-PROCESSING AND 3D RECONSTRUCTION

Due to the fact that the perspective views have been
transformed in section II, the estimated subpixel disparities
on row v should be added α0 + α1v − δ to obtain the post-
processed disparity map which is illustrated in Fig. 6 (b). Then,
the intrinsic and extrinsic parameters of the stereo system are
used to compute each 3D point Pw = [Xw,Yw, Zw]� from its
projections pl = [ul , vl ]� and pr = [ur , vr ]�, where vr is
equivalent to vl , and ur is associated with ul by disparity d .

For many state-of-the-art road model estimation algorithms,
the effects caused by the non-zero roll angle (Fig. 7 (b)) are
always ignored because the stereo cameras will not change
significantly over time [37]. However, the experimental set-
up in this paper is installed manually and the roll angle may
introduce a distortion on the v-disparity histogram. Therefore,
the roll angle needs to be estimated for the initial frame to
minimize its impact on the perspective transformation for the
rest of the sequences. As in [37], the roll angle γ can be
estimated by fitting a linear plane (d(u, v) = γ0 + γ1u + γ2v)
to a small patch from the near field in the disparity map and
γ = arctan(−γ1/γ2). The pitch angle θ can be estimated by
rearranging Eq. 4 as Eq. 16, where the parameters [α0, α1]�
have been approximated in section II. The yaw angle ψ shown
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Fig. 7. Extrinsic rotations. (a) pitch angle θ . (b) roll angle γ . (c) yaw angle ψ .
h is the height of the proposed binocular system.

Fig. 8. Road surface 3D reconstruction.

in Fig. 7 (c) is assumed to be 0.

θ = arctan

(
1

f

(
α0

α1
+ v0

))
(16)

Each 3D point [Xw,Yw, Zw]� can be transformed into
[X ′

w,Y ′
w, Z ′

w]� using Eq. 17 [38]. The rotation matrix R =
Rψ Rθ Rγ is a SO(3) matrix. The rotation with R makes pot-
hole detection much easier. The 3D reconstruction of Fig. 3 (a)
is illustrated in Fig. 8.

⎡
⎣X ′

w
Y ′

w
Z ′

w

⎤
⎦ = Rψ Rθ Rγ

⎡
⎣Xw

Yw

Zw

⎤
⎦ (17)

where

Rψ =
⎡
⎣ cosψ 0 sinψ

0 1 0
− sinψ 0 cosψ

⎤
⎦ (18)

Rθ =
⎡
⎣1 0 0

0 cos θ sin θ
0 − sin θ cos θ

⎤
⎦ (19)

Fig. 9. Experimental set-up.

Fig. 10. Designed 3D sample models. The unit is millimeter.

Rγ =
⎡
⎣ cos γ sin γ 0

− sin γ cos γ 0
0 0 1

⎤
⎦ (20)

VI. EXPERIMENTAL RESULTS

In this section, we evaluate the performance of our proposed
road surface 3D reconstruction algorithm both qualitatively
and quantitatively. The algorithm is programmed in C lan-
guage on an Intel Core i7-4720HQ CPU using a single thread.
The following subsections detail the experimental set-up and
the performance evaluation.

A. Experimental Set-Up

In our experiments, a state-of-the-art stereo camera from
ZED Stereolabs is used to capture 1080p (3840×1080) videos
at 30 fps or 2.2K (4416 × 1242) videos at 15 fps [39]. The
baseline is 120 mm. With its ultra sharp six element all-glass
dual lenses and 16:9 native sensors, the video is 110◦ wide-
angle and able to cover the scene up to 20 m. An example of
the experimental set-up is shown in Fig. 9. The stereo camera
is calibrated manually using the stereo calibration toolbox
from MATLAB R2017a. The overall calibration mean error
in pixels is 0.335.

To quantify the accuracy of the proposed algorithm,
we designed three sample models A, B and C with different
sizes. They are printed with a MakerBot Replicator 2 Desktop
3D Printer whose layer resolution is from 0.1 mm to 0.3 mm.
Their top views and the stereogram of model A are illustrated
in Fig. 10, where A and B are designed with grooves to
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Fig. 11. Experimental results. The first and third columns are the input left images. The second and fourth columns are the subpixel disparity map without
post-processing.

TABLE I

DESIGN SIZE AND ACTUAL SIZE OF THE SAMPLE MODELS

simulate potholes. To get the ground truth for our experi-
ments, we measured the actual size of these models using
an electronic vernier caliper. Both the design and actual sizes
of the models are presented in Table I. Since the models are
printed with a single color, resulting in homogeneous areas,
we attached them with a piece of paper with the texture of
the road surface printed on it to avoid the ambiguities during
stereo matching, as can be seen in Fig. 9.

Using the above experimental set-up, we create three
datasets (91 stereo image pairs) for the road surface 3D
reconstruction. Datasets 1 and 2 aim at road sceneries, and
dataset 3 contains the sample models to help researchers
qualify their reconstruction results. The datasets are available
at: http://www.ruirangerfan.com.

The following subsections analyze the performance of our
algorithm in terms of disparity accuracy, reconstruction accu-
racy and processing speed.

B. Disparity Evaluation

Some examples of the disparity maps are illustrated
in Fig. 11. Before estimating the disparity map, we trans-
form the target image into its reference view, which greatly
eliminates the perspective distortion for a GP between two
images. Since the GP in the left and right images now looks
similar to each other, the average of the highest correlation
costs goes higher, which is depicted in Fig. 12. For stereo
matching with only SRP, the average of the highest correlation
increases gradually from 0.807 (ρ = 1) to 0.845 (ρ = 4).
However, when ρ goes above 4, c keeps decreasing. If we

Fig. 12. Comparison between SRP and PT+SRP in terms of the average of
the highest correlation costs.

Fig. 13. Evaluation of subpixel enhancement and disparity global refinement.

pre-process the input image pairs with the PT, the average
of the highest correlation costs in the SRP stereo will grow
gradually between ρ = 1 and ρ = 8. In this paper, our datasets
are created with high-resolution images, and ρ is proposed
to be 5. Compared with the conventional SRP stereo, the PT
improves the average correlation cost with an increase of 0.05.
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Fig. 14. Experimental results of the KITTI stereo 2012 dataset. The first row shows the left images, where areas in magenta are our manually selected road
surface. The second row shows the disparity ground truth. The third row shows the results obtained from the proposed algorithm.

Furthermore, we select one row from the disparity map to
evaluate the performance of subpixel enhancement and global
refinement (see Fig. 13). The integer disparity d oscillates
along the selected row and drops down abruptly when a
discontinuity occurs. After the subpixel enhancement, the dis-
parity d is replaced with a better one ds between d − 1 and
d + 1. The iterative global refinement further optimizes the
subpixel disparity map. After the third iteration, the disparities
change more smoothly in a continuous area but interrupt
suddenly when reaching a discontinuity.

Since the datasets we create only contain the ground truth
of 3D reconstruction, the KITTI stereo 2012 dataset [40]
is used to further evaluate the disparity accuracy of our
algorithm. Some experimental results are illustrated in Fig. 14.
Due to the fact that the proposed algorithm only aims at
reconstructing the road surface, we select a region of interest
(see the magenta areas in the first row) from each image to
evaluate the performance of our algorithm. The corresponding
disparity results in the region of interest are shown in the third
row. The percentage of error pixels (threshold: two pixels) is
around 0.73% and the average error in pixels is about 0.51.

C. Reconstruction Evaluation

To further evaluate the accuracy of the reconstruction
results, we create dataset 3 (see section VI-A for details) with
three different sample models. An example of the left image is
illustrated in Fig. 15 (a). The corresponding subpixel disparity
map and 3D reconstruction are depicted in Fig. 15 (b) and (c),
respectively. We select a rectangular region which includes
one of the sample models from Fig. 15 (a), and the 3D
reconstruction of this region can be seen in Fig. 15 (d).
A surface κ0 Xw + κ1 Yw + κ2 Zw + κ3 = 0 is fitted to
four corners S1, S2, S3 and S4 of the selected region. Then,
we select a set of random points P1, P2, . . . , Pn on the surface
of the model and estimate the distances between them and
the fitted road surface. These random distances provide the
measurement range of the model height. Similarly, the groove
depth can be estimated by computing the distances between a

Fig. 15. Sample model 3D reconstruction. (a) left image. (b) subpixel
disparity map with post-processing. (c) reconstructed scenery. (d) selected
3D point cloud which includes model B.

group of points Q1, Q2, . . . , Qn in a groove and the model
surface. Table II details the range of the measured model
height and groove depth, where D represents the approximated
distance from the camera to sample models.

From Table II, the maximal absolute error of the 3D
reconstruction is approximately 3 mm, and it increases slightly
when D increases. The reconstruction precision is inversely
proportional to the depth [41]. Furthermore, since the baseline
of the ZED camera is fixed and cannot be increased to
further improve the precision, we mount it to a relatively low
height and it is kept as perpendicular as possible to the road
surface to reduce the average depth, which guarantees a high
reconstruction accuracy.

D. Processing Speed

The algorithm is implemented in C language on an Intel
Core i7-4720HQ CPU (2.6 GHz) using a single thread. After
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TABLE II

3D RECONSTRUCTION MEASUREMENT RANGE

Fig. 16. Comparison between SRP and PT+SRP in terms of the runtime.

TABLE III

ALGORITHM RUNTIME

the PT, each point on row v in the target image is shifted
a0 + a1v − δ pixels to obtain a reference view, which greatly
reduces the search range for stereo matching. The evaluation of
the PT with respect to the runtime is illustrated in Fig. 16. The
PT accelerates the processing speed of the SRP stereo when
using different block sizes. When ρ = 5, the processing speed
is increased by over 36%. The runtime of different datasets
is shown in Table III. Although the proposed algorithm does
not run in real time, the authors believe that its speed can be
increased in the future by exploiting the parallel computing
architectures.

VII. CONCLUSION AND FUTURE WORK

The main novelties of this paper include PT, CMV, and
disparity map global refinement. We created three datasets
and made them publicly available to contribute to 3D
reconstruction-based pothole detection. The PT not only
enhances the similarity of a GP between two images but also
reduces the search range for stereo matching. This helps the
SRP stereo perform more accurately and efficiently. The CMV
further offsets the insufficient propagation in the SRP stereo
and guarantees the feasibility of parabola interpolation in the
subpixel enhancement phase. By iteratively minimizing the
energy with respect to the interpolated parabolas, the subpixel
disparity map is optimized. The disparities in a continuous
area become more smooth, but they are preserved when
discontinuities occur. The maximal absolute error of the 3D
reconstruction is around 3 mm, which satisfies the requirement

of millimeter accuracy for on-road damage detection. Further-
more, due to the high precision of the proposed system, users
can apply it to road surface SLAM (Simultaneous Localization
and Mapping) for many smart city applications.

However, the propagation strategy in the proposed algorithm
makes it difficult to fully exploit the parallel computing
architecture of the graphics cards to estimate disparity maps.
Therefore, we aim to come up with a more efficient SRP
strategy which can be adapted for different platforms. Further-
more, errors in stereo calibration always affect the precision
of the stereo matching dramatically. Hence, we aim to design
a self-calibration algorithm to enhance the robustness of our
proposed stereo vision system, and the reconstructed sceneries
will be used for 3D pothole detection.
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