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Abstract— Feature-fusion networks with duplex encoders have
proved to be an effective technique for solving the road
freespace detection problem. However, despite the compelling
results achieved by previous research efforts, the exploration
of adequate and discriminative heterogeneous feature fusion,
as well as the development of fallibility-aware loss functions,
remains relatively scarce. This article makes several significant
contributions to address these limitations: 1) it presents a
novel heterogeneous feature fusion block (HF?B), comprising
a holistic attention module (HAM), a heterogeneous feature
contrast descriptor (HFCD), and an affinity-weighted feature
recalibrator (AWFR), enabling more in-depth exploitation of
the inherent characteristics of the extracted features; 2) it
incorporates both interscale and intrascale skip connections
into the decoder architecture, while eliminating redundant ones,
leading to both improved accuracy and computational efficiency;
and 3) it introduces two fallibility-aware loss functions that
separately focus on semantic-transition and depth-inconsistent
regions, collectively contributing to greater supervision during
model training. Our proposed SNE-RoadSegV2, which incor-
porates all these innovative components, demonstrates superior
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performance in comparison to all other free-space detection
algorithms across multiple public datasets.

Index Terms— Duplex encoders, fallibility-aware loss, feature
fusion, freespace detection, holistic attention.

I. INTRODUCTION

S a vital piece of the autonomous driving puzzle, reli-

able collision-free space (freespace for short) detection
holds significant importance in autonomous driving systems,
as it directly impacts a vehicle’s ability to make informed
decisions and ensures dependable navigation [1]. In recent
years, freespace detection has attracted considerable attention
in research, with ongoing efforts aimed at addressing corner
cases in complex and dynamic environments. Nevertheless,
regardless of whether the approach is explicit programming-
based or data-driven, the utilization of 3-D information is
growing in significance for freespace detection, primarily due
to the valuable spatial geometry information it provides [2].
Feature-fusion networks with duplex encoders, designed to
extract heterogeneous features from multiple data sources or
modalities and fuse them to provide a more comprehensive
understanding of the environment, have emerged as a viable
solution to tackle this problem [3], [4], [5], [6].

The performance of a feature-fusion freespace detection
network depends not only on the input data type but also on
how these features are fused [7]. A current bottleneck lies
in the simplistic and indiscriminate fusion of heterogeneous
features, often causing conflicting feature representations and
erroneous detection results [2]. For example, in the SNE-
RoadSeg series [1], [8], their adopted feature fusion strategy
essentially performs an element-wise summation between
RGB and surface normal feature maps at each stage, while
neglecting the inherent differences in feature characteristics
and their respective reliability [9]. Furthermore, as the network
goes deeper, such an asymmetric feature fusion strategy tends
to diminish the proportion of RGB features in the decoder
input. This, in turn, leads to unsatisfactory performance, partic-
ularly in areas such as pavements or other lanes, where surface
normals closely resemble those of freespace, demanding a
greater reliance on color or textural information.

In the decoder aspect, we observe two phenomena: 1) inter-
scale skip connections provide an advantage in achieving more
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Fig. 1. Overview of our proposed SNE-RoadSegV2.

comprehensive feature decoding, primarily due to their ability
to capture both fine-grained and coarse-grained details [10].
Unfortunately, however, they are not fully utilized and 2) the
currently adopted intrascale skip connections appear to be
excessively redundant for this task. Moreover, the utilization
of pixel-wise binary cross-entropy (BCE) loss has been a
common practice in freespace detection. Nevertheless, no prior
endeavors have been undertaken to delve into the fallible
cases, notably the misclassifications occurring near semantic
transition and depth-inconsistent regions.

As shown in Fig. 1, to address the aforementioned lim-
itations, we first dive deeper into the discriminative feature
fusion strategies presented in recent universal semantic seg-
mentation studies [1], [8]. Subsequently, we introduce a novel
HF?B to process the RGB and surface normal features,
which are encoded using two independent Swin Transformer
backbones [11]. Our technical contributions in this part are
threefold: 1) a HAM to model the interdependencies between
heterogeneous features across three dimensions (spatial, chan-
nel, and scale); 2) an HFCD to effectively underscore both the
shared and unique characteristics in the holistically attentive
features; and 3) an AWFR to jointly emphasize and suppress
heterogeneous features before their input into the decoder.
Additionally, we contribute to a lightweight, yet more effective
decoder, which incorporates interscale skip connections while
pruning redundant ones. Our decoder demonstrates greater
feature decoding capabilities, while simultaneously reducing
computational complexity. Finally, we design two new loss
functions based on semantic annotations and depth data to
provide deeper supervision during our model training process.
This contribution also results in improved overall performance,
particularly in error-prone areas. The effectiveness of each
contribution is validated through extensive experiments con-
ducted across public datasets. In a nutshell, our contributions
are as follows.

1) We propose SNE-RoadSegV2, a novel feature-fusion
freespace detection approach, achieving state-of-the-art
(SoTA) performance across multiple public datasets.
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2) We introduce HF?B, consisting of an HAM, an HFCD,
and an AWFR, for comprehensive heterogeneous feature
description, recalibration, and fusion, resulting in more
coherent feature representations.

3) We design a lightweight, yet more effective decoder,
incorporating interscale skip connections while pruning
redundant intrascale ones, demonstrating greater efficacy
and computational efficiency.

4) We develop two novel fallibility-aware loss functions,
which focus particularly on reducing misclassifications
in semantic transition and depth-inconsistent regions,
leading to improved overall performance.

This article is structured as follows. Section II presents an
overview of the SoTA freespace detection and feature fusion
methods. In Section III, we introduce the proposed SNE-
RoadSegV2 framework and fallibility-aware loss functions.
In Section IV, we present the experimental results across sev-
eral public datasets. Section V provides a detailed discussion
and concludes this article.

II. RELATED WORK
A. Data-Driven Freespace Detection

While it is feasible to employ universal semantic seg-
mentation networks [12], [13], [14], [15] for this task,
it has been observed that task-specific approaches [1], [8],
[16] consistently deliver superior performance. Early task-
specific freespace detection approaches [17], [18], [19],
[20] thoroughly rely on RGB images and were found to
be highly sensitive to environmental factors, notably illu-
mination and weather conditions [1]. Given the increased
prevalence of range sensors, particularly LiDARs, feature-
fusion networks [2], [21], [22] have emerged as a more
robust choice in this domain. In terms of network architecture,
these approaches are characterized by duplex-encoder archi-
tectures [1], [16], where each encoder extracts hierarchical
features from a specific data source or modality. The extracted
heterogeneous features are subsequently fused, enabling the
network to gain a more comprehensive understanding of the
environment [2]. As for the input data, the most commonly
used spatial geometric information includes depth/disparity
maps [23], [24], LiDAR point clouds [2], [21], and surface
normal information [1], [8], [16]. Extensive experiments con-
ducted in previous studies [1], [8], [16] have conclusively
demonstrated that surface normals provide the most infor-
mative spatial geometric information for freespace detection,
owing to their representation of road plane characteristics.
Therefore, in this article, we adopt the pipeline introduced
in [1], [8], and [16], which utilizes a duplex-encoder archi-
tecture to extract heterogeneous features from RGB images
and surface normal information. However, it is important
to note that our focus differs from those of these previous
works. Our emphasis lies in designing heterogeneous feature
fusion strategies, developing a lightweight, yet more effective
decoder, and introducing task-specific loss functions.

B. Heterogeneous Feature Fusion

Heterogeneous feature fusion plays a pivotal role in various
computer vision tasks, such as salient object detection [25],
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Fig. 2. Tllustration of our proposed heterogeneous feature fusion block.

[26], [27] and scene parsing [28], [29], [30]. Although this
topic may not have received extensive attention in freespace
detection, it is worth noting that notable related works were
proposed in the broader field of semantic segmentation. For
instance, the cross feature module (CFM) was proposed in [25]
for refining features at multiple levels while simultaneously
suppressing background noise. Additionally, the separation-
and-aggregation gate (SAGate) [26] is another general-purpose
heterogeneous feature fusion method that incorporates com-
plementary information through feature recalibration and
aggregation to generate selective representations for segmenta-
tion. Moreover, Pang et al. [27] introduced the dynamic dilated
pyramid module (DDPM), which generates adaptive kernels
for efficient feature decoding. As these prior studies generally
overlook the appropriate discrimination between the inherent
differences of heterogeneous features, our primary focus in
this article is directed toward addressing this aspect.

C. Attention Mechanisms

Attention mechanisms are vital components in modern
deep learning models, allowing for effective concentration
on specific elements of input data, ultimately leading to a
more comprehensive understanding of the environment [31],
[32], [33]. As a representative example, the squeeze-and-
excitation network (SENet) [31] dynamically recalibrates
channel-wise feature responses by explicitly modeling depen-
dencies between channels, enabling the network to emphasize
informative channels while suppressing less relevant ones.
In addition to channel attention, the convolutional block
attention module (CBAM) [34] introduces attention from
another dimension—spatial. This lightweight and highly com-
patible module sequentially computes channel and spatial
attention maps and multiplies them with the input feature
maps to achieve more adaptive feature refinement. On the
other hand, Swin Transformer [11] is a general-purpose
Transformer backbone developed specifically for fundamental
computer vision tasks. It is highly regarded for its hier-
archical representation learning approach, which computes
self-attention locally within nonoverlapping shifted windows.
This innovative design contributes to its compelling perfor-

Heterogeneous Feature Contrast Descriptor Affinity-Weighted Feature Recalibrator

mance in applications, including image classification, object
detection, and semantic segmentation. In this article, we first
extend CBAM to three dimensions: the original two-plus scale.
Moreover, we use two Swin Transformers as the backbone
networks in the SNE-RoadSegV2 duplex encoder, and com-
prehensive experiments in Section IV provide evidence of
its superior performance compared to convolutional neural
networks (CNNs).

III. METHODOLOGY
A. Architecture Overview

Fig. 1 provides readers with an overview of the SNE-
RoadSegV2 architecture, consisting of three key elements:
duplex feature embedding, heterogeneous feature fusion, and
lightweight, yet effective feature decoding. A pair of input
RGB image 1 R and surface normal map 1 N translated from
a depth image I” using a surface normal estimator (SNE)
[35], are first tokenized into nonoverlapping patches and
transformed into a high-dimensional feature space through a
trainable linear projection in the patch embedding module [11].
The embedded features are subsequently fed into the Swin
Transformer blocks [11] to produce hierarchical heterogeneous
features FR = (FF ..., FFf} and FN = (FVY,...,F)}.
Each pair of heterogeneous features F/"" e RE*#*W under-
goes a comprehensive fusion process through HF?B. Finally,
a lightweight, yet more effective decoder that incorporates both
interscale and intrascale skip connections is designed to further
boost the efficiency and accuracy of freespace detection. The
proposed architecture is trained by minimizing a loss with
fallibility awareness incorporated. Sections III-A-III-C will
provide a detailed explanation of the HF?B, decoder, and loss
functions in sequence.

B. Heterogeneous Feature Fusion Block

The core problem of feature encoding for freespace detec-
tion revolves around the effective fusion of heterogeneous
features extracted from various data sources. As detailed
in Section I, heterogeneous features in the previous works
were fused without appropriate discrimination between their
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inherent differences [1], [8], [21], [23]. Our HF? block is
specifically designed to overcome this limitation. As depicted
in Fig. 2, meaningful heterogeneous features are first selec-
tively emphasized and suppressed across three dimensions
(spatial, channel, and scale) through an HAM. These features
are further enhanced through an HFCD, which improves the
representations of their shared and distinct heterogeneous data
characteristics. The original heterogeneous features are ulti-
mately weighted through an AWFR to emphasize the aspects
that are important to both or either of the features.

1) Holistic Attention Module: Before contrasting and fus-
ing heterogeneous features, it is imperative to emphasize or
attenuate specific spatial regions and channels across multiple
scales [15], [34]. Drawing inspiration from CBAM [34],
we first apply spatial attention to both RGB and surface normal
feature maps F® and FV, resulting in spatially weighted
feature maps F § and F g’ , respectively, which are then con-
catenated to form Fg

FS L [FR; Fg] — [fy(FR); f;(FN)] e RZCXHXW (1)

where f;(-) denotes the spatial attention operation, allowing
the model to prioritize important regions of an image while
suppressing less relevant areas.

As illustrated in Fig. 2, another branch of HAM incorporates
multiscale contextual information along with channel atten-
tion. A series of atrous convolutional layers [15] are initially
employed to generate features F 4 with progressively expanded
receptive fields

Fu=[fua(FF); fu(FY)] e RZEV )

where f,(-) denotes the multiscale context aggregation opera-
tion. A channel attention operation f,. is subsequently applied
to further model the interdependencies between heterogeneous
features at both scale and channel levels, resulting in scale-
channel attentive feature maps F¢ as follows:

Fc £ [FE FE] = fo(Fp) e RZV (3)

In contrast to prior works [31], [34] which exclusively focus on
channel attention and lack the consideration of multiple scales,
our designed scale-channel co-attention mechanism provides
a more comprehensive perspective on heterogeneous features.

2) Heterogeneous Feature Contrast Descriptor: After mod-
eling the interdependencies of the heterogeneous features
across three separate dimensions using (1)—(3), we further
explore the way to contrast these features more comprehen-
sively and effectively. Unlike relevant prior arts, for example,
CFM [25], SAGate [26], and DDPM [27], which primar-
ily emphasize feature commonality, our investigation delves
deeper into both their shared and distinct characteristics.
To this end, we first normalize the spatial-attentive and scale-
channel co-attentive features Fg and F¢ using a sigmoid
function o (-), yielding Fg = [F¥; FY¥]and F¢ = [FE; F),
respectively. Performing an element-wise product operation
between F §’C and F @’ ¢ activates jointly emphasized parts
between heterogeneous features, while performing an element-
wise subtraction operation between FX . and F? ¢ activates
features that are important only in either the RGB image or
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the surface normal map. Upon such inspiration, we formulate
our HFCD as follows:

h(Fsc) = [wii(Fsc © Fsc)iwia(FSc © Fso)] 4

where O refers to the Hadamard product and © denotes
element-wise subtraction. The operators w), ; represent a com-
bination of convolutional, batchnorm, and sigmoid layers.
As shown in Fig. 2, the described heterogeneous feature con-
trast h(f‘ s,c) is subsequently utilized to construct an affinity
volume A for further feature recalibration.

3) Affinity-Weighted Feature Recalibrator: Constructing a
volume that contains element-wise weights to jointly recal-
ibrate (emphasize and de-emphasize) heterogeneous features
is another significant contribution to our designed HF?B.
As h(F) and h(F ¢) describe the contrasting aspects between
the heterogeneous features at the spatial and scale-channel
levels, respectively, we employ these two volumes to construct
an affinity volume A € RE*#*W ag follows:

A = Reshape (h(ﬁ‘s)) Reshape (h(Fc))T 5

which provides the original heterogeneous features F® and
F" with element-wise weights between 0 and 1. Specifically,
a higher affinity value indicates greater importance of that
element in both types of feature maps, an intermediate affinity
value indicates greater importance of an element in either
of the feature maps, while a lower affinity value indicates a
redundant element in both types of feature maps that should
be neglected. Finally, F® and FV are weighted by A to
form FX and FJ for the next stage of feature encoding and
then concatenated to generate the recalibrated heterogeneous
features as follows:

F' = w, ([ w,(F* © A); w, (F* © 4) ]) e RV (6)

F Fy

where w,, w,, and w, denote convolutional layers. Compared
to other SoTA heterogeneous feature fusion strategies, our pro-
posed HF?B adaptively assigns weights to the original features,
taking into account both the elements of agreement and dis-
agreement in importance as determined by HFCD and AWFR.
Such a way of seeking common ground while preserving
differences enhances the comprehensiveness of feature fusion
for freespace detection. The superior performance of HF’B
and the effectiveness of each component are demonstrated in
Section IV-C.

C. Lightweight, Yet More Effective Decoder

Fig. 3 illustrates the decoder architectures of RoadSeg [1]
(identical to UNet++ [36]), UNet3+ [10], and our proposed
SNE-RoadSegV2. As claimed in [10], UNet++ fails to effec-
tively utilize multiscale features, and UNet3+4 was designed
specifically to resolve this limitation. However, before design-
ing our decoder, we must address the following question: Does
UNet3+ consistently outperform UNet++ in the freespace
detection task? Through an extensive series of experiments
with both CNN and Transformer backbones, we regret to
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report that the answer is negative. However, both the intrascale
skip connections in UNet++4 and the interscale skip connec-
tions in UNet3+ remain indispensable. Thus, we design the
SNE-RoadSegV2 decoder, which combines the strengths of
both UNet++ and UNet3+, through enormous experimental
efforts. As shown in Fig. 3, we maintain skip connections
only from a given node to its adjacent and final nodes at
each stage. This modification reduces redundant informa-
tion propagation without compromising decoder performance.
Additionally, we adopt the interscale skip connections used
in UNet3+ to capture both fine-grained and coarse-grained
details. Moreover, we replace the basic convolutions in
the decoder with depth-wise separable convolutions [37] to
further reduce its computational complexity. Section IV-C
quantitatively demonstrates that our SNE-RoadSegV2 decoder
outperforms UNet++ and UNet3+ in terms of both efficiency
and accuracy. Despite its superior performance, we consider
the employed decoder as an experimental contribution.

D. Fallibility-Aware Loss Functions

In previous works, the pixel-wise BCE loss has been
a commonly used primary loss function during supervised
model training. However, such efforts have not considered
the specific characteristics of real-world driving scenarios.
Misclassifications are frequently observed near the transition
regions between different semantic categories [25]. In addition,
the depth data are not explicitly utilized to supervise model
training. Hence, we propose a novel modification to the
conventional BCE loss function Lgcg by introducing two
weighting factors that prioritize these error-prone regions. The
overall loss is formulated as follows:

L = Lpce + AsLsta + ApLpia (7N

where A\g¢ and Ap balance the semantics transition-aware
loss Lsta and the depth inconsistency-aware loss Lpia,
respectively. The ablation studies on their individual efficacy
and the selection of hyperparameters Ay and Ap are provided
in Section IV-C.

1) Semantics Transition-Aware Loss: A transition region
between different semantic categories can be considered as

a mixture of semantic labels. For each pixel ¢ with a
neighborhood system N, = F, U B,, where F, and B,
denote the foreground (freespace) and background (others)
sets, respectively, we determine its likelihood wg(q) € [0, 1] of
belonging to a semantics transition region using the following
expression:

>IN, () 2

where I(-) is the indicator function and p € N,. This
likelihood approaches 0 when either F, or B, is close to being
an empty set and approaches 1 in semantics transition regions.
Substituting (8) into the standard BCE loss yields Lsta as
follows:

Lsta = — > ws(g)(yglog py + (1 = yp) log(1 = pp)) ©)
q

I
2,175 1‘ ®

ws(q) = cos(n

where y, € {0, 1} denotes the ground-truth label of ¢ (1 for
freespace and O otherwise), while p, € [0, 1] indicates the
probability that ¢ belongs to the freespace category. Section IV
provides details on the selection of N, radius.

2) Depth Inconsistency-Aware Loss: When depth images
are available, it is also advantageous to leverage these data
to improve network training via an adaptive loss function.
However, prior research efforts have not explored this aspect.

Let Q € R**N be a matrix storing the homogeneous coor-
dinates ¢ of the predicted freespace pixels g. Considering that
the height between the camera and the ground plane remains
theoretically constant in each image when disregarding the
camera pitch angle, we aggregate the y-coordinates of these
pixels to derive a theoretical camera height y, using the
following expression:

. 1 1z

5= [o, . O]K 0z (10)
where z € RY stores the depth values I”(g). A weight
wp(g) € [0, 1) measuring the depth inconsistency can then
be yielded as follows:

A

Y

wrae @) o

wplg) =1— exp(—‘
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TABLE I

QUANTITATIVE COMPARISON AMONG SOTA FREESPACE DETECTION ALGORITHMS ON THE KITTI ROAD OFFICIAL BENCHMARK.'THE SYMBOL 4
INDICATES THAT HIGHER VALUES CORRESPOND TO BETTER PERFORMANCE, WHILE | IMPLIES THE OPPOSITE. “RGB”: RGB IMAGES, “DISP”:

DISPARITY IMAGES, “DEPTH”: DEPTH IMAGES, “PC”: POINT CLOUDS, AND “NORMAL”: SURFACE NORMAL MAPS

Method Input Data MaxF (%) 1 AP (%) 1 Pre (%) 1 Rec (%) FPR (%) | FNR (%) | Rank |
Hadamard-FCN [39] RGB 94.85 91.48 94.81 94.89 2.86 5.11 35
RBANet [24] RGB 96.30 89.72 95.14 97.50 2.75 2.50 20
HA-DeepLabv3+ [40] RGB + Disp 94.83 93.24 94.77 94.89 2.88 5.11 36
DFM-RTFNet [41] RGB + Disp 96.78 94.05 96.62 96.93 1.87 3.07 15
USNet [23] RGB + Depth 96.89 93.25 96.51 97.27 1.94 2.73 13
LRDNet+ [21] RGB + LiDAR PC 96.95 9222 96.88 97.02 1.72 2.98 12
PLB-RD [42] RGB + LiDAR PC 97.42 94.09 97.30 97.54 1.49 2.46 8
PLARD [2] RGB + LiDAR PC 97.03 94.03 97.19 96.88 1.54 3.12 11
BIN [43] RGB + LiDAR PC 94.89 90.63 96.14 93.67 2.07 6.33 32
LidCamNet [30] RGB + LiDAR PC 96.03 93.93 96.23 95.83 2.07 4.17 21
CLCFNet [22] RGB + LiDAR PC 96.38 90.85 96.38 96.39 1.99 3.61 19
NIM-RTFNet [44] RGB + Normal 96.02 94.01 96.43 95.62 1.95 4.38 22
SNE-RoadSeg [1] RGB + Normal 96.75 94.07 96.90 96.61 1.70 3.39 16
SNE-RoadSeg+ [8] RGB + Normal 97.50 93.98 97.41 97.58 1.43 242 6
RoadFormer [16] RGB + Normal 97.50 93.85 97.16 97.84 1.57 2.16 6
RoadFormer+ [45] RGB + Normal 97.56 93.74 97.43 97.69 1.42 2.31 3
SNE-RoadSegV2 (Ours) RGB + Normal 97.55 93.98 97.57 97.53 134 247 5

It approaches 0 or 1 when the free-space depth is consis-
tent or inconsistent, respectively. Lpja is thus, formulated
as follows:

Lo = =3 wn(@)(yglog py + (1= y) log(1 = py)).
q

12)

IV. EXPERIMENTS

We perform both qualitative and quantitative comparisons
between SNE-RoadSegV?2 and other SoTA freespace detection
algorithms on the KITTI Road dataset [47] (medium-sized)
and the Cityscapes dataset [46] (large-scale). Subsequently,
we conduct extensive experiments to validate the effective-
ness of our proposed encoder, decoder, and loss functions,
as detailed in the ablation studies. To further demonstrate
the superior performance of our network, we also pro-
vide additional experiments carried out on the VKITTI2
dataset [48] (large-scale, yet synthetic) and the KITTI Seman-
tics dataset [49] (real-world, yet small-sized) in the supplement
at https://mias.group/SNE-RoadSegV?2 to validate the robust-
ness of our free-space detection framework.

A. Datasets, Evaluation Metrics, and Implementation Details

The details on the four datasets are as follows.

1) KITTI Road [47]: This dataset provides real-world
RGB-D data (image resolution: 1242 x 375 pixels) for
the evaluation of data-fusion freespace detection algo-
rithms. Following the study presented in [1], we split
the dataset into three subsets: training (173 images),
validation (58 images), and testing (58 images) to
conduct ablation studies and hyperparameter selection
experiments.

IResults are publicly available at cvlibs.net/datasets/kitti/eval_road.php.

2) Cityscapes [46]: This dataset provides real-world stereo
images (resolution: 2048 x 1.024 pixels), each man-
vally annotated with 34 semantic classes. In our
experiments, we preprocess the ground-truth annotations
by categorizing them into two groups: freespace and
others. As there is no depth ground truth available,
we utilize a pretrained RAFT-Stereo [50] to generate
depth images. We adhere to the official split of training,
and validation sets, with 2975 and 500 images in each
set.

Adhering to the experiments presented in [1], we quantify
the model’s performance using accuracy (Acc), precision (Pre),
recall (Rec), F1-score (F'sc), and intersection over union (IoU)
[38]. Additionally, when submitting the results obtained from
the best-performing model to the KITTI Road benchmark,
we also compute the maximum F'1-measure (MaxF), average
precision (AP), false-positive rate (FPR), and false negative
rate (FNR) [38].

Our experiments are conducted using an Intel Core
i7-12700k CPU and an NVIDIA RTX 4090 GPU. The Adam
optimizer [51] with an initial learning rate of 0.001 is used
to minimize the loss function. A multistep learning scheduler
with a decay rate of 0.5 for every 20 epochs is also employed.
Each model is trained for a total of 100 epochs, with early
stopping mechanisms applied to the validation set to prevent
over-fitting. Common data augmentation techniques, such as
random flipping, rotation, cropping, and brightness adjustment,
are also applied to enhance the model’s robustness.

B. Comparison With SoTA Methods

The quantitative and qualitative experimental results on the
KITTI Road dataset are presented in Table I and Fig. 4,
respectively, while the quantitative and qualitative experimen-
tal results on the Cityscapes dataset are given in Table II
and Fig. 5, respectively. These results suggest that our pro-
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Fig. 4. Qualitative comparisons of SoTA freespace detection algorithms on the KITTI Road dataset [38]. The results of the compared algorithms are obtained
using their officially published source codes and weights. (a) Freespace detection results. (b) Probability maps.
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Qualitative comparisons of SoTA freespace detection algorithms on the Cityscapes dataset [46]. The results are visualized with true-positive

classifications in green, false-positive classifications in blue, and false-negative classifications in red.

TABLE I

COMPARISON AMONG SOTA FREESPACE DETECTION ALGORITHMS ON
THE CITYSCAPES DATASET [46]

Method Fsc (%) 1+ ToU (%) 1 Acc (%) T
NIM-RTENet [44] 92.02 85.22 96.07
RBANet [24] 93.81 88.34 96.50
USNet [23] 94.28 89.18 96.71
LRDNet+ [21] 94.71 89.95 97.02
PLARD [2] 95.28 90.99 97.15
SNE-RoadSeg [1] 96.49 93.22 97.68
SNE-RoadSegV2 (Ours) 97.12 94.40 98.11

posed SNE-RoadSegV2 demonstrates superior performance
compared to all other SOTA free-space detection approaches,
with an increase in MaxF by up to 2.72% on the KITTI dataset
and an increase in IoU by 1.18% versus the second best on
the Cityscapes dataset. The qualitative comparisons, with sig-
nificantly improved regions highlighted by red dashed boxes,
particularly near semantic transition and depth-inconsistent
regions, also validate the effectiveness of our designed feature
fusion block, decoder, and loss function. The ablation studies
that validate the individual efficacy of these components are
discussed in the next section.

TABLE III

ABLATION STUDY ON THE DESIGN OF HF?B. “BASELINE”: STANDARD
FEATURE FUSION EMPLOYED IN SNE-ROADSEG, “SA”: SPATIAL
ATTENTION, “CA”: CHANNEL ATTENTION,

“AC”: ATROUS CONVOLUTIONS

Baseline HAM HFCD ACFR Fsc (%) 1

SA CA AC

v 96.65
v v v 96.54
v v v v 97.11
v v v v v 97.69
v v v v 96.84
v v v v 97.08

C. Ablation Study

1) Encoder: We first explore the rationality of each com-
ponent in HF?B. As presented in Table III, we sequentially
remove each component from HF’B to quantify its impact
on the overall performance. It is evident that each component
in HF?B contributes to an improvement in the overall perfor-
mance, and the network achieves its peak performance when
all components (HAM, HFCD, and AWFR) are integrated into
HF’B, which demonstrates the effectiveness of our design.
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TABLE IV

COMPARISON BETWEEN OUR PROPOSED HF?B AND OTHER SOTA
HETEROGENEOUS FEATURE FUSION STRATEGIES

KITTI Road Dataset Cityscapes Dataset
Strategy
Fsc (%) ToU (%) Fsc (%) ToU (%)
CFM [25] 95.15 91.58 95.45 92.33
SAGate [26] 96.77 93.74 96.80 93.81
DDPM [27] 96.05 92.98 96.60 93.43
HF?B (Ours) 97.68 94.90 97.12 94.40
TABLE V

COMPARISON OF DECODERS IN TERMS OF BOTH ACCURACY AND
COMPUTATIONAL COMPLEXITY ON THE KITTI ROAD DATASET

Decoder Fsc (%) ToU (%) Params (M) FLOPS (G)
UNet++ [36] 96.27 93.90 13.62 78.44
UNet3+ [10] 95.64 93.41 14.70 164.63

Ours [10] 97.58 94.50 6.71 60.33

Additionally, we compare HF?B with other SoTA heteroge-
neous feature fusion strategies. As shown in Table 1V, HF?B
outperforms other compared methods on both datasets, with
improvements of up to 1.26% in Fsc and 1.67% in IoU,
respectively. These compelling results can be attributed to our
novel contributions, particularly the exploitation of both shared
and distinct characteristics of heterogeneous features in HFCD,
and the effective feature recalibration based on the affinity
volume constructed in AWFR.

2) Decoder: Quantitative comparisons of decoder per-
formance among SNE-RoadSegV2, RoadSeg/UNet++4-, and
UNet3+ are presented in Table V. These results demonstrate
the SoTA performance of our decoder, with improvements
in Fsc and IoU by up to 1.94% and 1.09%, respectively,
while maintaining lower computational complexity, including
a reduction in learnable parameters and FLOPS by up to
54.35% and 63.35%, respectively. These improvements can
be attributed to the use of depth-wise separable convolution
and the pruning of redundant skip connections.

3) Loss Function: Fig. 6 actually presents two experiments:
1) when Ag = Ap = 0 (only conventional BCE loss is used),
the overall freespace detection performance on both datasets
is the worst, demonstrating the effectiveness of our proposed
fallibility-aware losses and 2) different ratios between Ay and
Ap demonstrate that when Ag = 0.3 and A\p = 0.1 (the sum
of these two weights is empirically set to 0.4, as discussed
in [52], [53], and [54]), SNE-RoadSegV?2 achieves the best
performance on both datasets. While further hyperparameter
tuning is possible, it is important to consider the risk of over-
fitting with limited data.

V. CONCLUSION AND FUTURE WORK

This article revisited the designs of heterogeneous feature
fusion strategies, decoder architectures, and loss functions
from prior research and introduced SNE-RoadSegV2, a novel,
high-performing, SoTA freespace detection network. Breaking
down our contributions further, our work contains six technical
contributions: three novel components in the encoder, one
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Fig. 6. Selection of hyperparameters As and Ap in (7).

decoder architecture, and two loss functions. The effective-
ness of each contribution was validated through extensive
experiments. Comprehensive comparisons with other SoTA
algorithms unequivocally demonstrate the superiority of SNE-
RoadSegV2. However, it can be observed that the MaxF
scores of top-ranked algorithms have already achieved over
95% and are relatively close to each other, leaving little
room for further performance improvement. This is due to
the homogenized scenes and incorrect manual annotations in
the dataset. Thus, our future work will focus on creating a
more diverse, challenging autonomous driving dataset for fair
and comprehensive algorithm evaluation.
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