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Abstract—Similarity transformation problems are important
in robotic instrumentation and computer vision based measure-
ments since in many cases the information of visually observed
scene scale is unknown and must be restored for accurate
3-dimensional reconstruction. In existing solvers, the scale is
often considered as a scalar, i.e., isotropic, which may be
invalid for anisotropic-scale setups. This paper exploits some
mathematical coincidences that will lead to efficient solution
to these problems. Possible further applications also include
hand-eye calibration and structure-from-motion. We revisit pose
estimation problems within the framework of similarity trans-
formation, the one that considers scale-stretching, rotation and
translation simultaneously. Two major problems are taken into
account, i.e., the scale-stretching point-cloud registration and
perspective-n-points (PnP). It has been found out that these two
problems are quite similar. Moreover, we solve the anisotropic-
scale registration problem that is important and is a remaining
unsolved one in previous literatures. To compute the globally
optimal solution of these non-convex problems, algebraic solution
is obtained to compute all local minima using computationally
efficient methods. The designed algorithm is deployed for robotic-
arm pose estimation. We also extend the algorithm for solving
the problem of robust magnetometer calibration. Visual pose
experiments verify the superiority of the proposed method
compared with representatives, including P3P, Lambda-Twist
P3P and EPnP, which can be reproduced by repository in
https://github.com/zarathustr/APnP.

Index Terms—Pose estimation, similarity transform, point-
cloud registration, perspective-n-points (PnP), absolute orienta-
tion
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NOMENCLATURE

∥·∥ Euclidean norm
X⊤ Transpose of matrix X
x× Skew symmetric matrix of vector x
q Unit attitude quaternion
I Identity matrix of proper size
0 Zeros matrix of proper size
Rn Real n-dimensional vector space
Rn×m Real n×m matrix space
Z Non-negative integer space
Rn

+ Real n-dimensional vector space with
positive entries

N(γ,Σ) Normal distribution with mean of γ and
covariance of Σ

SO(n) n-dimensional special orthogonal group
SE(n) n-dimensional special Euclidean group

I. INTRODUCTION

A. Motivation and Related Work

ACCURATE robotic navigation and mapping require pre-
cision pose estimation from visual measurements, includ-

ing images and point-cloud information [1], [2]. Among well-
developed methods, the point-cloud registration (PCR) and
perspective-n-points (PnP) are two major categories for esti-
mating relative or absolute poses. The point-cloud registration
aims to determine the relative pose between successive 3-D/3-
D point-cloud measurements. The PnP solves the camera pose
by the correspondence between 2-D image points and 3-D
world points. Registration-based methods can also be shifted
to solving vision-based calibration problems [3], [4]. In these
two methods, the determination of scale is vital, as it links the
estimates to the geometry of the real world. Therefore, current
research efforts are mainly devoted to obtaining accurate
estimate of scale, rotation and translation simultaneously.

Extensive efforts have been paid to solving PCR and PnP
problems. Markley and Arun proposed solvers for point-to-
point registration early back to 1980s, respectively [5], [6].
The kernel problem of PCR is the determination of point
correspondences between two point sets to be registered. This
motivates the idea of iterative closest point (ICP) that was
proposed in 1990s [7]–[9]. The ICP is challenging, non-convex
and NP-hard, since the sizes of two point sets are not identical.
In many registration problems, the scale factor is always
unknown because of different measurement principles and
unsatisfactory calibration. Horn solves this scale-stretching
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registration in [10], [11] by analytical results. This was later in-
troduced to the ICP for refined scale-factor determination [12].
For the PnP problem, the scale is the depth of the pixel that
is significant to the size of 3-D reconstruction. Early methods
use direct linear transform (DLT) [13] by vectorizing rotation
matrix. An approximate pose solution will be obtained and will
be refined by taking the nearest rotation (orthonormalization)
into account [14], [15]. The perspective-3-points (P3P) solves
the PnP problem by taking three points of them and verify the
solution via an extern fourth point [16]. These methods are
simple and computationally efficient, but will suffer from large
errors when the input measurements are noisy. The efficient
PnP (EPnP) algorithm solves the method in a least-square
manner with singular value decomposition [17]. There are
other variants of PCR, e.g., the ones using various metrics of
point-to-plane [18] and point-to-line [19] ones, which are not
the objective of this paper. Some other methods of PnP solve
the problem by considering the scale as a nonlinear function
of attitude and translation [20], [21]. And the new problem
is no longer a similarity transformation problem, which needs
extensive efforts for solving the nonlinear optimization. We
also do not discuss them in this paper. In other words, this
paper targets at solving the problem analytically to a maximum
extent. To this end, we must face the following challenges
behind the related research:

• Challenge 1 - Scale Matters: We also notice that, follow-
ing the research trend introduced above, there are still
remaining problems in the field. First, the connection
between these problems are not very clear. Furthermore,
previous methods only considers the isotropic scale in
estimation. However, in real world scenarios, usually
practitioners will encounter anisotropic-scale point-cloud
registration (APCR) problems. For instance, if we con-
sider registration of point sets measured by two different
laser scanners, the scale may not be the same. Cur-
rently, there is a trend in point-cloud registration that
merges the anisotropic concerns into the original one
[22]. However, the anisotropic-scale registration problem
is still not solved completely. It is currently challenging,
as in the conclusion of [12], it has been pointed out that
the anisotropic-scale registration is much harder than the
isotropic one.

• Challenge 2 - Convergence is Tough: Although there
has been further studies on the anisotropic registration
by Du et al. [23] and Li et al. [24], the results show
that there exits local minima in their algorithm and
satisfactory initial guess must be obtained to guarantee
the global convergence, which may be false in terms
of high outlier rate. This problem continuously exists in
further related works [25], [26], which highly limits the
practical performance.

• Challenge 3 - More Applications Meet Registration: In
[27], it is inferred that the anisotropic-scale registration
is highly related to sensor calibration issues, which are
important in inertial navigation and robotics. But the
problem is so non-convex and only approximate opti-
mization can be solved. Therefore, it will be a little

bit difficult to transfer existing results of isotropic-scale
registration to another. This paper aims to solve these
remaining issues that are important to the community.
Theoretical and experimental results support our new
findings. With contributions to be revealed in the next
sub-section, this paper treats another challenge, i.e., the
data association problem, as a well-solved one. The
reason is that the data association problem, sometimes
also referred to as the correspondence matching problem,
is completely different one, which receives popularity
from diverse communities. In this way, this work will
only use some mature data association techniques in
experimental validation stage.

B. Contributions

In this paper, we revisit these problems by unifying them
as the similarity transformation problem. The contributions of
this paper are summarized as:

1) First, through theoretical analysis, we show that scale-
stretching PCR and PnP are very similar. In this way, a
simple eigenvalue solution is designed that unifies them
together.

2) We extend the isotropic-scale registration to anisotropic-
scale one. The new problem is non-convex. Therefore,
approximate and globally optimal solutions are derived
to solve this challenging problem. The proposed globally
optimal method is convergence-free while initial-value-
free, leading to the fact that it is efficient and determin-
istic.

3) The developed theory is transferred to solve not only the
anisotropic-scale registration and PnP, but also it helps
solve the problem of magnetometer calibration, where a
point-to-surface registration scheme is proposed.

C. Outline

The remainder of the paper is organized as follows: Section
II-B to Section II-D first introduce the details of several
similarity transformation problems to be studied. Local and
globally optimal solutions are then presented in Section III.
Two experimental applications, results and comparisons are
shown in Section IV. Finally, concluding remarks are drawn
in Section V.

II. SIMILARITY TRANSFORMATION PROBLEMS

A. Transformations

Some notations are defined in the Nomenclature in the
beginning of this paper. Rotation matrices distribute on the
manifold of n-dimensional special orthogonal group such that
SO(n) :=

{
R ∈ Rn×n|R⊤R = I,det(R) = +1

}
. The spe-

cial Euclidean group complements SO(n) with an additional
translation vector:

SE(n) :=

{(
R t
0 1

)∣∣∣∣R ∈ SO(n), t ∈ Rn

}
(1)
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in which 0 denotes a zero matrix with adequate size. When the
scale factor is considered, the similarity transformation group
is

Sim(n) :=

{(
sR t
0 1

)∣∣∣∣ s ∈ R,R ∈ SO(n), t ∈ Rn

}
.

In this paper, Sim(n) is extended to SIM(n), that characterizes
the scale factor in an anisotropic manner

SIM(n) :={(
SR t
0 1

)∣∣∣∣S ∈ diag
(
Rn

+

)
,R ∈ SO(n), t ∈ Rn

}
where Rn

+ stands for the set of n-D real positive vectors. For
3-dimensional cases, rotation can be parameterized with unit
quaternion, say q = (q0, q1, q2, q3)

⊤. Rotation matrix R is
quadratically represented in terms of elements of q, so the
negative quaternion −q represents the same rotation as R.
Quaternion has the only constraint of unitary norm thus it is
more convenient in optimization problems. Note that, quater-
nion is not the simplest formulation for 3-dimensional rotation
parameterization. For any n-dimensional rotation matrix R, it
has related Lie algebra ξ such that R = exp (ξ×), in which ξ×
denotes a mapping from Rn(n−1)/2 to Rn×n. However, there
are infinity many ξ correspond to R since ξ is periodic. Thus
even for 3-dimensional case, the computation of Jacobian may
be truncated using limited elements of expansion of exp (ξ×).
The introduction of Lie algebra simplifies the number of
variables for identifying rotation but brings more nonlinearity.
As a consequence, this paper uses the unit quaternion as a
kernel tool for solution of optimization problems.

B. Problem I: Scale-Stretching 3-D Registration

What we are concerning the most in the remainder of this
paper includes the scale-stretching PCR and PnP problems.
Given two 3-dimensional point sets {B} and {R}, the scale-
stretching PCR (SPCR) aligns the two sets together by solving
the following absolute orientation problem

argmin
s∈R,R∈SO(3),t∈R3

LSPCR =
∑N

i=1
∥bi − sRri − t∥2 (2)

in which bi ∈ {B} and ri ∈ {R} are points from two sets.
Note that here we assume that the correspondences between
{B} and {R} have been fixed. The scale-stretching PCR
deals with the registration problem on Sim(3). Scale-stretching
phenomenon usually comes from devices with different scale
factors. Thus it is frequently required for 3-D/3-D alignment
between multiple point cloud measurements from laser scan-
ners.

C. Problem II: Perspective-n-Points

The PnP aims to solve the pose estimation problem between
the undistorted 2-D points in the image plane and correspond-
ing 3-D points in the world frame. Given image coordinates
ui ∈ R2 for i = 1, 2, . . . ,N and their related 3-D world
points v ∈ R3 for i = 1, 2, . . . ,N , one would like to achieve
the following perspective transformatiom

s
(
u⊤
i , 1

)⊤
= K(Rvi + t). (3)

where K ∈ R3×3 is an affine calibration matrix (intrinsic)
accounting for the focal lengths and central points in horizontal
and vertical directions respectively. Denoting bi =

(
u⊤
i , 1

)⊤
and ri = vi, it is able for us to construct the optimization of

argmin
s∈R,R∈SO(3),t∈R3

LPnP =
∑N

i=1
∥sbi −Rri − t∥2 . (4)

Here, s,R and t form a transformation on Sim(3). Normally, s
is not independent of R, because from (3), one can conclude
from the last line that s is in nonlinear form of R and t.
Therefore, the essential way for solving highly accurate PnP
relies on optimization of bundle adjustment (BA). However,
to obtain a good initial guess of BA, s can be treated
independently from R and t, such is a common practice in
popular solvers like EPnP [17].

D. Problem III: Anisotropic-Scale Registration

In registration with anisotropic scale factors, the following
nonlinear least square problem is considered

argmin
R∈SO(3),t∈R3,S∈diag(R3

+)

LAPCR =
∑N

i=1
∥bi − SRri − t∥2

(5)
in which bi and ri are i-th correspondence point pair from two
point sets {B} and {R} respectively. R denotes the rotation
matrix that distributes on the special orthogonal group SO(3)
subject to the nonlinear constraints R⊤R = I,det(R) = 1.
t acts as a translation vector while S contains three positive
anisotropic scale factors such that S = diag(s1, s2, s3) with
s1, s2, s3 being positive numbers in the real positive set R+.
Here S,R and t consititute a transformation on SIM(3).
Previously, in [12], a scale-stretching ICP problem has been
studied where S degenerates to a scalar, that is exactly the
scale-stretching registration problem stated above. The APCR
problem is much more challenging than previous one as
mentioned in the concluding remarks of [12], where strong
coupling between S and R has been illustrated. Therefore,
the problem is challenging in the aspect of globally optimal
optimization solution.

III. SOLUTIONS

A. Scale-Stretching Registration and PnP

The elements of bi and ri are bi = (bi,1, bi,2, bi,3)
⊤ and

ri = (ri,1, ri,2, ri,3)
⊤ respectively. (2) and (4) specify the

target objective of the scale-stretching PCR and PnP. From
these expressions, it is clear that the only difference is the
location of s. In the following contents, we are going to show
some algebraic results for solving these problems. Moreover,
the two problems are eventually solved in a unified fashion.

The objective of PnP can be extended as

LPnP =
∑N

i=1
(sbi −Rri − t)

⊤
(sbi −Rri − t) . (6)

Introducing the unit quaternion q for attitude parameterization
of R, the Lagrangian is

L̃PnP = LPnP + λ
(
q⊤q − 1

)
(7)
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where λ ∈ R is the Lagrange multiplier. Here, a detailed
relationship between a unit quaternion and a rotation matrix
can be found in [28]. Then all local optimum occur at the
place where the Jacobian is zero. To compute the Jacobian
analytically, some previous results are invoked. The rotation
matrix R = (P1q,P2q,P3q) in which P1,P2 and P3 are
linear matrix of q [29], [30], thus

Rri = (P1q,P2q,P3q) ri =
∑3

j=1
ri,jPjq (8)

which gives

∂b⊤i Rri/∂q =
∑3

j=1
ri,jP

⊤
j bi =

∑3

j=1
ri,jMj (bi) q (9)

where Mj matrix is linear in the form of bi (see [30]). In
this way, the blocks of Jacobian are

∂L̃PnP

∂q
= 2λq − 2

∑N

i=1

∑3

j=1
ri,jMj (sbi − t) q, (10)

∂L̃PnP

∂t
= 2N t− 2

∑N

i=1
sbi −Rri, (11)

∂L̃PnP

∂s
= 2

∑N

i=1
b⊤i (sbi −Rri − t) . (12)

The optimality meets ∇L̃PnP = 0. Then one has

t = sb̄−Rr̄, (13)

λq =
∑N

i=1

∑3

j=1
ri,jMj

[
s
(
bi − b̄

)
+Rr̄

]
q, (14)

s =

[∑N

i=1
b⊤i R (ri − r̄)

]
/

[∑N

i=1
b⊤i

(
bi − b̄

)]
. (15)

Introducing the identities

P⊤
i Piq = q, (16)(

P⊤
i Pj + P⊤

j Pi

)
q = 0, (17)

the term Mj (Rr̄) q can be simplified to scaled form of q,
say αq. Therefore, q will be solved via the following problem

sWq = (λ− α)q (18)

in which

W = 1/N
∑N

i=1

∑3

j=1
ri,jMj

(
bi − b̄

)
. (19)

Note that, for this problem, q is an eigenvector of W associ-
ated with the eigenvalue of (λ−α)/s. W is a 4×4 symmetric
matrix so there will be 4 real eigenvalues corresponding to 4
possible local minima. Inserting these 4 possible solutions of
q back into (13) gives 4 possible solutions of s. The optimal
set of solution is then obtained by checking the loss-function
value LPnP. These techniques are similar for SPCR problem.
The Lagrangian is

L̃SPCR = LSPCR + λ
(
q⊤q − 1

)
. (20)

We use the fact that R can be decomposed into

R⊤ = (Q1q,Q2q,Q3q) (21)

in which Q1,Q2,Q3 are linear matrices of q. The derivative
of the loss function with respect to quaternion is

∂L̃SPCR

∂q
= 2λq −

(∑N

i=1

∑3

j=1
sri,jMj

[(
bi − b̄

)]
+ ri,jI

)
q

(22)

indicating that the solution is also an eigenvalue problem, like
(18).

B. Anisotropic-Scale Registration

For the anisotropic registration, from single-pair equation
bi = SRri + t, one can conclude the averaged form as b̄ =
SRr̄ + t, that further gives a new optimization

argmin
R∈SO(3),S∈diag(R3

+)

LAPCR,1 =
∑N

i=1

∥∥∥b̃i − SRr̃i

∥∥∥2 (23)

which is decentralized one without translation t with b̃i =
bi − b̄ = (bi,1, bi,2, bi,3)

⊤, r̃i = ri − r̄ = (ri,1, ri,2, ri,3)
⊤.

Then the following norm-based optimization is constructed

argmin
S∈diag(R3

+)

LAPCR,S =
∑N

i=1

(
b̃⊤i S

−2b̃i − r̃⊤i r̃i

)2

. (24)

The Jacobian of LAPCR,S is

∂LAPCR,S

∂s
= 4

∑N

i=1

 b2i,1β/s
3
1

b2i,2β/s
3
2

b2i,3β/s
3
3

 . (25)

in which s = (s1, s2, s3)
⊤ and β = (∥r̃i∥2−b2i,1/s

2
1−b2i,2/s

2
2−

b2i,3/s
2
3). To solve s, the equation ∂LAPCR,S/∂s = 0 must be

solved. This results in the following polynomial equation after
simplification g2g3a11 + g1g3a12 + g1g2a13 + g1g2g3a14 = 0

g2g3a21 + g1g3a22 + g1g2a23 + g1g2g3a24 = 0
g2g3a31 + g1g3a32 + g1g2a33 + g1g2g3a34 = 0

(26)

with g1 = s21, g2 = s22, g3 = s23 and

a11 = −
∑

b4i,1, a12 = −
∑

b2i,1b
2
i,2, a13 = −

∑
b2i,1b

2
i,3,

a14 =
∑

b2i,1 ∥r̃i∥2 , a21 = −
∑

b2i,1b
2
i,2, a22 = −

∑
b4i,2,

a23 = −
∑

b2i,2b
2
i,3, a24 =

∑
b2i,2 ∥r̃i∥2 , a31 = −

∑
b2i,1b

2
i,3,

a32 = −
∑

b2i,2b
2
i,3, a33 = −

∑
b4i,3, a34 =

∑
b2i,3 ∥r̃i∥2 .

(27)
The closed-form solution to g1, g2, g3 is

g1 = −G/G1, g2 = G/G2, g3 = −G/G3 (28)

where G = a11a22a33−a11a23a32−a12a21a33+a12a23a31+
a13a21a32 − a13a22a31, G1 = a12a23a34 − a12a24a33 −
a13a22a34 + a13a24a32 + a14a22a33 − a14a23a32, G2 =
a11a23a34−a11a24a33−a13a21a34+a13a24a31+a14a21a33−
a14a23a31 and G3 = a11a22a34 − a11a24a32 − a12a21a34 +
a12a24a31 + a14a21a32 − a14a22a31. Then s can be obtained
via

s1 =
√
g1, s2 =

√
g2, s3 =

√
g3. (29)

It should be noticed that (24) only considers the norm con-
straint so the coupling between S and R is lost. Thus (29) is
an approximate solution of s.

Once an approximate set of scale factors has been found,
inserting it back into (23) gives an approximate rotation
estimate, say R0. This step can be achieved via either SVD
[6] or eigen-decomposition (EIG) [7]. Using the approximate
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scale S0, the following equality for i-th vector pair can be
achieved

b̃i = S0S̃R̃R0r̃i (30)

where S0S̃ = S and R̃R0 = R are true values of scale
and rotation. S̃ and R̃ are error states of scale and rotation
respectively. By setting ui = S−1

0 b̃i and vi = R0r̃i, a new
equivalent optimization for the error states can be established

argmin
R̃∈SO(3),S̃∈diag(R3

+)

∑N

i=1

∥∥∥ui − S̃R̃vi

∥∥∥2 (31)

which can be solved recursively via the formulae presented
above. By repeating such construction over and over again, we
gradually achieve the minimum. Note that R̃ will eventually
converge to identity matrix I but convergence rate will be quite
slow for final iterations. To solve this problem efficiently, we
consider R̃ to be a small-angle rotation, which can be parame-
terized as R = I+θ×, in which θ = (θ1, θ2, θ3)

⊤ characterize
small Euler angles and θ× is its associated skew-symmetric
matric. Denoting x =

(
θ⊤, s⊤

)⊤
, solving x optimally is

identical to find all roots by zeroing the Lagrangian derivative.
Simplified polynomial system is given by (32), where hij are
coefficient for the i-th equation’s j-th monomial. Note that
in this system, many coefficients can be omitted by reducing
variables via the following equalities:

h12 = −h11, h21 = −h18, h22 = h18, h23 = h13, h27 = h17,

h28 = h11, h31 = h17, h32 = −h17, h33 = h14, h34 = h24,

h37 = h18, h38 = h11, h42 = h24, h43 = h13, h44 = h14,

h45 = h25, h46 = h35, h47 = −2h18, h48 = 2h17, h49 = 2h11

h52 = h14, h53 = h13, h54 = h24, h55 = h15, h56 = h36,

h57 = 2h11, h58 = −2h17, h59 = 2h18, h62 = h13, h63 = h14,

h64 = h24, h65 = h16, h66 = h26, h67 = −2h11, h68 = 2h18

(33)
and h69 = 2h17. Required coefficients are summarized in (34)

h11 =
∑N

i=1
vi,2vi,3, h13 =

∑N

i=1
v2i,3, h14 =

∑N

i=1
v2i,2, h15 =

∑N

i=1
ui,2vi,3,

h16 = −
∑N

i=1
ui,3vi,2, h17 = −

∑N

i=1
vi,1vi,2, h18 = −

∑N

i=1
vi,1vi,3,

h24 =
∑N

i=1
v2i,1, h25 = −

∑N

i=1
ui,1vi,3, h26 =

∑N

i=1
ui,3vi,1,

h35 =
∑N

i=1
ui,1vi,2, h36 = −

∑N

i=1
ui,2vi,1, h41 = −

∑N

i=1
ui,1vi,1.

(34)

and h51 = −ΣN
i=1ui,2vi,2, h61 = −ΣN

i=1ui,3vi,3. It should be
noticed that from last three sub-equations of (32), one can
directly solve s1, s2, s3 in terms of θ1, θ2, θ3, i.e.

s1 = −(h41 + h45θ2 + h46θ3)/

(h43θ
2
2 + h49θ2θ3 + h47θ2 + h44θ

2
3 + h48θ3 + h42)

s2 = −(h51 + h55θ1 + h56θ3)/

(h53θ
2
1 + h59θ1θ3 + h57θ1 + h54θ

2
3 + h58θ3 + h52)

s3 = −(h61 + h65θ1 + h66θ2)/

(h63θ
2
1 + h69θ1θ2 + h67θ1 + h64θ

2
2 + h68θ2 + h62).

(35)
Thus replacing s1, s2, s3 with (35) produces a system with
unknowns of θ1, θ2, θ3 only. The transformed system is a
little bit sophisticated. Related monomials are shown in (36).
To solve this nonlinear polynomial system, we may use the
Gröbner-basis method. Gröbner bases are common properties
of a certain polynomial system. They actually represent a
reduced form of original polynomials so they are easier to
be solved via variable elimination. However, Gröbner-basis
method is not applicable for solving this system since the
reduced Gröbner bases are too complicated so that evaluating
these bases consumes much more time even than numerical
optimizers. Therefore, to efficiently solve the new system
containing only elements of θ, a linear equation is appended:
H = 1 + θ1 + θ2 + θ3, which is a linear combination of
first-order monomials {1, θ1, θ2, θ3}. Since the magnitude of
θ is small, high-order terms will be very tiny. In this way, we
depart ζθ into two sub-groups ζ1 and ξ2, where ζ1 contains
all terms with orders of no more than 3 and ζ2 consists of the
remainder. Stacking all coefficient of original polynomials of
θ forms the Macaulay matrix M such that

Mζθ = 0. (37)

However, after extending H to the original system, the H is
not zero in general. Denoting the new Macaulay matrix as M̄,
using H as the first extended equation of the new polynomial,
we can write M̄ as

M̄ =

(
M̄1 M̄2

M̄3 M̄4

)
(38)

so that (
Hζ⊤

1 ,0
)⊤

= M̄
(
ζ⊤
1 , ζ⊤

2

)⊤
. (39)

Using the identity of Schur complement, we have

K = M̄1 − M̄2M̄−1
4 M̄3. (40)

So it follows that
Fζ1 = Hζ1 (41)



h15s2 + h16s3 + h11s
2
2 + h12s

2
3 + h13s

2
2θ1 + h14s

2
3θ1 + h17s

2
3θ2 + h18s

2
2θ3 = 0

h25s1 + h26s3 + h21s
2
1 + h22s

2
3 + h23s

2
1θ2 + h24s

2
3θ2 + h27s

2
3θ1 + h28s

2
1θ3 = 0

h35s1 + h36s2 + h31s
2
1 + h32s

2
2 + h33s

2
1θ3 + h34s

2
2θ3 + h37s

2
2θ1 + h38s

2
1θ2 = 0

h41 + h42s1 + h45θ2 + h46θ3 + h43s1θ
2
2 + h44s1θ

2
3 + h47s1θ2 + h48s1θ3 + h49s1θ2θ3 = 0

h51 + h52s2 + h55θ1 + h56θ3 + h53s2θ
2
1 + h54s2θ

2
3 + h57s2θ1 + h58s2θ3 + h59s2θ1θ3 = 0

h61 + h62s3 + h65θ1 + h66θ2 + h63s3θ
2
1 + h64s3θ

2
2 + h67s3θ1 + h68s3θ2 + h69s3θ1θ2 = 0

(32)
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ζ⊤
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(36)

namely ζ1 is the eigenvector of F associated with eigenvalue
H . In this way, all 27 eigenvectors of F can be obtained. Not
all of these 27 eigenvectors are real. Then selecting the real
vectors and inserting them back to the loss function value,
the global optimal solution will be obtained. Since the eigen-
decomposition is highly numerical stable, the proposed method
is also numerical stable.

IV. EXPERIMENTAL RESULTS

In this section, the experimental results from various sensors
are reported. The proposed method has been applied to these
cases where comparisons with representatives are systemati-
cally conducted. In all these experiments, the data association
has been performed using k-d tree, which is easy-to-implement
and classical.

A. Synthetic Evaluation: Comparisons with Existing
Anisotropic Registration Methods

We replicate the anisotropic registration algorithms in [23]–
[25]. These three methods all belong to the iterative algorithms
which need a good initial guess to converge to the global
minimum. We simulate randomly sampled point cloud data
from the Stanford Bunny model [31]. We sample 50 cases with
5000 points to conduct registration. For each cases, first, 100
initial guess values are generated randomly for convergence
analysis. For reference and transformed point pairs, the point
numbers are consistent, i.e., there will be no data association
challenges in this test. Then, we conduct another test using
initial guess values provided in the original works (marked as
Author-Given). The registration success rates are averaged and
summarized in Table I. Seen from the results, since the pro-

TABLE I
SUCCESS RATES OF DIFFERENT ANISOTROPIC REGISTRATION METHODS

Initial Du et al. [23] Li et al. [24] Chen et al. [25] Proposed Global

Random 14.686% 18.922% 16.815% 100%
Author-Given 74.238% 63.401% 78.736% 100%

posed method is globally optimal, the method is free of initial-
value selection and iterations. However, other representatives
are all iterative. Thus the performance is largely dependent on
the quality of initial guess. Although all these methods pro-
vide their respective initial value computing strategy in their
works, they are not always leading to satisfactory registration
results. This shows that our method is much more reliable
and deterministic compared to these existing ones. We also

show anisotropic registration results of several open models.
We utilize the frog1 model and the armadillo2 model for
validation, whose standard models are shown in Fig. 1. The
standard models are downsampled to high resolution point
clouds. Gaussian noises with covariance of Σ = 10−2m2

are added to the models, denoting a typical noisy sensor
specification for modern 3-D LiDARs. The scale factors for
two different models are emulated as 2.5 and 0.45 respectively.
In these tests, rotation matrices, and translation vectors are
generated randomly as ground truth. The evaluated registration
results with estimated correspondences are shown in Fig. 2 and
Fig. 3.

Fig. 1. The utilized standard models for accuracy comparisons of 3-D
anisotropic registration methods.

Some representative candidates are employed for compar-
isons. We show the registration accuracy results for frog
model in Fig. 4 and Fig. 5, with statistics shown in Table
II. The error metrics are:

Erot = arccos
tr(R⊤Rtrue)− 1

2
Etrans = ∥t− ttrue∥ (42)

The results indicate that the proposed method achieves best
rotation and translation accuracy in these tests. As shown in
correspondences estimated previously, we may see that the
proposed method can generate highly accurate point corre-
spondences given noisy point cloud pairs. This shows that
the method would be capable of estimating accurate poses
encountering data with outliers.

B. Application I: Accurate PnP Camera Pose

When conducting dynamic grasping tasks with a dynamic
camera, the camera needs to understand the pose of the robotic

1http://visionair.ge.imati.cnr.it/ontologies/shapes
2https://graphics.stanford.edu/data/3Dscanrep
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Fig. 2. The registration results with the proposed anisotropic scale estimation
of the noisy frog models with estimated inlier correspondences (marked in
red).

Fig. 3. The registration results with the proposed anisotropic scale estimation
of the noisy armadillo models with estimated inlier correspondences
(marked in red).

gripper in real-time. This requires accurate perception of the
gripper pose by visual correspondences. In our platform shown
in Fig. 6, there is a gripper installed on a 6-degree-of-freedom
(6-DOF) robotic manipulator. There is a 4x4 mini chessboard
pattern attached to the robotic gripper using standard printing.
A dynamically moving ZED-M stereo camera gazes at the
pattern on the gripper, so that the motion of the gripper can be
inspected. To compute the relative camera pose (left camera)
with respect to this mini gripper pattern, we implement the P3P
[16], EPnP [17], Lambda-Twist P3P3 [32] and our proposed

3https://github.com/midjji/lambdatwist-p3p

Fig. 4. Rotation errors of the proposed method with representative methods.
The unit is degree.

Fig. 5. Translation errors of the proposed method with representative methods.
The unit is meters.

solution (18) for compsrisons. The intrinsic calibration is ob-
tained using MATLAB calibration toolbox, i.e. method of Dr.
Zhengyou Zhang [33]. The corners of the pattern are extracted
using the histogram method in [34]. Since the patten is dark,
direct corner extraction is trivial. We track the pattern using the
fast correlation filter proposed in [35]. The trust region of the
tracked area is used as the image for chessboard recognition
and corner extraction (see Fig. 7). When implementing P3P
method, we use the random sample consensus (RANSAC) to
select the best fourth point for verified pose. After evaluation
of each algorithm, the pose solution is refined by the same
Quasi-Newton nonlinear optimizer by converting q to its Lie
algebra ξ. The algorithms are evaluated via the averaged loss
function value

LPnP,mean = LPnP/N (43)

in (4). We use this metric because this is a mean quality
value, which is proportional to the reprojection error. We name
the proposed method as the algebraic PnP (APnP). The loss
function values of various methods in a single experiment are
shown respectively in Fig. 8, Fig. 9 and Fig. 10.

The PnP reprojection errors are evaluated according to
estimates given by various algorithms, whose snapthot is
presented in Fig. 11. The root mean squared reprojection
errors of various algorithms in pixels are presented in Table
III. We use different markers to represent the reprojected
corners from various algorithms. Among these reprojected
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TABLE II
ROTATION AND TRANSLATION ERRORS FOR ANISOTROPIC

REGISTRATIONS USING DIFFERENT METHODS (FROG/ARMADILLO)

Methods Rotation Error (◦) Translation Error (m)

Du et al. [23] 1.567/1.808 0.869/0.932
Li et al. [24] 2.434/2.493 1.125/1.098

Chen et al. [25] 1.603/1.831 1.113/1.088
Proposed 1.218/1.226 0.763/0.791

Fig. 6. The experimental platform for dynamic gripper pose tracking.

markers, one may notice that some of them have large bias
with respect to the correct corners. The results indicate that
the proposed APnP is very accurate and stable. The reason
that the accuracies of P3P and EPnP are low is that when the
pattern moves, the extracted corner pixels have large errors
due to possible motion blur. This can be visualized in the data
provided in our open-sourced dataset (see Acknowledgement).
The computational efficiency of the proposed APnP is high,
since it only requires EIG of a 4x4 matrix, which can be com-
puted instantly via a fast method4 reported in [14]. Therefore,
the designed algorithm can be easily deployed to even low-
configuration platforms for accurate camera pose estimation.

C. Application II: Magnetometer Calibration

For a vector magnetometer, the raw readings can be modeled
as

mb = TRmr + bm + ϵm (44)

where mb and mr are 3-D vector measurements of magne-
tometer in the body frame and reference frame respectively;

4https://github.com/zarathustr/hand eye SO4/blob/master/eig4.m

Fig. 7. The tracked chessboard pattern that attached to the robotic gripper.
Red: tracked location of pattern; Yellow: Trust region of tracked location.

Fig. 8. The comparison of loss function values between P3P (with RANSAC)
[16] and the proposed APnP.

T ∈ R3×3 stands for the calibration matrix that takes scale
factor and nonorthogonality into account; R is the rotation
matrix in SO(3); bm and ϵm ∼ N (0,Σϵm) denote the
constant bias and stochastic noise term respectively. The
magnetometer calibration problem is to estimate unknown
parameters T ,R, bm and mr, with given measurements of
mb. The general calibration problem of magnetometer can be
parameterized as follows

argmin
T ∈ R3×3,R ∈ SON (3),

bm ∈ R3,mr ∈ R3

∑N

i=1

∥∥mb
i − TRim

r − bm
∥∥2
(45)

in which R ∈ SON (3) = SO(3)×SO(3)×· · ·×SO(3) stands
for an element in a power manifold of SO(3) that includes all
Ri for i = 1, 2, . . . ,N with order up to the measurement
number N , while i stands for the i-th sensor sample time
instant. (45) is non-convex, NP-hard and usually trivial. As
pointed out in [27], (45) suffers from non-unique solutions
since S and Ri are coupled together. Special care has been
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Fig. 9. The comparison of loss function values between EPnP [17] and the
proposed APnP.

Fig. 10. The comparison of loss function values between Lambda-Twist P3P
[32] and the proposed APnP.

taken to relax (45) to

argmin
U ∈ T(3),

bm ∈ R3, m̃n ∈
(
U3)N

∑N

i=1

∥∥mb
i −Um̃n

i − bm
∥∥2 (46)

where
(
U3

)N
is the power manifold of unitary 3-D real vector

space U3 with order N so that the i-th element of mn is
mn

i ∈ R3, such that ∥mn
i ∥ = 1; T(3) denotes the group of all

real upper triangular matrices. In [27], it has been pointed out
that, (46) can be interpreted into another relaxed optimization:

argmin
U ∈ T(3), bm ∈ R3

∑N

i=1

(
1−

∥∥U(mb
i − bm)

∥∥2)2

(47)

Detailed solutions to (47) have been given in
[27], which achieve good accuracy for common
datasets. Initial solution to (47) is given by

Fig. 11. The visualized reprojected markers using estimated poses from
various algorithms.

TABLE III
ROOT MEAN SQUARED REPROJECTION ERRORS OF MULTIPLE METHODS

(IN PIXELS)

Errors P3P - RANSAC EPnP Lambda-Twist P3P Proposed APnP

X-Axis 2.05076 0.22309 0.87190 0.050636
Y -Axis 2.17841 0.26945 0.86411 0.052172

z =
[
vec(U⊤U)⊤,−2b⊤mU⊤U , b⊤mU⊤Ubm − 1

]⊤
, such

that
Y z = 0 (48)

where Y is determined by measurements mb
i for i =

1, 2, . . . ,N . Solution of z can be sought by SVD of Y
or EIG of Y ⊤Y . However, when there are many outliers
or insufficient measurements, the optimization can hardly be
performed. From (48), it is able for us to see that since
z ∈ R10, at least 10 non-coplanar measurements are required
to obtain the initial solution. If the outlier rate is high or the
measurements are not sufficient, the linear system (48) will
become ill-posed, that is, U⊤U in z cannot be guaranteed
to be positive semidefinite. In this case, there is no such
a Cholesky decomposition for a non-positive semidefinite
matrix. The origin of (47) is that, for ideal measurements,
one has ∥∥U (

mb
i − bm

)∥∥ = 1 (49)

Expanding (49), we have

(mb
i − bm)⊤U⊤U(mb

i − bm) = 1 (50)

Let V ⊤DV = U⊤U be an SO(3) eigen-decomposition
(SO(3)-EIG) of U⊤U such that D denotes the matrix with
diagonal entries of eigenvalues and V ∈ SO(3) is the or-
thonormal basis of U⊤U . The SO(3)-EIG is not difficult since
for one matrix X if W⊤DW = X , where det(W ) = −1,
V ⊤DV = X also holds for V = −W ∈ SO(3). Then, (50)
denotes an ellipsoid such that the center is bv and the semi-
major axes are determined by the square roots of the diagonal
elements in the inverse of D. (50) can be further explicitly
given as

(mb
i − bm)⊤V ⊤DV (mb

i − bm) = 1 (51)
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which can be treated as a unit sphere, say X ,

X : x⊤x = 1 (52)

that is located in the origin by substitution of x =
±
√
DV (mb

i − bm). Therefore (47) is actually an ellipsoid
fitting problem and need not to be solved in the way of (48).
For the model (51), we have 9-degree of freedom for the
unknowns, which is less than the number of unknowns in
(48). The vector-field sensor intrinsic calibration problem turns
into a surface registration problem with scale of K =

√
D ∈

diag
(
R3

+

)
, rotation of R = V ∈ SO(3) and translation of

t = −KV bm ∈ R3, such that we find a rigid transformation
that satisfies

xi = KRmb
i + t (53)

in which vb
i on the ellipsoid surface is the i-th corresponding

point of xi on the unit sphere (52), given by raw measurements
vb
i for i = 1, 2, . . . ,N . Sometimes, when the three axes of

magnetometer are isotropic, K becomes a scalar, say s, such
that xi = sRvb

i + t and s actually represents the magnitude
of the geomagnetic field at the local geodetic coordinates. The
new problem is challenging, that is, it is now being formulated
as a point-surface registration. We now solve it in a new
geometrical manner. The point-surface registration is based on
a fact that the geometry of the optimal surface formed by the
points is homotopic to the surface to be registered. Note that
here, homotopy is not rigorously identical to homeomorphism
since the two registered surfaces do not always maintain the
same inner volume. Therefore we solve the problem in a
discrete way. The following criteria has been proposed

argmin
R ∈ SO(3)

t ∈ R3

K ∈ diag
(
R3

+

)
argmax

rj ∈ X
pj ∈ Ỹ ⊂ Y

∑
∥rj −KRpj + t∥2

(54)

The inner optimization maximizes the count of the points by
selecting the most appropriate subset Ỹ of the measurement
set Y , which forms an ellipsoidal surface that corresponds to
the unit sphere X . The outer optimizer then minimizes the
objective function subject to the rigid loss defined in (53).
In the inner loop, once a temporary Ỹ has been found, the
ellipsoid equation can be fitted via (51) and thus a rough guess
of s, R and t can be obtained. Then, via s, R and t, the entire
measurement set Y can be remapped to fit the unit sphere X .
In this way, by Cartesian distances of the remapped points to
the unit surface, we can select best points that are closest to X .
This results in a new map from X back to Y , that recursively
refines the two surfaces, which we name it for the first time,
as the iterative closest points and surfaces (ICPS). The kernel
of this problem is solved via the proposed solver from (23) to
(38).

To verify the proposed algorithm, we first conduct a
hardware-in-the-loop (HITL) simulation. The 3DM-GX5-25
from Microstrain Inc. is employed to collect reference attitude
information and calibrated magnetometer readings (see Fig.
12). The data is gathered at the frequency of 100Hz. Then,
the reference attitude matrices and magnetic data are uti-
lized for simulation of distorted magnetic readings, including

anisotropic scale factor and bias. The distorted magnetometer
data will be calibrated using the proposed method and the 3-D
results are shown in Fig. 13. The magnetic norms before and
after the calibration are shown in Fig. 14.

Fig. 12. The 3DM-GX5-25 inertial measurement unit for hardware-in-the-
loop simulation.

Fig. 13. Calibration results using the proposed method.

Fig. 14. Magnetic norm before/after calibration using the proposed method.

We compare the proposed method with two previous method
by Wu et al. [27] and Vasconcelos et al. [36]. After calibration,
the calibration results from various methods are placed into a
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Kalman filter for attitude estimation from inertial and magnetic
measurements [37]. During the HITL simulation, different
outlier ratios are simulated. The results are shown in Table
IV. The attitude errors are evaluated by the norm of the angle
axis (Rodrigues vector) of the estimated attitude matrix and
reference one.

TABLE IV
ROOT MEAN SQUARED ATTITUDE ERRORS AFTER MAGNETOMETER

CALIBRATION SUBJECT TO DIFFERENT OUTLIER RATIOS (IN DEGREE)

Outlier Wu et al. [27] Vasconcelos et al. [36] Proposed

5% 0.54906 0.82433 0.37805
10% 2.34245 4.32126 1.17829
20% 6.57822 10.33268 2.21061

Fig. 15. The designed inertial/magnetic/visual odometry system.

Fig. 16. The magnetometer calibration results of the designed odometry
system.

The results indicate that the proposed method outperforms
these representative candidates. The main advantage is that
the proposed method is able to estimate robust magnetometer
calibration parameters subject to high outlier ratios, which
indirectly verifies the effectiveness of the proposed solution to
anisotropic-scale registration problem. Moreover, the designed

method is brought to our designed inertial/magnetic/visual
odometry system. This system employs a magnetometer of
RM3110, an inertial measurement unit (IMU) of ICM20948
and a global-shutter camera of MT9V034. The camera sensor
needs much more power when capturing images than other
inertial and magnetic sensors. This will cause sudden electro-
magnetic disturbances in the magnetic readings. Traditional
methods like [27] and [36] cannot deal with the calibration
problem very effectively for such a system. We use our pro-
posed method to estimate the magnetic calibration parameters
via (54). One of the many results will be presented in Fig.
16. Using the calibration results, we are able to compensate
for the fast camera motion distortion by magnetometer. The
attitude estimation accuracy of the results with our calibration
is 0.5203 degree in average for Euler angles and is 0.9811
degree with the method in [27], which verifies the superiority
of our approach.

TABLE V
TIME EFFICIENCY PROFILES OF VARIOUS ANISOTROPIC REGISTRATION

METHODS (IN SECONDS)

Du et al. [23] Li et al. [24] Chen et al. [25] Proposed

0.0923 0.0798 0.1247 0.0712

TABLE VI
TIME EFFICIENCY PROFILES OF VARIOUS PNP METHODS (IN SECONDS)

P3P - RANSAC [16] EPnP [17] Lambda-Twist P3P [32] Proposed APnP

0.00285 0.00464 0.01832 0.00403

D. Time Efficiency

Time efficiency plays a vital role in perspective-n-points,
point cloud registration, and magnetometer calibration, as
these processes often deal with vast amounts of data and re-
quire real-time performance. In perspective-n-points, efficient
algorithms for feature extraction, correspondence matching,
and pose estimation are essential to ensure swift and accurate
computation of camera pose from 2D-3D correspondences.
Similarly, point cloud registration relies on optimized submod-
ules for keypoint detection, feature description, and transfor-
mation estimation to quickly align and fuse multiple point
clouds into a coherent 3D model. Magnetometer calibration
also demands time-efficient techniques for data collection,
noise filtering, and parameter estimation to promptly compen-
sate for sensor errors and ensure precise orientation tracking.
By prioritizing time efficiency and optimizing submodules,
these processes can deliver high-quality results with minimal
latency, enabling their effective deployment in various applica-
tions such as augmented reality, autonomous navigation, and
geospatial mapping. Through previous experimental valida-
tions, we also test the time efficiency of various algorithms.
Specifically, we summarize the results in Table V, VI, VII.

In each test, we test various candidates for 1000 times to
get the average time efficiency profiles. The time efficiency
evaluation has been conducted on a machine with i7-8500
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TABLE VII
TIME EFFICIENCY PROFILES OF VARIOUS MAGNETOMETER CALIBRATION

METHODS (IN SECONDS)

Wu et al. [27] Vasconcelos et al. [36] Proposed

0.6436 0.7689 0.9892

central processing unit, 16GB RAM and 1TB SSD disk
storage. Seen from the tables, it is found out that the proposed
method has better time efficiency than other methods in 3-
D registration and PnP tasks. However, it is notable that in
magnetometer calibration tasks, the proposed method is slower
than the existing representatives. This is because the proposed
one requires more iterations to achieve good inlier estimation
over large datasets while the kernel computation module, being
anisotropic, indeed requires higher computational burden than
those analytical guesses in existing works. Therefore there is
a trade-off between the time efficiency and accuracy for the
sensor calibration tasks. For other tasks, the proposed method
maintains faster than representatives.

V. CONCLUSION

After revisiting traditional similarity transformation prob-
lems, we prove that two representative branches, i.e., scale-
stretching point-cloud registration and perspective-n-points,
can be solved in a unified manner. Furthermore, it is shown
that an extended anisotropic-scale problem is challenging
and detailed globally optimal solutions are derived to solve
this problem. The developed approach has been successfully
applied to industrial robotic grasping tasks and magnetometer
calibration. Future efforts will be paid to finding more poten-
tially better solutions to these problems. Partial experimental
data and codes of this paper are open-source at https:
//github.com/zarathustr/APnP.
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