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Abstract— Localization, an indispensable component in
robotics and automation, encounters difficulties arising from
appearance variations, resulting in inaccurate data associations.
Semantic-based positioning mitigates these challenges by filtering
out invalid data, such as moving vehicles and worn road mark-
ings. Building on this insight, we introduce a robust semantic
visual localization system, which has been successfully deployed
in real-world settings. The system uses neural networks to
extract road markers and associate data with a semantic map.
To enhance system reliability, we use several data filters. These
filters remove images that are prone to misrecognition or poorly
processed by neural networks. We propose two techniques for
vehicle state estimation. The first, using the inverse perspective
mapping (IPM) matrix, directly determines the vehicle’s central
pose. The second technique derives the camera pose using the
perspective-n-points (PnP) method and leverages external param-
eters to infer the vehicle’s central state. The wheel encoder, with
its robust anti-noise capability, offers odometry in the absence
of semantic information, enhancing the system’s resilience. The
crux of our approach lies in distinct semantic strategies: using
lane lines for orientation and road markers exclusively for
translation estimation. We also detail an automatic construction
method for the semantic map, enhancing the system’s practicality.
Experimental results indicate that the IPM method outperforms
the PnP approach, leading to notably improved positioning
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accuracy. In addition, the error distribution of the IPM method
more closely aligns with a normal distribution compared with
that of the PnP approach.

Index Terms— Inverse perspective mapping (IPM), nor-
mal distribution, perspective-n-points (PnP), semantic visual
localization.

I. INTRODUCTION
A. Motivation

HIPPING remains a linchpin of international trade, serv-
Sing as the most cost-effective transportation mode [1].
Specifically within port operations, unmanned ground vehicles
(UGVs) stand to substantially enhance efficiency in container
transport [2], with a particular focus on addressing the unique
logistical challenges of these environments. The advent of
COVID-19 has exacerbated the existing labor shortages in
port operations, with a notable decline in available dockers
and truck drivers [3]. This period has also seen a surge in
aggressive driving behaviors [4], further underscoring the need
for the development and deployment of UGVs specifically
designed for the complex and demanding conditions of ports.

This scenario presents a significant challenge for
autonomous driving in large-scale, appearance-changing
environments [2], wherein determining the precise position
and orientation of the UGV becomes crucial.

In the field of robotics, localization schemes can generally
be divided into two types: map-based localization and nonmap-
based localization. The latter is also called simultaneous
localization and mapping (SLAM). In practice, to maintain
the consistency of positioning results, it is often necessary
for nonmap localization methods to provide the correct initial
coordinate system.

In extreme scenarios such as sensor failure or localization
failure in industrial applications, multisensor fusion based on
the Kalman filter (KF) can sometimes offer greater robust-
ness compared with the tight coupling of multiple sensors.
Therefore, it is also crucial that the algorithm can output
accurate results accompanied by a measure of uncertainty.
The system also needs to have a strong self-checking ability
to eliminate the wrong data association, thus increasing the
system’s robustness.

The primary sensors for the localization system include
LiDAR, cameras, and global navigation satellite system
(GNSS). In scenarios such as traffic jams, the functionality of
LiDAR becomes limited, potentially leading to system failures.
Moreover, the GNSS signal may require enhancements in
certain areas to provide effective positioning results.
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Although cameras may not perform optimally during night-
time, this limitation can be mitigated by ensuring sufficient
lighting. Given that illuminating the surroundings is a feasible
solution in most operational scenarios, a camera-based robust
positioning system can be swiftly deployed for industrial
applications.

B. Challenges

Our foremost priority in UGV localization is to achieve
a harmonious balance between precise localization results
and optimal real-time performance. In scenarios where the
localization accuracy falls below the requisite threshold or the
system encounters substantial delays, it fails to furnish reliable
feedback data, which are vital for the UGV’s ensuing planning
and control processes. Based on these two objectives, the main
challenges are as follows.

1) Appearance Changing: Methods using feature points,
as delineated in [5] and [6], may encounter performance
degradation in dynamic environments. Upon halting, the UGV
inadvertently captures features of moving objects, incorpo-
rating them into camera pose estimation, a factor that can
potentially destabilize the system. As the UGV enters expan-
sive areas characterized mainly by the ground as a notable
feature, GNSSs generally operate optimally, barring the pres-
ence of overhead metal obstructions. However, the presence
of structures such as rail cranes along the port’s seaside can
introduce interference with the GNSS signal. LiDAR-based
methods [7] may encounter difficulties due to insufficient con-
straints in such environments. Although solutions integrating
LiDAR and GNSS have been proposed as in [8] and [9],
vehicle congestion beneath the gantry cranes in port scenarios
might lead to simultaneous failures of both LiDAR and GNSS.
In most scenarios, marker-based methods that use ground
features remain viable, using cameras to facilitate successful
operation. However, dynamic environments encompass not
only the observed scenes but also potential alterations to
the markers upon which the method relies. Such markers,
encompassing varieties such as rhombus or AprilTags, may
be compromised due to staining in industrial settings.

2) Data Association: In map-based localization methodolo-
gies, a critical step is ensuring precise data association between
the sensor data and the map. This task faces significant
challenges in maintaining accurate data associations, given
that any inaccuracies can severely compromise the system,
resulting in incorrect location estimations. Within the context
of SLAM techniques, loop closure functions as a vital mech-
anism to mitigate cumulative errors, necessitating meticulous
data association between sensor inputs and map details. Conse-
quently, it is imperative to develop a sophisticated mechanism
capable of identifying outliers during data association, thereby
enhancing the system’s reliability and precision. Moreover,
minor fluctuations in the camera’s internal parameters and
distortion coefficients can alter the pixel positions of features
within an image, necessitating a system equipped with robust
noise resistance capabilities.

3) Calculate Resource Utilization: The central processing
unit (CPU) allocates time slots for the task of visual localiza-
tion and processes data from various other sensors. In addition,
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tasks pertaining to planning, control, and other auxiliary pro-
cesses consume a significant portion of the CPU’s processing
time. A more efficient method implies reduced occupation
of CPU time slots, thereby facilitating the provision of more
real-time data for subsequent processes reliant on the outcomes
of visual localization. The graphics processing unit (GPU) can
be exclusively allocated to the visual module, obviating the
need to account for potential allocation of GPU computing
resources to other processes. Therefore, our primary focus
is centered on enhancing the computational efficiency of the
CPU.

4) Output Uncertainty: Given that the final result may
be integrated with positioning data from other sensors, it is
essential to provide a reliable or easily adjustable measure of
uncertainty.

C. Related Work

In the quest for technological advancements in UGV local-
ization, visual localization methods have emerged as a focal
point due to their intuitive perception of the environment.
These methods are commonly distinguished by whether or not
they use a preexisting map.

1) Visual Localization Without a Prior Map: This chal-
lenge is akin to the SLAM problem, as delineated in [10].
A single camera is incapable of capturing depth information,
which consequently impedes the acquisition of accurate metric
scales necessary for positioning results [11], [12]. Typically,
stereo cameras are used to mitigate the metric scale issue,
as illustrated in studies such as [13], [14], [15], and [16].
However, the accuracy of the stereo system is constrained by
the baseline length, the distance between the two cameras [17].
Moreover, additional calibration work is required to determine
the external parameters between the cameras, which is critical
for accurate depth estimation. This limitation primarily affects
the system’s ability to accurately determine depth information,
which is derived from the disparity between the corresponding
points in the images captured by the two cameras. To address
the aforementioned challenges, several studies, such as [18]
and [19], have proposed the use of RGB-D cameras for visual
localization.

While RGB-D cameras offer an effective solution for visual
localization, they are prone to infrared interference in bright
outdoor environments, leading to inaccuracies in depth infor-
mation. Moreover, the limited range of their depth detection
can affect their performance in expansive or complex terrains.
These challenges have propelled researchers to explore alter-
native technical solutions, particularly methods that combine
different sensors. This strategy of integrating multiple sensors,
commonly referred to as “sensor fusion,” aims to leverage the
strengths of each sensor to compensate for their individual
limitations.

With an inertial measurement unit (IMU), a monocular
camera can form a basic sensor suite for six-degree-of-freedom
(6-DOF) state estimation [5]. Mainstream visual—inertial (VI)
sensor fusion approaches include the KF [20], [21], [22] and
graph-optimization-based algorithms [5], [23]. Similar to the
stereo approach, the external parameters between the camera
and the IMU require calibration. This process, including the
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Fig. 1.

Block diagram illustrating the complete pipeline of our proposed localization system. The system begins with an initial pose x and estimates vehicle

status using wheel odometry, as explained in Section II-F. When image data are available, they undergo processing through two distinct networks, enabling

estimation of both orientation and position, as detailed in Section II-D.

necessary IMU parameter adjustments, often contributes to
increased system instability. In addition, these methods are
unable to adapt to varying scenes.

In addition, there exist other multisensor fusion frame-
works. For instance, V-LOAM [24] stands as a state-of-the-art
(SOTA) method in the realm of camera and LiDAR fusion,
consistently ranking at the forefront of the KITTI dataset
leaderboard. The approach in Yin et al. [25] introduces an
online photometric calibration module to mitigate photometric
disturbances in real-world applications, thereby enhancing the
overall system’s localization robustness. Distinct from others,
the Lidar—inertial-visual SLAM system [26], [27], notably
R3LIVE [28], serves not only as a LiDAR-inertial-visual
state estimator but also possesses the capability to reconstruct
the radiance map dynamically. GVINS [29] exemplifies a
tightly coupled GNSS—visual—inertial system. The framework
can operate effectively in larger scale environments, benefiting
from the assistance of the GNSS.

These multisensor fusion approaches presuppose the reliable
functioning of all the sensors. However, sensor failures are not
uncommon in practical applications. Moreover, these methods
struggle to address scenarios involving moving objects within
the environment.

While traditional approaches have been foundational to
visual localization, the emergence of deep learning has sig-
nificantly transformed the field through the introduction of
novel techniques. A notable representative is iMAP [30],
which is the pioneering work that integrates NeRF [31] as
the map representation within an SLAM framework. iMAP
optimizes the camera pose through backpropagation using
the photometric loss derived from NeRF. However, it uses a
single multilayer perceptron (MLP), which is not well-suited
for large-scale environments. NICE-SLAM [32] overcomes
this limitation by adopting multiple MLPs in place of a
single one, using a hierarchical scene representation for more

efficient management of expansive environments. Despite this
improvement, the geometric structure representation remains
imperfect. Vox-Fusion mitigates this by storing voxel grids
in an octree and leveraging signed distance fields (SDFs)
for a more accurate geometric fit of the scene. However,
Vox-Fusion [33] compromises its capacity for synthesizing
new viewpoints. A significant limitation of these NeRF-based
techniques is their dependency on depth information, hin-
dering their direct use with standard monocular cameras.
Orbeez-SLAM [34], which combines the ORB-SLAM?2 [14]
framework with instant-ngp [35], operates independently of
depth information and is capable of pretraining-free operation
in novel scenes. However, its memory utilization increases
with map size, and it struggles in environments with dynamic
objects. GO-SLAM [36] incorporates loop closure detection
and global bundle adjustment (BA) in NeRF-based SLAM
to mitigate cumulative errors. However, its substantial GPU
memory requirements (exceeding 16 GB) and low operating
frequency (below 10 frames/s) present challenges for industrial
deployment.

Apart from SLAM methodologies using NeRF, a notable
contemporary advancement is DROID-SLAM [37]. Using
an advanced dense optical flow estimation architecture and
iterative updates through a dense BA layer, it facilitates robust
visual SLAM. This technique has laid the groundwork for
later developments [38], [39]. PVO [39] bolsters resilience
in dynamic environments through the integration of three
modules: image panoptic segmentation, panoptic-enhanced
VO module, and VO-enhanced VPS module.

Nevertheless, these learning-based methods exhibit a sig-
nificant limitation: their extensive GPU memory requirements
impede implementation on industrial robotic systems. More-
over, they do not incorporate a framework for quantifying
uncertainty, an essential factor for integrating data with
onboard sensors. The efficacy of these algorithms is also
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highly contingent on the accuracy of camera intrinsic cali-
bration, potentially undermining their reliability for enduring
operations across vast settings.

Our advanced system necessitates a mere 3 GB of GPU
memory and exhibits greater tolerance to the variations in
camera intrinsic precision, rendering it a superior choice for
industrial deployment.

2) Visual Localization With a Prior Map: A pre-established
map can furnish the localization system with vital information,
significantly enhancing its accuracy and robustness [40], [41].
Huang et al. [42] introduced GMMLoc, a cross-modality
method capable of tracking a camera within a pre-established
map. Ye et al. [43] presented direct sparse localization (DSL),
a method that uses a 3-D surfel-based map to enhance the
camera’s localization accuracy and robustness. However, its
reliance on point cloud maps restricts its applicability in
various scenarios. Huang et al. [44] used SDFs as the prior
map for metric monocular visual localization. Nevertheless,
these three methodologies face challenges in dynamic envi-
ronments and necessitate significant memory for map storage.
Compared with our proposed method, these three approaches
necessitate considerable CPU power. To address the issues
of memory consumption and scene variations, Yu et al. [2]
developed a visual localization system suitable for large-
scale, appearance-altering environments. However, due to its
reliance on graph-optimization-based methods for positioning,
it demands significant computational resources. Qin et al. [45]
proposed a lightweight semantic map for visual localiza-
tion, albeit reliant on a cloud map server and only partially
leveraging the characteristics of various semantics. The afore-
mentioned systems fail to provide the necessary descriptions of
uncertainty and lack strategies for evaluating the accuracy of
data correlations. Furthermore, point-matching-based methods
for 6-DOF camera pose estimation exist, such as QPEP [46].
However, these are not comprehensive systems and they
lack mechanisms for managing situations with erroneous data
correlations.

In this article, we use semantic maps to compare the local-
ization techniques of the inverse perspective mapping (IPM)
matrix method and the perspective-n-point (PnP) method,
particularly in scenarios with limited available corner pixels.
Unlike the approach described in [45], our method achieves
map localization without the need for a dedicated server
for map storage. Instead, it uses only four corners, result-
ing in reduced costs and optimized computational resource
utilization.

D. Contributions

To address the localization challenges faced by UGVs,
we propose a robust visual-based localization system. While
inspired by our previous work [2] on graph-based optimization
for UGV pose and extrinsics estimation, our current approach
introduces a marker-based correction mechanism. The signif-
icant contributions of this work include the below.

1) A proven and robust localization system suitable for

environments with changing appearances. It uses an
IPM matrix to directly obtain the UGV pose. This
method offers enhanced computational efficiency and
simplifies the process of introducing a covariance-based
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uncertainty system. Once this uncertainty is incorpo-
rated, our visual system can integrate smoothly with
other positioning techniques. Using this uncertainty
description, our visual system seamlessly integrates with
other positioning methods. Besides QPEP, there is a
notable absence of open-source SOTA solutions that
provide an uncertainty description capability.

2) An innovative method for extracting polygon vertices
is introduced. Specifically, it can efficiently identify
diamond-shaped vertices without requiring extra hyper-
parameters. This algorithm offers potential adaptability
for extracting vertices from other convex polygons.

3) Visual Feature-to-Map Matching Mechanism: We have
implemented an advanced matching strategy between
visual features and maps. The inclusion of a labeled
filtering mechanism ensures the robustness of data asso-
ciation. In comparison to related work, there is a lack
of analogous methods designed to ensure the exclusion
of mismatched data.

4) Our system autonomously generates comprehensive
high-precision maps vital for real-time localization.
We have demonstrated that its positioning accuracy is
comparable to maps created by obtaining marker coor-
dinates using a total station, which further minimizes
manual mapping efforts.

5) A novel calibration strategy is introduced, integrating
surveying data for camera-to-vehicle alignment. This
strategy focuses on improving calibration accuracy while
reducing reliance on the precision of camera intrinsic.
Moreover, the calibration results provided by this strat-
egy are durable, eliminating the need for recalibration
before each system operation.

6) The experimental results confirm the superior perfor-
mance of the IPM method over the PnP approach,
especially with limited matching points. Further data
analysis indicates that our IPM technique favors a Gaus-
sian distribution for error profiling, more so than the PnP
method. This characteristic ensures a more accurate data
representation for multisensor fusion.

E. Organization

The structure of this article is delineated as follows.
Section III-A defines the problem and introduces foundational
concepts. The overall system is outlined in Section III-B.
Section III-C details the methodology for deriving the IPM
matrix of a camera. In addition, it describes the pose
relationship between the camera and the vehicle’s center.
Image processing techniques, encompassing road marker cor-
ner extraction and lane line identification, are covered in
Section III-D. Section III-E introduces filters designed to
eliminate erroneously detected rhombi, thereby enhancing
system robustness. Vehicle positioning methodologies are pre-
sented in Section III-F, alongside a map layout strategy using
rhombus road markers and an automated map generation
approach. Section III-G details our automated technique for
map construction and the underlying logic for map deploy-
ment. The experimental outcomes are shared in Section III.
Section IV critically evaluates the strengths and weaknesses
of our approach, and Section V concludes the article.
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II. PROBLEM STATEMENT AND SOLUTIONS
A. Problem Statement

The problem of map-based localization is represented
as [10]

x; = argmax P (x| Zg, x¢—1, M) (D
Xk
where x; stands for the vehicle’s state at time k. It comprises
the translation and rotation of the vehicle, denoted as x =
[qws qx>4y: 49z Iy, ty» tz]T' The set Zk = {Zk,l, Tk,2y oo Zk,n}
aggregates all the sensor measurements on the vehicle at time
k, with each ith sensor measurement represented as z; ;. M
refers to the preexisting map data.
To reshape the problem using the maximum a posteri-
ori (MAP) estimation, we use the Bayesian formula

x{ = argmax P(Zy, xx_1, | Xk, M) P (xx, M). 2
X
Assuming the independence of observations between adja-
cent time sensors, we can rewrite (2) as

xp = argmax [ [ Pei xe1, [xe. MYP(xi, M), (3)

X .
k i=1

To apply (3), we must construct models tailored for different
sensors. Most vehicle planning and control algorithms assume
the vehicle operates on a virtually flat plane. This permits us
to simplify x to x = [0, t,, t,], reducing the state number and
hastening subsequent operations.

B. Overview

Our system is based on the assumption that the terrain is
relatively flat, a characteristic prevalent in indoor environments
and numerous engineered settings, including ports, airports,
and industrial zones. This terrain flatness is similarly observed
on the majority of urban roads, where ground undulations are
typically minimal.

Furthermore, we posit that the system initializes from a
known pose—a standard protocol in automated systems, which
typically commence operations from a predetermined location.
This approach not only streamlines the initiation procedure
but also mitigates the risk of global localization errors, thus
minimizing the likelihood of system failures.

Fig. 1 illustrates the pipeline of our proposed localization
system. Commencing with the initial pose X, the system
adeptly estimates the vehicle’s status by harnessing both the
camera and the wheel encoder. In scenarios where valid
image data are unavailable, chiefly as a result of the camera’s
limited sampling rate, wheel odometry presents itself as a
computationally frugal alternative. This mechanism bridges
data voids and perpetually refreshes the vehicle’s latest status,
guaranteeing seamless transitions and persistent accuracy.

At time ¢, the segmentation network processes the image
to demarcate rhombus and lane lines, depicting them as
vertex points and linear stretches. Subsequently, leveraging
the positioning data furnished by the odometry, the system
facilitates data association between the image and the map,
thereby determining the vehicle’s state at time ¢.
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Fig. 2. UGV outline. Black: vehicle body. Yellow: wheels. Red: cameras.
Green: ground and image markers. Blue: vehicle body center.

The selection of rhombus-shaped markers for our system is
driven by two primary considerations. First, simple geometric
shapes are favored for their detectability and robustness within
visual localization frameworks. Second, rhombus configura-
tions are commonplace for pedestrian crosswalk warning lines
in numerous countries and are widely accessible due to stan-
dardized construction molds. Conversely, triangular markers
are rarer and not standardized in their production, potentially
complicating deployment and diminishing the feasibility of
broad implementation. Therefore, rhombus markers offer a
practical and efficient solution for our system’s design and
application needs.

C. Parameter Calibration

For the autonomous system’s planning and control to be
effective, it is crucial to identify the vehicle body’s center,
not just the camera’s pose. Hence, we need to calibrate the
external parameters from the camera to the vehicle body
center. Importantly, this calibration is a one-time procedure;
the results can be recurrently used for subsequent vehicle
operations, negating the need for recalibration before each
session.

Although the total station can yield measurements with
remarkable precision—accurate to 0.001 m—it is laborious
to measure the vehicle’s center body coordinates directly.
To navigate this, we define the body center as the connecting
line’s midpoint between the four tire centers, as illustrated in
Fig. 2, where the vehicle body center is interpreted as the
intersection of the diagonal lines.

1) Get the IPM Matrix: Each feature point on the ground
corresponds to a specific point in the camera image. Assuming
a flat ground surface, we leverage the IPM matrix H to define
their relationship as Hp' = p" [47], where p' denotes the
pixel position in the image, and p" represents the coordinate
of the corresponding point on the real-world ground.

Note that we have omitted the transformation involving
homogeneous coordinates; this notation will persist without
further explanation in Sections II-C and II-E-II-G.

Generally, using more points can enhance the calibration
accuracy. To guarantee accurate data association, we annotate
the image pixels manually. However, excessive data annota-
tion can often lead to errors in the operation. In practice,
we use nine points for IPM matrix calibration, as illustrated
in Fig. 2. Since the matrix H possesses 8 DOFs, a minimum
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of four pairs of noncollinear points are required; subsequently,
we apply the method described in [2] to determine H.

It is necessary to describe the uncertainty associated with the
matrix H. We define the projection error as the lower bound
of error. In the calibration process involving n points, each
denoted as pj< in the image, we determine the error as e; =
H p}; — pi . Consequently, the covariance of ey is represented
as n'. The term n' describes the uncertainty in projecting a
point from the image to the ground.

After getting the IPM matrix, we can know the pixel
coordinate p' in images is

p,=H"'p} )
where p}’ is the coordinate of the vehicle center we introduced
earlier.

2) Calibrate Camera Extrinsic Parameters: To accurately
establish the camera’s pose in the world, we use a PnP
approach that exploits the known correspondences between
world points and their projections onto image pixels. However,
this method’s reliability is compromised under conditions
where the camera’s intrinsic parameters and distortion coef-
ficients are inaccurately determined or when the PnP solver is
provided with a sparse set of points.

To circumvent these challenges, we introduce measurements
from a total station, which supplies a precise estimate of the
camera’s position, denoted by the vector ¢£. These additional
data transform the problem from a 6-DOF estimation to a more
tractable 3-DOF problem, focusing solely on the camera’s
orientation.

The optimization of the camera’s orientation, represented
by R*, is formulated as

1 n
R* = = E
arglrenax 22

where R* signifies the optimized camera orientation, R is the
3 x 3 rotation matrix, ¢ is the 3 x 1 position vector provided
by the total station, and u; corresponds to the coordinates of
the green points within the red box in Fig. 2. The s; denotes
the scale factor for the projection of the ith world point P;,
computed as K(RP; + t). Here, K represents the camera’s
3 x 3 intrinsic matrix, and n denotes the number of matches
between pixels in the image and points in the physical world.
In this context, the value of n is 9, indicating that there are
nine points in the image that correspond to actual locations on
the ground. The optimization defined by the above equation
can be solvable using any standard optimization tools.

1 2

u — ;K(RPi +1) (&)

2

D. Image Processing

The rhombus shape, recognized for its simplicity, serves as
a pavement marking in numerous countries, a testament to its
practicality as a road marker. To facilitate the identification of
such markers in the autonomous system, an incoming image is
concurrently processed through two distinct neural networks.
Initially, the image is channeled to the Mask-RCNN [48] to
segment and isolate the road markers. Simultaneously, the
SCNN network [49] operates to demarcate the lane boundaries
through segmentation. This dual-network processing ensures
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Fig. 3.  Up: the real rhombus from image. Left: original rhombus. Right:
the complete thombus. Red: rhombus in the raw image. Blue: lane line in the
raw image. Green: mask of the largest rhombus.

Q

| o]
(a) (b) (c) (d)

Fig. 4. (a) Image obtained through segmentation, with the white region
denoting the segmented rhombus. (b) Following this, we use a flood-fill
approach on the image in (a) to delineate the rhombus contours. Subsequently,
the largest rhombus is selected from (b) to produce image (c). Ultimately,
using the method detailed in Fig. 5, the red region in (d) highlights the four
vertices of our target rhombus.

a comprehensive analysis of the road terrain, enhancing the
system’s responsiveness and accuracy in detecting vital road
signals.

1) Lane Marker: In this article, the sole function of lane
lines is to furnish the system with heading angles. It stands to
reason to convert all the segmented pixels into 2-D points
and then categorize them using the L2 distance clustering
algorithm. Following this, we use the previously calibrated
IPM matrix, denoted as H, to transfer these points to the world
frame. To further refine this representation, we implement a
RANSAC-based line fitting method to delineate the line in the
world frame. Essentially, we extract a line from the image and
transpose it to a calibration frame using the pre-established
IPM matrix H. This process facilitates the depiction of the
line as two connected points, p and p;’, within the calibration
frame.

2) Road Marker: While the Mask-RCNN yields segmenta-
tion results, they cannot be used directly; our primary interest
lies in identifying the four corners of the segmentation. The
line fitting algorithms presented in [2] require a hyperparam-
eter d and are incapable of handling incomplete rhombus,
as illustrated in Fig. 3. This issue can result in the failure
to recognize rhombus when the vehicle is moving at high
speeds. The line-fitting algorithm using RANSAC tends to
be computationally intensive, typically operating on the CPU,
necessitating enhancements in the method for recognizing
rhombus corners.
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Fig. 5. For a convex polygon, consider any two adjacent angles. By extending
their corresponding edges to an intersection, a new vertex is formed, replacing
the original two angles with a single angle. This operation reduces the
polygon’s number of angles by one and increases its area. In the provided
figure, the added area is highlighted in blue. Throughout this procedure,
we consistently opt for the method that minimally increases the area until
the polygon becomes a quadrilateral. The steps from (a) to (f) in the figure
illustrate this progression.

Rhombi that appear larger in the image are generally
closer to the camera, offering a reduced margin of error in
measurement due to a smaller real-world distance represented
per pixel. Therefore, we only process the largest thombus in
the image to enhance the precision of our localization efforts.
Fig. 4 illustrates the procedure for rhombus selection.

Drawing inspiration from [50], we find it feasible to approx-
imate the rhombus, a convex polygon, using a minimum
circumscribed quadrilateral. Corner extraction only needs data
on mask contour. So we use the flood-filling algorithm to
extract the pixels on the outline. The method first obtains the
convex hull of the outline pixels and the convex hull point
set. This step can greatly reduce the number of pixels to be
processed. Deleting an edge in the convex hull and extending
its two adjacent edges of this edge can increase the area of
the convex polygon by S; and reduce the convex polygon by
one corner. Repeatedly delete the corner with the smallest area
until the polygon has only four corners, which are the corner
points we need. The algorithm complexity is O(nlogn), and
n is the number of outline pixels of the mask. Fig. 5 provides
an example illustrating this process.

E. Data Matching and Filtering

Unlike lane markings, rhombuses in images appear more
compact and concentrated, while lane markings cover a
broader image area. Fig. 6 illustrates a scenario where scene
recognition becomes more complex due to rainfall. As a
result, accurately extracting the details of the rhombus shape
becomes challenging. Moreover, the results of deep learning
network segmentation do not ensure flawless extraction and
corner localization of rhombuses. As a result, it becomes
crucial to use a series of validation methodologies. Next, this
section introduces procedures for data matching and filtering,
with a primary focus on eliminating low-quality data, ensur-
ing precise image-to-map associations, and enhancing system
robustness. This specific procedure involves examining rhom-
bus edge lengths, aligning them with map rhombuses, using
them for localization, and filtering data anomalies resulting
from localization.

1) Verification of Rhombus Edge Lengths: According to
Section III-D, we denote the last 4 pixels extracted in the
image as 13;, where j denotes the index of the extracted pixel.
For any two pixels in the images, p, and pj,, projected from
the ground, we can calculate the distance d,; as follows:

duy = |H (5, — B3| (©)

3513016

Fig. 6. Lane lines are marked in magenta, normal rhombi in red, and rhombi
that are difficult to detect due to their similar color to the surroundings in blue.
False rhombi formed by rainwater are shown in green. Detecting these markers
accurately is challenging due to their appearance variations.

Fig. 7. Left image depicts the actual view of the vehicle within the port,
while the right image illustrates the vehicle’s position on the map, determined
through localization results. Using the extrinsic parameters linking the camera,
vehicle, and map data, it becomes possible to infer the expected map elements
within the camera’s field of view.

where d,, represents the distance between these two
ground-projected pixels.

Precise rhombus identification is essential. Unlike lane lines,
rhombi occupy a smaller portion of the image and may not
always be fully captured. We use the metric max abs(d,, — d)
to validate that the distance between adjacent rhombus corners
aligns with our expected side length, represented by d. This
approach effectively reduces the number of false positives.

2) Matching Rhombus Data to Map: A map can be con-
structed through various means, including total station surveys,
construction CAD drawings, or the methods introduced in
Section III-F. We project map data onto the image using the
current vehicle position to identify overlaid map elements.
Clearly, not all the elements are represented on the map.
Only a small portion of elements in front of the camera
are projected onto the image. So, it is not necessary to
exhaustively enumerate all the rhombuses on the map. Only
a few rhombuses closer to the vehicle have the value of
being checked, and ikd-tree [51] can speed up the process.
Fig. 7 offers an intuitive demonstration of acquiring virtual
image elements. With the aid of virtual image elements, data
association can be easily achieved in the image based on the
nearest-point matching principle. Fig. 8 illustrates the process
of matching map elements with image elements.

Given the previously provided context, the “nearest-point
matching principle” mentioned serves as a foundational
method, enabling the filtration of erroneous rhombus shapes.
Theoretically, the coordinates of map elements projected into
the camera should perfectly align with the image elements.
According to (5), K(Rp + t) = u should hold true, where
K represents the camera intrinsic parameters, R and ¢ denote
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Fig. 8. Upper left image represents the camera’s view, while the upper
right image displays the result after passing through a segmentation neural
network. The lower left image shows the data obtained by projecting the map
from Fig. 7 onto the camera. Lane lines are depicted as straight lines, and
data matching is achieved by having the green lines locate the nearest pink
lines. Rhombuses can be represented by their centers, and data matching is
completed by identifying the red rhombus in the image that is closest to the
center of the blue rhombus.

the extrinsic parameters of the current camera in the world
coordinate system, u signifies the pixels in image elements,
and p corresponds to the elements in the map.

Inevitably, discrepancies exist, making the equation poten-
tially inaccurate. These discrepancies primarily arise from two
sources: errors attributed to camera parameters and localization
errors, with the former generally being negligible due to their
minimal impact and the difficulty in quantification.

Angular and translational errors are represented by AR
and At, respectively. Ideally, the pixel error, denoted as i,
is defined as ||u — K(ARp +t + At)||3.

Aware of the covariance characterization of the uncertainty
in vehicle pose localization, we can use three times the
standard deviation in place of AR and At, deriving an
error measure i, used as a filtering threshold to exclude
noncompliant image data.

In industrial applications, an allowable maximum localiza-
tion error is generally acknowledged, varying with the specific
localization task. The allowable maximum angular error AR
and translational error At can also be used to compute an error
measure i, serving as a filtering threshold. Fig. 9 illustrates the
process of using a threshold to filter out incorrect matches.

In engineering practice, this parameter can be adjusted
flexibly based on different localization tasks, for instance,
by proportionally scaling i. The two strategies presented herein
are frequently used in our practical work, serving as robust and
valuable references for various localization tasks.

3) Data Filtering via Localization: At any given moment,
our system possesses a localization result characterized by
covariance. The specifics of the localization method will be
discussed in Section III-F. This section will outline how
localization is leveraged to filter out irrelevant data. The
position inferred from the wheel encoder is denoted as ¢, with a
corresponding covariance of ¥,. Meanwhile, the location result
derived from rhombus data is represented as ¢P. We use the
Mahalanobis distance [52] to express the divergence between
them, expressed as

Dy =t —1")TE (¢ 1), @
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Fig. 9. Red rhombus represents the shape projected from a map element onto
the image, while the blue rhombus is obtained using the method described in
Section III-D. The positions of these rhombi in the image are their original
locations. We can calculate the distance D between their center positions.
If this distance D exceeds the threshold i, the match is deemed unsuccessful.
Once a successful match is achieved by aligning the centers of the rhombi,
we can proceed to associate the data of the four corners of the rhombus using
the nearest-point matching principle.

Vehicle's ground
truth trajectory

N\~
N

Estimated vehicle
localization trajectory

Connecting lines, illustrating the
iati the esti d
trajectory and the ground truth trajectory

the localization result is sourced from
the wheel encoder (odometry)

the localization result is sourced
from the camera

Lane markings

Ground rhombus marker

]
®
'

the vehicle

Fig. 10. Adaptive localization results demonstrating the dynamic sourcing
of vehicle pose data from wheel-encoder-derived odometry and camera data
upon rthombus marker detection.

Based on the three-sigma rule, we select three as the thresh-
old here, given that approximately 99.7% of the data points
in a normal distribution are within three standard deviations
from the mean.

F. Localization

The primary concept of localization is to use lane markings
to provide orientation for the vehicle and use rhombus-shaped
data to offer positional constraints. When effective visual
constraints are unavailable, odometry from wheel encoders is
used to furnish information on the vehicle’s pose, as illustrated
in Fig. 1. The status of a vehicle at time k is represented as
xi = [t Lk, 0,17, where t., tyr, and 6 denote the coordi-
nates and orientation of the vehicle, respectively. This section
focuses on how different types of sensor data, specifically
from the wheel encoder and camera, are used as input for the
localization system. Fig. 10 demonstrates how our localization
results switch between camera data and wheel encoder data.

1) Wheel Encoder: The wheel encoder data are naturally
converted into wheel odometry [53], forming a queue Q =
{d;}, where each element d; = [dx;, dy;, 6;]" represents the
displacement between time i and time i + 1. This queue is
crucial for tracking the vehicle’s movement over time. If the
vehicle’s pose at time k is known, its pose at the last time can
be easily determined.

Given the known covariance of the vehicle pose at time k
and the covariance of d, the pose covariance after movement
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can be deduced through covariance propagation, as described
in [54].

2) Camera: Based on the methods described in
Section III-D, four corners of road markers and lane
lines are extracted from the image data provided by the
camera.

a) Lane line: When valid lane information is present in
the image, two straight lines in the world frame at time k can
be obtained, which are then converted into a heading angle
for the vehicle as per [2]. The average heading angle 6; and
its covariance n' are calculated from the orientations obtained
for every lane.

By linear interpolation from £, we can get x = [x%, Vk, Al
and can update the orientation at time k by

X 1 0 0\ /% 0
vel=(o 1 of{s]+{0) ®)
O OEYAA i

Then the covariance of the pose vehicle can be updated by

k = AEkAT + B, where A is a three-by- three matrix in (8)
and B is the covariance matrix converted by n' =1[0,0,n 1"
Assuming that the vehicle is moving at a constant speed,
at time k, by linear interpolation in £, we can get x;, and
its covariance is ;. To minimize the estimated covariance,
we merge the results of interpolation and lane estimation
method by the basic Gaussian distribution fusion [55].

b) Rhombus road marker: When the input data comprise

the four corners of a rhombus, using the PnP algorithm is a
rational choice due to its efficient solution of such geometric
problems. However, this method faces challenges; it requires
a higher degree of camera calibration accuracy and involves
significant CPU computations.

Based on (4), using the IPM matrix, we can obtain

where ¢; = [t,;, tykj]T is the vehicle position estimated by jth
pixels at time k. And R is the rotation matrix that represents
the current position of the vehicle. Then we can use £; =
(1/4) Zj‘:l PZi to represent the final estimate by the marker
input.

Similar to (8), we can get

.fk 0O 0 O )Zk Ixkj
y:k ={0 0 O )Zk + |ty (10)
A o 0o 1)\4 0

Assuming the coordinate covariance of the corner points,
along with covariance propagation and the fusion of Gaussian
distributions, the vehicle’s pose estimation at time k can be
determined.

Note that when calculating priorities, we consider wheel
odometry, lane data, and rhombus data. If there are no input
data for lanes or rhombi, the corresponding processes can be
omitted.

G. Map Layout and Generation

1) Map Layout: The rhombus, being a simple element
for road markers, is a reasonable choice for localization
markers. Having too many markers can compromise esthetics
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Fig. 11.  Green rhombus represents the rhombus marker. Yellow strip: the
lane line. Blue square: the vehicle. Red triangle: the camera in the front of

the vehicle. On the left, three markers are aligned, while on the right they are
staggered.

and increase workers’ workload. Multiple markers in a single
image can also complicate data association. To address these
challenges, a thoughtful marker layout is essential.

A straightforward approach is to stagger the markers,
as shown in Fig. 11. If markers are aligned, multiple rhom-
buses of similar size might appear in the image simultaneously.
By staggering the markers, the rhombus area in the image
will differ significantly from the second-largest rhombus,
simplifying data association.

2) Map Generation: In localization tasks, the map encom-
passes the coordinates of the thombus corners and the linear
equations of each lane line. Most vehicles operate in open-air
environments, making it challenging to use surveying tools for
marking or lane coordinate measurements. Even though we
have CAD drawings of construction drawings, workers cannot
guarantee that they will fully implement them according to the
specifications of the construction drawings. Thus, we aim to
automate map generation.

A robust GNSS signal, when combined with real-time
kinematic (RTK), can yield stable and accurate localization
results. Using a well-calibrated vehicle, we can automatically
generate road marker coordinates in areas with strong GNSS
signals. Based on the accurate localization result, we can
provide a method to auto generate the coordinate of rhombus
corners.

Lane Line: Lane masks can be extracted using [49]. Notably,
most lane detection algorithms are compatible, enhancing
the algorithm’s flexibility. Each pixel in the mask can be
transformed into the world frame using the IPM matrix

(1)

where R; and #; represent the orientation and translation of
the vehicle, respectively, pjk’’ denotes the jth lane pixel in
the image, and p™jk is the coordinate of the jth lane pixel
converted to the ground in the world frame. In every symbol, k
indicates the specific time instance. After the vehicle traverses
the entire path, numerous 2-D points can be obtained in the
world frame. The L2 distance clustering algorithm can classify
each lane, and subsequently, SVD can be used to fit the line,
thereby providing orientation for localization.

In rhombus detection, a significant challenge lies in the
fact that false detections can severely degrade the accuracy
of the map. Although (11) allows us to project the rhombus
from the camera onto the map, this may introduce erroneous
projections.

To address this issue, we consider using the strategy detailed
in Section II-E, “Verification of Rhombus Edge Lengths,” to
effectively eliminate these false detections. With an accurate

P;Uk[ = RkHP;lk + I
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Fig. 12. In the left image, lane markings observed from three distinct vehicle
positions are depicted. On the right image’s map, these markings correspond
to positions 1-3. Rectangles in the image indicate the vehicle’s positions. The
yellow, red, and green colors represent lane markings from each position. It iss
evident that some lane markings overlap when mapped. These overlaps create
a continuous lane marking, enabling us to use linear fitting for a complete
lane representation. The blue section in the right image depicts lanes parallel

to the primary one.

Fig. 13. Rhombus may be detected multiple times. As shown in the figure,
the repeated detections of the rhombus often result in overlaps on the map.
By clustering the corner coordinates from these detections and calculating
their average, the precise location of the rhombus can be determined.

construction map at hand, we can further refine our detections
using “matching rhombus data to map” and “data filtering via
localization” methods. However, in the absence of this map,
it is suggested to map the rhombus onto a provisional map
upon its initial detection and then continually validate using
the aforementioned strategies.

Referring to Figs. 12 and 13, multiple data descriptors
might be acquired for a genuine rhombus. By averaging the
coordinates of the rhombus that have undergone the IPM
transformation and are projected in the world coordinate
system, we can precisely determine its position on the map.
The workflow is illustrated in the accompanying figure.

III. EXPERIMENTS

We first perform the simulated and real-world experiments
for static IPM-based localization and PnP localization. Next,
real-world experiments for our system are performed. Finally,
we compare the computation time for each frame.

A. Experimental Environment and Setup

Our experiments were conducted at a container port, con-
sistent with our previous work [2]. The experimental site is
depicted in Fig. 6. We used a pinhole camera with a resolution
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of 1280 x 720. Its intrinsic parameters were calibrated follow-
ing the method presented in [56].

The camera extrinsic parameters and IPM matrix are
obtained by the methods provided in Section III-C. To make
the experiment reflect the real situation, the values of parame-
ters are also used in the simulation experiment. The side length
of rhombus we used is 1 m, and we use 0.2 m as the limit of
maximum value of d,;, in (6).

Unless specified otherwise, all the experiments were con-
ducted using an Intel Core i7-8700K processor with 24 GB of
RAM and an NVIDIA RTX 3090 GPU equipped with 24 GB
of memory. This setup will henceforth be referred to as the
“x86-64 platform.”

B. Performance of Static Localization

We keep all the equipment static to get localization accuracy
by different methods. By simulating the UGV’s pose and the
ground marker’s coordinates, we can project the pixels onto
the image. Fig. 2 shows the markers on the ground and the
corresponding pixels in the images. We add noise to the pixels
in the images and then use two methods for positioning.

1) PnP-Based Localization: We use PnP [57] to get the
camera pose and the vehicle’s position. Note that we
are only interested in the three-axis pose, so the result
will be projected to a 2-D plane to compare with the
IPM localization method.

2) IPM Localization: Although we use lane information
in our system to get the vehicle orientation, the IPM
localization can get the orientation directly. In this
experiment, we simultaneously use IPM to estimate the
translation and orientation.

1) Estimate Orientation and Translation: We use 1.4 pixels
as the standard noise variance in this experiment. Then, the
translation error result is shown in Figs. 14 and 15. It should be
noted that the orientation variance is large. When few matched
points are available, we can observe that the IPM localization
method has a stronger anti-noise ability than the PnP method.
In addition, a small increase in the number of point matches
can only provide limited help to improve accuracy. Because
sin(0.5°) ~ 0.01, which means if our vehicle with a heading
error of 0.5°, the vehicle will deviate 0.1 m as long as go
forward 10 m.

2) Estimate Translation Only: The 1.4 pixels as the noise
standard variance and heading angle with 0.1° noise will be fed
into the two systems. We use only 4 matched pixels to estimate
the vehicle position. The result is shown in Fig. 16. We can see
that by a good orientation provided to the system, the stability
and reliability of the system can be upgraded. In addition, the
PnP method has a smaller variance in the horizontal direction.
However, it costs 5.23 ms per frame, and the IPM method costs
0.01 ms for one frame. The reason is that matrix multiplication
is much faster than matrix factorization. The IPM method
requires only matrix multiplication.

C. Performance of Moving Localization

On an 1800-m route, we tested the positioning accuracy of
the following methods, respectively.
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Fig. 14. Top six: IPM localization translation errors; bottom six: PnP translation errors. Each figure corresponds to 4-9 pixels in positioning. Green points
show x—y-direction errors, magenta illustrates triple covariance ellipse, and red denotes mean error.
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4) P;: PnP with orientation provided by lane.
5) P,: PnP with orientation provided by ground truth.
6) P;: PnP without any orientation provided.

we can see that the IPM method is more robust than the PnP
method. We also plot the error distribution of P; and I;; the
result is shown in Fig. 17. We can find that P; distribution
does not look like a normal distribution. Moreover, compared
with Py, I is closer to a normal distribution.

We are interested in positioning when using a marker,
and this positioning accuracy directly determines whether the
whole system can work well. First, we use the ground-truth
map; moreover, the result can be found in Table I. We can
see that the IPM method can get the best performance, even D- Bad Calibration for Camera

internal

if the orientation is provided by ground truth (RTK-GNSS).
We also test our system in generated map, in Table II, and

We exchanged the front and rear cameras’
parameters and distortion coefficients, and the pixel positions
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TABLE I
LOCALIZATION RESULT WITH GROUND-TRUTH MAP

Case Il IQ I3 P1 P2 P3
max T(m) 0.246 0.246  0.520 0.255 0.251 0.399
max R(deg) 0.220 NaN 2292 0.220 NaN 1.990
mean T(m) 0.116 0.120 0.147 0.125 0.125 0.141
mean R(deg)  0.095 NaN 0.329  0.095 NaN 0.420
TABLE 11
LOCALIZATION RESULT WITH GENERATED MAP
Case I I, I3 P P> Ps
max T(m) 0.220 0.222 0.339 0.669 0.672 0.712
max R(deg) 0.220 NaN 1.737 0220 NaN 2.724
mean T(m) 0.099 0.098 0.139 0424 0424 0434
mean R(deg)  0.093 NaN 0.496  0.093 NaN 1.126
TABLE III

LOCALIZATION RESULT WITH SWAPPED PARAMETERS IN GT MAP

Case Il IQ 13 P1 P2 P3
max T(m) 0.249 0249 0515 0280 0.274 0416
max R(deg)  0.220 NaN 2275 0220 NaN  2.089
mean T(m) 0.115 0.120  0.147 0.128  0.127  0.147

mean R(deg)  0.095 NaN 0.326  0.095 NaN 0.473

of the image will be different from that before due to the
changed distortion coefficient.

Therefore, it is necessary to calibrate various components,
e.g., the IPM matrix and the relative pose between the camera
and the vehicle body center.

Subsequently, we replicate the experimental procedures
outlined in Section II. Table III shows the results, and we can
see that the IPM method is robust for camera parameters.

E. Comparison to Other Algorithms

A critical comparison to prior work, such as that in [2],
is essential to benchmark the performance of our system.
We conducted a comprehensive evaluation against SOTA
VI odometry (VIO) systems, including VINS-Mono [5] and
ORB-SLAM3 [23]. To improve the accuracy of the two
VIO systems, we integrated an IMU into the vehicle’s setup.
This integration was carefully calibrated with the onboard
camera using the Kalibr toolkit [58]. It is noteworthy that the
DSL technique necessitates a point cloud map, as detailed
in [43]. For this requirement, we used G-LOAM [7] to
generate the needed data. Furthermore, comparisons were
made with LiDAR-based approaches, including Fast-LIO2 and
NDT-LOAM [59], to demonstrate the potential for synergy
between visual and LiDAR systems.

In addition to traditional methods, and considering the
limitations of depth information in outdoor environments,
we selected the most recent 2023 SOTA learning-based
monocular camera SLAM solutions for our experimentation,
which include GO-SLAM [36], Orbeez-SLAM [34], and
panoptic visual odometry [39]. Ultimately, DROID-SLAM
was also included in the evaluation, as it is commonly used
as a baseline in recent learning-based research. We initialized
the SLAM systems with the ground-truth coordinates. And
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TABLE IV
ACCURACY COMPARISON OF DIFFERENT ALGORITHMS (m, deg)

| max T maxR meanT meanR

I 0.249 0.220 0.115 0.095
VINS-Mono [5] 1.582 6.491 0.573 1.477
ORB-SLAM3 [23] 0.792 2.782 0.247 0.758
DSL [43] 0.572 0.754 0.247 0.223
Ref. [2] 0.315 0.234 0.139 0.128
FastLIO2 [60] X X X X

NDT-LOAM [59] X X X X

GO-SLAM [36] 2.317 2.301 0.505 0.684
Orbeez-SLAM [34] 2.395 2.955 0.577 0.391
PVO [39] 1.915 0.937 0.589 0.347
DROID-SLAM [37] 3.392 2.411 1.207 0.802

TABLE V

CORNER EXTRACTION TIME COMPARISON

Case(ms) | I;  Ref. [2]
Cortex-A78AE 5 37
Cortex-R5 8 88
Intel i7 2 19

due to the intrinsic limitations of monocular visual SLAM in
providing essential scale information for accurate localization,
we optimized the scale factor to minimize errors, thereby
enhancing system performance [34], [36], [37], [39]. Due to
the increase in memory consumption with distance when run-
ning Orbeez-SLAM, we restricted our comparison to trajectory
data during periods when memory usage was below 16 GB.

A detailed comparison is presented in Table IV, where it
can be observed that most systems exhibit underperformance
in expansive environments, primarily due to drift. However,
our algorithm shows a marked improvement in accuracy. Our
algorithm was custom-developed to be highly tailored for
specific scenarios, and thus, it is expected to yield optimal
results. It also indicate that purely monocular systems [34],
[36], [37], [39], in the absence of auxiliary data, tend to incur
substantial localization errors. LIDAR systems, equipped with
precise depth information, inherently have superior positioning
accuracy compared with visual systems. As discussed in [60],
they do not perform well in degraded scenarios. The LiDAR
algorithms were unable to operate stably in the experiments
conducted.

F. Resource Utilization in Algorithms

To comprehensively assess the computational efficiency of
different algorithms, we tabulate the average processing time
per frame for each algorithm when processing a new image.
We particularly contrast the corner extraction time of our
approach with the method presented in [2], it results are
provided in Table V.

To assess the efficiency of computational resources, the
performance of the algorithms was compared across three
distinct platforms: NVIDIA Jetson AGX Xavier 4 GB (with an
integrated Cortex-R5 CPU), Jetson Orin NX 8 GB (featuring
a Cortex-A78AE CPU), and an Intel Core i7-8700K coupled
with an NVIDIA RTX 3090 GPU. The intensive resource
demands of certain algorithms, as delineated in [34], [36], [39],
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TABLE VI
PROCESSING TIME PER FRAME FOR ALGORITHMS (ms)

\ Cortex-A78AE  Cortex-RS5  Intel i7
I 6 10 3
Py 12 24 7
Py 16 29 8
VINS-MONO [5] 55 83 32
ORB-SLAM3 [23] 31 42 15
DSL [43] 344 397 174
Ref. [2] 112 188 58
GO-SLAM [36] X X 117
Orbeez-SLAM [34] X X 57
PVO [39] X X 176
DROID-SLAM [37] X X 45
TABLE VII
GPU MEMORY USAGE FOR DIFFERENT
ALGORITHMS

Method | GPU Memory Usage
I, 32 GB

GO-SLAM [36] 17.9 GB
Orbeez-SLAM [34] 8 GB*
PVO [39] 11.9 GB
DROID-SLAM [37] 7.7 GB

and [37], particularly regarding GPU memory constraints,
precluded their execution on ARM-based systems. Conse-
quently, their evaluation was confined to computational latency
metrics on the x86-64 architecture. Furthermore, Fast-LIO2
and NDT-LOAM were unable to function in the prescribed
scenario, which, incidentally, corresponds to the degenerate
cases reported in [60]. As a result, these algorithms were
omitted from our testing protocol. Table VI presents a detailed
comparison of the benchmarking results.

We also compared the GPU memory usage of algorithms
that use a GPU, as excessive memory requirements can signif-
icantly impact the deployment of these algorithms, affecting
the cost of industrial implementation. The comparative results
can be found in Table VII. It is important to highlight
that within the open-source Orbeez-SLAM [34] algorithm,
the GPU memory consumption continuously increases as the
vehicle moves.

Drawing from the experiments conducted, it becomes
evident that our system outshines other SOTA localization
solutions when tested against data from port environments.
Our system demonstrates superiority not only in terms of
accuracy but also in the efficiency of computational resource
utilization. Our methodology stands out as a viable solution
that is ready for industrial application and deployment.

G. Localization Performance With Varied Marker Geometries

As discussed earlier in Section II-B, a key reason for select-
ing rhombus-shaped markers is their widespread presence in
standard traffic signage, which implies that the corresponding
molds are readily available. This not only facilitates the
production of markers but also enhances compatibility and
recognition efficiency within practical applications of our sys-
tem. However, geometrical shapes such as equilateral triangles,
squares, and regular pentagons are not commonly adopted in
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TABLE VIII

COMPARISON OF LOCALIZATION PERFORMANCE FOR
DIFFERENT MARKER GEOMETRIES

Shape runtime(ms) max T(m) mean T(m)
triangles A 6 0.07 0.01
rhombus ¢ 6 0.08 0.01
squares [ 6 0.08 0.02
pentagon O 6 0.05 0.01

our system’s intended application scenarios, as they are not
prevalent in the existing traffic sign system. Consequently,
we are unable to obtain these shapes’ markers in the real world.

In light of this, we resorted to simulation experiments to
investigate the potential impact of these less common geo-
metric shapes on system performance. This approach allowed
us to precisely compare the effects of different marker shapes
on localization accuracy and computational efficiency within
a controlled environment. The simulation experiments were
focused on analyzing the influence of various marker shapes
on localization precision and their computational time require-
ments under static conditions.

The data presented in Table VIII summarize the results
of simulation experiments designed to evaluate the impact
of marker geometry on the localization performance of our
system. From the results, it can be observed that the run-time
for all the shapes is consistent at 6 ms, indicating that the com-
putational efficiency of the system is shape-agnostic within the
tested range. In terms of localization precision, the maximum
and mean translation errors remain relatively low, with only
slight variations among the different shapes. The rhombus and
squares exhibit a marginally higher maximum translation error
at 0.08 compared with the triangles and pentagons, which
may be attributed to their specific geometrical properties.
However, these differences are minimal, suggesting that the
choice of marker geometry does not significantly affect the
overall performance of the system.

These findings imply that the system’s robustness to the
variations in marker shape is high, and such robustness can
be advantageous in practical scenarios where marker diversity
might be required. This also hints at the possibility of incor-
porating a wider range of geometrical shapes into the system
without compromising localization accuracy or computational
efficiency.

IV. DISCUSSION

The proposed method presents a visual-based localization
system tailored for autonomous driving applications. Our sys-
tem, underscored by its robustness and reliability, has already
seen deployment in commercial settings.

The experimental results indicate that our approach
demands minimal precision in camera internal parameters,
thereby substantially reducing camera -calibration efforts.
Notably, our system is computationally efficient, allowing
ample processing time for the CPU. Furthermore, it can be
adapted for various scenarios and is readily modifiable to
accommodate different geometric road markers, such as other
regular polygons, not just thombuses.
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Moreover, comparative experiments reveal the IPM
method’s superiority over the PnP method in both speed
and precision. IPM is especially proficient in quantifying its
uncertainty via Gaussian distribution, facilitating subsequent
sensor fusion tasks. In situations with sparse matching data,
provisioning ample heading information markedly enhances
the accuracy of the localization results. While a static heading
angle might yield larger residual errors, it invariably results in
more precise positioning.

Limitations: While the system is advanced, there is room
for improvement. Calibration requires specialized surveying
tools, such as a total station. However, testing over two years
has revealed that these parameters remain relatively stable.
Although calibration is a one-time necessity per vehicle,
it does curtail the system’s full automation. Each vehicle
mandates GPU utilization for segmentation. Even though
NVIDIA’s Orin offers substantial computational prowess,
it comes at a premium cost. Adverse snowy conditions
incapacitate the visual system, narrowing the algorithm’s geo-
graphic applicability. Finally, while the system can localize
using minimal corner pixels, it heavily relies on heading data
from lane lines. Our method currently does not accommodate
curved lane lines, making accurate positioning challenging
in their absence. This article primarily underscores our sys-
tem’s practical application, but the underlying mathematical
rationale merits further exploration.

V. CONCLUSION

In this article, we presented a reliable and precise localiza-
tion system leveraging road markers and lanes. Using the IPM
matrix, our method determines the vehicle’s pose within the
global frame. The experimental results highlight its potential
not only in container ports but also in various autonomous
settings. Our solution operates continuously in real-world
ports, achieving positioning accuracies of up to 10 cm in
most areas, satisfying the precision needs for the alignment
between rail cranes and UGVs. This approach can be adapted
to recognize different road marker shapes. Future directions
encompass online updates of the visual database and 3-D
structures for enhanced relocalization capabilities, especially
in dynamic settings. Further plans include detecting damaged
ground markers, integrating data from other sensors, and pro-
viding mathematical explanations for observed experimental
behaviors.
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