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Abstract—Joint detection of drivable areas and road anomalies
is very important for mobile robots. Recently, many semantic
segmentation approaches based on convolutional neural networks
(CNNs) have been proposed for pixelwise drivable area and road
anomaly detection. In addition, some benchmark datasets, such
as KITTI and Cityscapes, have been widely used. However, the
existing benchmarks are mostly designed for self-driving cars.
There lacks a benchmark for ground mobile robots, such as
robotic wheelchairs. Therefore, in this article, we first build a
drivable area and road anomaly detection benchmark for ground
mobile robots, evaluating existing state-of-the-art (SOTA) single-
modal and data-fusion semantic segmentation CNNs using six
modalities of visual features. Furthermore, we propose a novel
module, referred to as the dynamic fusion module (DFM), which
can be easily deployed in existing data-fusion networks to fuse
different types of visual features effectively and efficiently. The
experimental results show that the transformed disparity image
is the most informative visual feature and the proposed DFM-
RTFNet outperforms the SOTAs. In addition, our DFM-RTFNet
achieves competitive performance on the KITTI road benchmark.

Index Terms—Deep learning in robotics and automation,
dynamic fusion, mobile robots, semantic scene understanding.
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I. INTRODUCTION

OBILE robots are becoming increasingly popular in

our daily life thanks to their benefits. Self-driving
cars, for example, can greatly reduce traffic accidents [1]-[3].
Ground mobile robots, such as robotic wheelchairs and sweep-
ing robots, can significantly improve people’s comfort and
life quality [4]-[6]. Visual environmental perception and
autonomous navigation are two fundamental components in
mobile robots. The former analyzes the input sensory data and
outputs environmental perception results, with which the latter
enables the robot to autonomously move from its current posi-
tion to its destination [7]-[9]. Among all visual environmental
perception tasks for mobile robots, the joint detection of driv-
able areas and road anomalies at the pixel level is a crucial one.
Accurate and efficient drivable area and road anomaly detec-
tion can help avoid accidents for such vehicles. Note that in
this article, a drivable area refers to a region in which mobile
robots can navigate safely, while a road anomaly refers to a
region with a height difference from the surface of the drivable
area.

With the rapid development of deep-learning technologies,
many semantic segmentation approaches based on convo-
lutional neural networks (CNNs) have been proposed, and
these methods can be used for drivable area and road
anomaly detection. For example, Chen et al. [10] proposed
DeepLabv3+, which combines the spatial pyramid pooling
(SPP) module and the encoder—decoder architecture to gen-
erate semantic predictions. Recently, data-fusion networks
have been proposed to improve the detection performance by
extracting and fusing two different types of visual features.
Specifically, Wang and Neumann [11] proposed a depth-
aware operation to fuse RGB and depth images. In addition,
Zhang et al. [12] fused RGB images with elevation maps. All
of these fusion strategies demonstrated superior performance
using multimodal data.

A. Motivation and Novel Contributions

Different types of mobile robots usually work in different
environments, so they usually have different focuses on envi-
ronmental perception. Self-driving cars, for example, focus
mostly on cars and pedestrians because they run on road-
ways. Differently, ground mobile robots need to pay more
attention to small obstacles, such as stones and tin cans,

2168-2267 © 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on March 24,2021 at 22:36:35 UTC from IEEE Xplore. Restrictions apply.


https://orcid.org/0000-0002-7515-9759
https://orcid.org/0000-0003-2593-6596
https://orcid.org/0000-0002-7704-0559
https://orcid.org/0000-0002-4500-238X

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

RGB Image

DT

Disparity Image

Fig. 1.

—>I—>1—>2—>3—>4—>5—>

i

Tllustration of our drivable area and road anomaly detection framework. It consists of disparity transformation (DT), two encoders (the blue trapezoids),

IEEE TRANSACTIONS ON CYBERNETICS

Semantic Prediction

The n-th The n-th
— Data Fl
ata Hlow - Residual Layer Decoder Layer
B Convolution Batch Normalization ] ReLU
Max Pooling lcjgmevc\/tlitgnR681dual Softmax

and one decoder (the orange trapezoid). DT first transforms the input disparity image. Then, our DFM dynamically fuses two different modalities of features
in a multiscale fashion. Finally, the fused feature is processed by five decoder layers and a softmax layer to output the detection result.

since they usually work in indoor environments or on outdoor
sidewalks. Unfortunately, current public semantic segmenta-
tion benchmarks, such as KITTI [13] and Cityscapes [14],
focus mainly on driving scenarios. Other scenarios, such as
robotic wheelchairs running on sidewalks, are not included.
Therefore, in this article, we first build a drivable area and
road anomaly detection benchmark for ground mobile robots
using our previously published ground mobile robot perception
(GMRP) dataset! [5], on which the performances of state-of-
the-art (SOTA) single-modal and data-fusion networks using
different types of training data are compared in detail.

Recently, incorporating different modalities of visual fea-
tures into semantic segmentation has become a promising
research direction that deserves more attention [15]. The visual
features, such as depth and elevation, can greatly improve
the detection performance. Our recent work [16] introduced
a new type of visual feature, referred to as the transformed
disparity image, in which the values of drivable areas become
similar but the value differences between drivable areas and
road anomalies/damages become significant. This can help
discriminate drivable areas and road anomalies.

Moreover, the existing data-fusion networks typically fuse
two different modalities of data by performing simple ele-
mentwise addition or feature concatenation. However, we can
improve the detection performance by using more effective
fusion operations. Inspired by the dynamic filtering network
(DFEN) [17], we propose a novel data-fusion module, called the
dynamic fusion module (DFM), as shown in Fig. 1, which can
be easily deployed in the existing data-fusion semantic seg-
mentation networks to dynamically generate the fused feature
representations using content-dependent and spatially variant
kernels.

In the experiments, we first compare our proposed network,
referred to as DFM-RTFNet, with ten SOTA single-modal
networks and four SOTA data-fusion networks, using six dif-
ferent types of training data: 1) RGB images; 2) disparity
images; 3) normal images; 4) HHA images; 5) elevation maps;
and 6) transformed disparity images. The experimental results
demonstrate that the transformed disparity image is the most

1 https://github.com/hlwang1124/GMRPD

informative visual feature, and it can greatly improve the driv-
able area and road anomaly detection performance. Moreover,
our DFM-RTFNet achieves the best overall performance. We
further evaluate our DFM-RTFNet on the KITTI benchmark
to validate its effectiveness for self-driving cars, and the
experimental results illustrate that our DFM-RTFNet achieves
competitive performance on the KITTI road benchmark [18].

B. Article Outline

The remainder of this article is organized as follows.
Section II reviews related work. Section III introduces our
previously published disparity transformation algorithm used
in this article. In Section IV, we introduce our DFM-RTFNet.
Section V presents the experimental results and compares our
framework with other SOTA approaches. Finally, we conclude
this article in Section VI.

II. RELATED WORK

In this section, we first overview some selected SOTA
single-modal and data-fusion networks for semantic segmenta-
tion. We also compare these networks with our DFM-RTFNet
in Sections V-C and V-E. Second, we introduce several visual
features acquired from 3-D geometry information. Finally, we
briefly review the dynamic filtering techniques.

A. SOTA Networks for Semantic Segmentation

FCN [19] was the first end-to-end single-modal approach
for semantic segmentation. It employs an image classifica-
tion network for feature extraction with the fully connected
layers removed. There are three main FCN variants: 1) FCN-
32s; 2) FCN-16s; and 3) FCN-8s, and we use FCN-8s in our
experiments.

SegNet [20] was the first to present the encoder—decoder
architecture, which is widely used in current networks. It
consists of an encoder network, a corresponding decoder
network, and a final pixelwise classification layer. U-Net [21]
is designed based on the concept of the encoder—decoder archi-
tecture and adds skip connections between the encoder and
decoder to help restore the location of small objects.
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PSPNet [22] was the first to employ a pyramid pool-
ing module to extract useful context information for better
performance. DeepLabv34- [10] follows this idea and employs
depthwise separable convolution to both atrous SPP (ASPP)
and the decoder module. Dense ASPP [23] further connects a
set of atrous convolutional layers in a dense way.

To further improve the performance, UPerNet [24] tries to
identify many visual concepts, such as objects and textures in
parallel; DUpsampling [25] exploits a data-dependent decoder
that considers the correlation among the prediction of each
pixel; and GSCNN [26] utilizes a novel architecture consisting
of a shape branch and a regular branch, which can help each
other focus on the relevant boundary information. Moreover,
ESPNet [27] decomposes the standard convolution layer to
save memory and computation cost.

As previously mentioned, data-fusion networks have been
proposed to improve detection performance. Such architec-
tures generally use two different types of visual features to
learn informative representations. Specifically, FuseNet [28]
adopts the encoder—decoder architecture and employs elemen-
twise addition to fuse the feature maps of the RGB branch
and depth branch. Different from FuseNet, the depth-aware
CNN [11] introduces two novel operations: 1) depth-aware
convolution and 2) depth-aware average pooling. These oper-
ations can leverage depth similarity between pixels to incor-
porate geometric information into the CNN. RTFNet [29] was
developed to enhance the performance of semantic segmen-
tation using RGB images and thermal images. It also adopts
the encoder—decoder design concept and elementwise addition
fusion strategy. Moreover, MFNet [30] was developed to fuse
RGB images and thermal images for real-time operation.

Howeyver, these data-fusion networks often fuse two differ-
ent types of information by performing simple elementwise
addition or feature concatenation. We think that it is difficult to
fully exploit two different modalities of data in such a simple
fusion way. Different from the previous work, our proposed
DFM can dynamically generate the fused feature represen-
tations using content-dependent and spatially variant kernels,
which can significantly improve the detection performance.

B. Visual Features Acquired From 3-D Geometry Information

Many researchers have proposed visual features computed
using 3-D geometry information to improve the drivable
area and road anomaly detection performance. Specifically,
Gupta et al. [31] combined RGB images with normal
information for multiple tasks, including contour classifica-
tion and semantic segmentation. Zhang et al. [12] fused
RGB images with elevation maps to improve the semantic
segmentation performance. In addition, HHA images were
developed to act as complementary information for RGB
images [28]. An HHA image has three channels: 1) disparity;
2) height of the pixels; and 3) the angle between the nor-
mals and the gravity vector based on the estimated ground
floor. In [16] and [32], we proposed a novel visual feature,
referred to as the transformed disparity image, in which the
drivable areas and road anomalies are highly distinguishable.
The corresponding performance comparison is presented in
Sections V-C and V-D.
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Fig. 2. Illustration of transformed disparity image generation and coarse

drivable area detection.

C. Dynamic Filtering Techniques

The DEN [17] initially implemented the concept of dynamic
filtering for the video prediction task, where the filters are
dynamically generated based on one frame to process another
frame. Recently, several extensions of the DFN have been
proposed. For example, Simonovsky and Komodakis [33]
extended the DFN for graph classification. Wu et al. [34]
developed an extension of the DFN by dynamically gener-
ating weights to enlarge receptive fields for flow estimation.
Our proposed DFM can also be regarded as an extension of
the DFN for data-fusion semantic segmentation. We adopt the
same philosophy as DFN and make specific adjustments to
save GPU memory for multiscale feature fusion, which has
not been studied by previous papers.

III. DISPARITY TRANSFORMATION

DT [35] aims at transforming a disparity image into a quasi
bird’s eye view, so that the pixels of drivable areas possess
similar values, while they differ greatly from those of the road
damages/anomalies [36]. The expression of DT is as follows:

D =D, —f(p.a,0) +4 ey

where D,, is the original disparity image; Dy is the transformed
disparity image; f is a nonlinear function representing the dis-
parities in the drivable area; p = (u;v) is an image pixel;
a = (ap; a1) stores the road profile model coefficients; 6 is
the stereo rig roll angle; and § is a constant set to ensure that
the transformed disparity values are non-negative. & can be
obtained by minimizing [37]

E@)=d'd- dTT(O)(T(@)TT(G))ilT(G)Td )

where T = [1;, vcos @ —usinf]; d = (dy; ... ; dy) is a k-entry
vector of disparities; uw = (ug;...; ux) is a k-entry vector of
horizontal coordinates; and v = (vq; ...; v¢) denotes a k-entry
vector of vertical coordinates. a can be estimated using [35]

a0) = (T(@)TT(O))_IT(G)Td. 3)

In this article, we first utilize the road segmentation
approach proposed in [38] to detect a coarse drivable area
through v-disparity image analysis and disparity image seg-
mentation. The disparities in the detected coarse drivable
area are then used to estimate a and 6 for disparity image
transformation, as shown in Fig. 2.
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Fig. 3. Illustration of the basic concept of dynamic fusion and our proposed DFM. (a) Basic concept of dynamic fusion is to produce a dynamic kernel

W based on the feature to be fused Fy, and then apply W on the RGB feature F; to output the fused feature Fy. (b) Different from (a), our DFM adopts a
two-stage convolution factorization process to save memory and computational resources.

IV. DYNAMIC FUSION MODULE

In this section, we first introduce our proposed DFM, which
can generate fused features effectively and efficiently, as illus-
trated in Fig. 3. Then, we explain how to employ our DFM in
data-fusion networks for semantic segmentation and introduce
our DFM-RTFNet, as shown in Fig. 1.

Given an RGB feature F, of size H x W x C and a feature
to be fused F; of the same size, the basic concept of dynamic
fusion is to produce a dynamic kernel W based on F; and then
apply W on F, to output the fused feature Fy of Hx W x C’, as
shown in Fig. 3(a). This process can be regarded as an exten-
sion of the DFN [17] for data-fusion semantic segmentation,
and has the following formulation:

Fr=WFE:QQF, @)
where 2 denotes the parameters of the kernel generating layer
shown in Fig. 3(a); and ® denotes cross-channel convolution.
The dynamic kernel W has two properties: 1) content depen-
dence and 2) spatial variance. The former means that W is
based on the feature to be fused F;, while the latter means
that different kernels are employed to different spatial posi-
tions of the RGB feature F,. These novel properties enable
the network to apply appropriate kernels to different image
regions, which can generate more effective fused features Fy
and thus improve the overall detection performance.

However, generating and applying the dynamic kernel in
such a simple way could consume much memory and com-
putational resources, which makes this idea hard to deploy in
practice. To address this problem, we adopt the philosophy
of MobileNets [39] and design a two-stage convolution fac-
torization process for our DFM, which can save significant
computational resources, as shown in Fig. 3(b).

In the first stage, we generate a dynamic kernel W1, which
is then applied on the RGB feature F, using the channelwise
convolution operation to output an intermediate fused feature
Fyr. Specifically, one channel of F is convolved with the cor-
responding channel of W;. The first stage can be formulated
as follows:

Fpr = Wi(Fy; Q1) O F; (5

where 2] denotes the parameters of the kernel-generating
operations shown in Fig. 3(b); and © denotes channelwise
convolution. Note that these channelwise convolutions are still
spatially variant. Specifically, for an example point of F,, we
take the convolution kernel of K x K size at the correspond-
ing position in W7 to conduct the channelwise convolution, as
illustrated in Fig. 3(b).

In the second stage, we employ an average pooling layer
and a fully connected layer to generate a dynamic kernel W»,
which is then applied on Fy to generate the fused feature Fy.
The second stage has the following formulation:

Fr = Wy(Fy; 22) ® Fy (6)

where Q5 denotes the parameters of the fully connected layer.
This two-stage process can significantly improve the efficiency
and make this idea feasible in practice.

Then, we implement our DFM-RTFNet by integrating DFM
into RTENet50 [29], as shown in Fig. 1. Specifically, we use
our DFMs with residual connections to replace the original
elementwise addition layers, and our DFMs dynamically fuse
two different modalities of features in a multiscale fashion.
The fused feature is then processed by five decoder layers
and a softmax layer sequentially to output the final detection
result. For details of the network architecture, we refer readers
to [29]. In addition, the number of fused feature channels is
identical to the number of input feature channels, that is, C =
C’, and we set the size of the convolution kernel K = 3.
The determination of different fusion strategies of our DFM-
RTFNet will be discussed in Section V-B.

V. EXPERIMENTAL RESULTS AND DISCUSSION
A. Datasets and Experimental Setups

We utilize the following datasets in our experiments to

evaluate the performance of our approach.

1) Our GMRP Dataset [5]: Our dataset is designed for
ground mobile robots and contains 3896 pairs of images
with ground truth for drivable areas and road anomalies.

2) The KITTI Road Dataset [18]: This dataset is designed
for self-driving cars and contains 289 pairs of training
data with ground truth for drivable areas and 290 pairs
of testing data without ground truth.
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Fig. 4.
RTFNet [29], and our DFM-RTFNet are data-fusion networks.

3) The KITTI Semantic Segmentation Dataset [40]: This
dataset is also designed for self-driving cars and contains
200 pairs of training data with ground truth for scene
understanding and 200 pairs of testing data without
ground truth.

The total 3896 pairs of images in our GMRP dataset are
split into a training, a validation, and a testing set that con-
tain 2726, 585, and 585 pairs, respectively. The resolution
of input images is downsampled to 320 x 480. We first
conduct ablation studies on our GMRP dataset to: 1) select
the fusion strategy of our DFM-RTFNet and 2) demonstrate
the effectiveness and efficiency of our DFM, as presented in
Section V-B.

Then, Section V-C presents a drivable area and road
anomaly detection benchmark for ground mobile robots,
which provides a detailed performance comparison of the
14 SOTA networks (ten single-modal ones and four data-
fusion ones) mentioned in Section II-A and our DFM-RTFNet,
with respect to six different types of training data, including

Example of the experimental results on our GMRP dataset. DeepLabv3+ [10] and GSCNN [26] are single-modal networks, while FuseNet [28],

our transformed disparity images. We train each single-modal
network with 11 setups. Specifically, we first train each with
input RGB, disparity, normal, elevation, HHA, and trans-
formed disparity images (denoted as RGB, Disparity, Normal,
Elevation, HHA, and T-Disp), respectively. Then, we train
each with input concatenation of RGB and the other five
types of training data separately, denoted as RGB + D,
RGB + N, RGB + E, RGB + H, and RGB + T, fol-
lowed by training each data-fusion network with same five
setups. For the training setup, we use the stochastic gradient
descent (SGD) optimizer. Moreover, we train each network
until loss convergence and then select the best model according
to the performance of the validation set. For the quantitative
evaluations, we adopt the F-score (Fsc) and the intersection
over union (IoU) for each class. We also plot the precision—
recall curves and compute the average precision (AP) [41]
for each class. Furthermore, we compute the mean values
across all classes for the three metrics, denoted as mFsc, mloU,
and mAP.
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Fig. 5. Performance comparison among ten SOTA single-modal networks (FCN [19], SegNet [20], U-Net [21], PSPNet [22], DeepLabv3+ [10],

DenseASPP [23], UPerNet [24], DUpsampling [25], ESPNet [27], and GSCNN [26]) with 11 training data setups on our GMRP dataset, where the best result

is highlighted in each subfigure.

To better understand how our transformed disparity image
improves the overall detection performance, we compare it
with another two visual features that can also make the
drivable areas possess similar values. In addition, we ana-
lyze the feature variation with and without our DFM to
explore its internal mechanism for improving the detec-
tion performance. The experimental results are presented
in Section V-D.

Finally, we conduct experiments to demonstrate the effec-
tiveness and efficiency of our approach for self-driving cars.
Since our drivable area detection task perfectly matches the
KITTI road benchmark [18], we train our DFM-RTFNet using
the KITTI road training data and submit it to the benchmark.
However, since we focus on the detection of drivable areas and
road anomalies, we do not submit the results of our approach
to the KITTI semantic segmentation benchmark [40]. Instead,
we merge its classes into four new classes, unlabeled, drivable
area, vehicles, and pedestrians, because vehicles and pedestri-
ans are two important anomalies for self-driving cars. We split
the KITTI semantic segmentation training data into a train-
ing, a validation, and a test set that contains 100, 50, and
50 pairs of data, respectively. Then, we compare the perfor-
mances between our DFM-RTFNet and four SOTA data-fusion
networks with respect to six different types of training data.
The experimental results are presented in Section V-E.

TABLE I
EXPERIMENTAL RESULTS OF OUR ABLATION STUDIES, WHERE (A) IS
THE ORIGINAL RTFNETS50 (THE BASELINE SETUP); (B) IS THE SETUP
WITH FEATURE CONCATENATION; (C)—(E) ARE THREE SETUPS WITH
DIFFERENT FUSION STRATEGIES OF OUR DFM-RTFNET; (F) IS THE
SETUP WITH AN SOTA FUSION STRATEGY; AND (G) IS THE ORIGINAL
RTFNETI101. BEST RESULTS ARE BOLDED

Backbone Fusion mloU  Runtime n
Strategy (%) (ms) (%/ms)

(A) RTFNet50 Addition 89.3 24.7 -

(B) RTFENet50 Concatenation 88.6 25.3 -1.17
(C) RTFNet50 First DFM 89.7 25.9 0.33
(D) RTFNet50 Last DFM 90.2 26.4 0.53
(E) RTFNet50 All DFMs 92.6 28.1 0.97
(F) RTENet50 D-A Operators [11] 90.8 27.6 0.52
(G) RTFNetl101 Addition 91.3 31.2 0.31

B. Ablation Study

In this section, we adopt RTFNet50 [29] with input trans-
formed disparity images as the baseline to conduct ablation
studies, and (A) of Table I shows the performance of the
baseline. To compare the differences between the setups more
intuitively, we introduce two new metrics: 1) the runtime of
a given setup on an NVIDIA GeForce GTX 1080 Ti graph-
ics card and 2) the ratio of the mloU increment and runtime
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Performance comparison among four data-fusion networks (FuseNet [28], MFNet [30], depth-aware CNN [11], and RTFNet [29]) and our DFM-

RTFNet with five training data setups on our GMRP dataset, where D-A CNN is short for depth-aware CNN, and the best result is highlighted in each

subfigure.

TABLE 11
PERFORMANCE COMPARISON (%) ON OUR GMRP DATASET, WHERE
APp AND APr DENOTE THE AP FOR DRIVABLE AREAS AND ROAD
ANOMALIES, RESPECTIVELY. BEST RESULTS ARE BOLDED

Approach Setup APp APRr mAP
DeepLabv3+ [10] T-Disp (Ours) 99.71 92.45 96.08
ESPNet [27] T-Disp (Ours) 99.68 91.79 95.74
GSCNN [26] T-Disp (Ours) 99.36 93.61 96.49
FuseNet [28] RGB+T (Ours) 99.25 93.39 96.32
RTFNet [29] RGB+T (Ours) 99.70 96.27 97.99
RGB+D 99.72 92.17 95.95

RGB+N 99.67 97.12 98.40

DF%EISN“ RGB+E 99.69 9483  97.26
RGB+H 99.61 96.13 97.87

RGB+T (Ours) 99.85 97.61 98.73

increment between a given setup and the baseline 1. Let n;
denote the n of a given setup i, and the expression of n; is

mloU; — mIoUpaseline

ni (%/ms). @)

~ Runtime; — Runtimepseline
n is used to quantify the tradeoff between the improved
performance and increased runtime of a given setup. An
effective and efficient setup achieves a high n value.

We first explore different fusion strategies of our DFM-
RTFNet and the corresponding performance is presented
in (C)—(E) of Table I. (C) and (D) mean that we only replace
the first and last elementwise addition layer, respectively, with
our DFM, and (E) represents the setup shown in Fig. 1.
We can observe that (C)—(E) all outperform the commonly
used elementwise addition and feature concatenation strate-
gies shown in (A) and (B) of Table I, which demonstrates that
our DFM is an effective module for data fusion. Furthermore,

(E) presents the best performance, and therefore, we adopt the
setup illustrated in Fig. 1 in the rest of our experiments.

In addition, (F) of Table I presents the performance of
the setup with an SOTA fusion strategy, depth-aware (D-A)
operators [11]. We can see that our DFM outperforms it
with a higher n value. Moreover, one exciting fact is that
our DFM-RTFNet with the backbone of RTFNet50 [(E) of
Table I] even presents a better performance than the original
RTFNet101 [29] [(G) of Table I] and the runtime is much
less, which demonstrates the effectiveness and efficiency of
our DFM.

C. Drivable Area and Road Anomaly Detection Benchmark

In this section, we present a drivable area and road anomaly
detection benchmark for ground mobile robots. Fig. 4 presents
sample qualitative results, from which we can find that our
transformed disparity images greatly help reduce the noises
in the semantic predictions. Moreover, our DFM-RTFNet
presents more accurate and robust results than all the other
SOTA data-fusion networks with the same input. The corre-
sponding quantitative performances are presented in Figs. 5
and 6, and the detailed numbers are provided in the benchmark
page? for reference. Specifically, our DFM-RTFNet with our
transformed disparity images as the input increases the mean
Fsc and mean IoU by around 1.0%-21.7% and 1.8%-31.9%,
respectively. We also select several networks that perform
well for further performance comparison. The AP compari-
son is presented in Table II, and the precision—recall curves
are shown in Figs. 7 and 8. We can clearly observe that our
DFM-RTFNet with our transformed disparity images as input
presents the best performance. This proves that our trans-
formed disparity images and DFM can effectively improve

2https://sites.google.com/view/gmrb
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Fig. 7. Precision—recall curves of different networks on our GMRP dataset.

ESPNet [27], GSCNN [26], and DeepLabv3+ [10] are single-modal networks,
while FuseNet [28], RTFNet [29], and our DFM-RTFNet are data-fusion
networks. The orange boxes show the enlarged area for comparison.
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Fig. 8. Precision—recall curves of our DFM-RTFNet with five training data

setups on our GMRP dataset. The orange boxes show the enlarged area for
comparison.

the detection performance. In addition, we conduct more
experiments to explore how our proposed approach enhances
the detection performance, and the experimental results are
presented in Section V-D.

D. Further Discussion

As aforementioned, our transformed disparity images can
make drivable areas possess similar values, and thus improve
the detection performance. To verify this, we compare our
transformed disparity images with the other two visual features
that have similar properties, that is: 1) normal images and
2) elevation maps. Since these three features have different
scales, we introduce a dimensionless metric, the coefficient of
variation c,, defined as follows:

Cy = — ®)
m

where o and u denote the standard deviation and mean,
respectively. A uniform data distribution achieves a low ¢,
value. Then, we compute the ¢, of the three visual features on
the drivable areas in our GMRP dataset. Note that for three-
channel normal images, we first compute the average values
across all channels and use the obtained one-channel average
maps for comparison. The ¢, values of normal images [42],
elevation maps [43], and our transformed disparity images are
0.008, 0.009, and 0.005, respectively. We can see that our
transformed disparity images achieve a much lower ¢, value.
The sample qualitative results are shown in Fig. 9 also verify

IEEE TRANSACTIONS ON CYBERNETICS

Difference from the Mean Value

Low

Elevation Difference Map  T-Disp Difference Map (Ours)

Fig. 9. Example of the drivable area consistency comparison between normal
images, elevation maps, and our transformed disparity images. The orange box
in the RGB image shows the enlarged area for comparison, and the other three
images present the difference maps from the corresponding mean values in
the enlarged area.

TABLE III
EXPERIMENTAL RESULTS (%) OF TWO SOTA DATA-FUSION NETWORKS
WITH AND WITHOUT OUR DFM ON OUR GMRP DATASET. BEST
RESULTS FOR EACH NETWORK ARE BOLDED

Drivable Area  Road Anomaly Mean
Approach

Fsc ToU Fsc IoU Fsc IoU
FuseNet [28] 98.0 96.1 86.9 76.9 92.5 86.5
DFM-FuseNet 98.6 97.3 90.6 82.8 94.6 90.1
RTFNet [29] 98.7 97.4 89.6 81.1 94.2 89.3
DFM-RTFNet 99.4 98.9 92.6 86.2 96.0 92.6

our conclusion that our transformed disparity images can make
the drivable areas more uniform and thus benefit all networks
for better detection performances.

To explore the internal mechanism of our DFM for
improving the detection performance, we implement it in
FuseNet [28], besides RTFNet [29], with the RGB+T setup on
our GMRP dataset. The quantitative comparisons are given in
Table III, where we can observe that networks with our DFM
embedded generally perform better than themselves without
our DFM embedded. Moreover, we visualize the mean activa-
tion maps of the features after the last layers of the encoders
with and without our DFM for each network, as presented in
Fig. 10. We can observe that the mean activation maps fused
by our DFM can concentrate more on the drivable areas and
road anomalies. We conjecture the reason is that the content-
dependent and spatially variant properties make our DFM act
as a weight modulation operator, which can effectively gen-
erate fused features with high activation values in the critical
areas, and thus improve the detection performance.

E. Evaluations on the KITTI Benchmark

1) KITTI Road Benchmark: As previously mentioned, we
submit the road estimation results of our DFM-RTFNet to the
KITTTI road benchmark [18]. Experimental results demonstrate
that our DFM-RTFNet achieves competitive performance on
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Fig. 10.

Example of two SOTA data-fusion networks (FuseNet [28] and RTFNet [29]) with and without our DFM embedded, respectively. Feature maps

refer to the mean activation maps of the features after the last layers of the encoders.

LC-CRF [48] LidCamNet [49]

Fig. 11.

DFM-RTFNet (Ours)

Example of the testing images on the KITTI road benchmark. The true positive, false negative, and false positive pixels are shown in green, red,

and blue, respectively. Significantly improved regions are marked with orange dashed boxes.

Ground Truth

DFM-RTFNet with RGB+D
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FuseNet with RGB+T
[l |
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v
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Fig. 12. Example of the experimental results on the KITTI semantic segmentation dataset. FuseNet [28], MFNet [30], Depth-aware CNN [11], RTFNet [29],
and our DFM-RTFNet are all data-fusion networks. Significantly improved regions are marked with green dashed boxes.

TABLE IV
KITTI ROAD BENCHMARK> RESULTS, WHERE THE BEST RESULTS ARE
BOLDED. NOTE THAT WE ONLY COMPARE OUR APPROACH
WITH OTHER PUBLISHED APPROACHES

Approach MaxF (%) AP (%) Runtime (s)
MultiNet [44] 94.88 93.71 0.17
StixelNet II [45] 94.88 87.75 1.20
RBNet [46] 94.97 91.49 0.18
TVFNet [47] 95.34 90.26 0.04
LC-CRF [48] 95.68 88.34 0.18
LidCamNet [49] 96.03 93.93 0.15
RBANet [50] 96.30 89.72 0.16
DFEM-RTFNet (Ours) 96.78 94.05 0.08

the benchmark. Fig. 11 illustrates an example of the test-
ing images, and Table IV presents the quantitative results.
We can observe that our DFM-RTFNet outperforms exist-
ing approaches, which demonstrates its effectiveness and
efficiency for self-driving cars.

3 http://www.cvlibs.net/datasets/kitti/eval_road.php

TABLE V
EXPERIMENTAL RESULTS (%) OF FOUR SOTA DATA-FUSION NETWORKS
AND OUR DFM-RTFNET WITH RESPECT TO DIFFERENT TRAINING DATA
SETUPS ON THE KITTI SEMANTIC SEGMENTATION DATASET. BEST
RESULTS ARE BOLDED

Approach Setup mFsc mloU
FuseNet [28] RGB+T (Ours) 88.4 79.6
MFNet [30] RGB+T (Ours) 85.5 75.2
Depth-aware CNN [11] RGB+T (Ours) 87.0 71.5
RTFNet [29] RGB+T (Ours) 90.3 82.7
RGB+D 88.2 79.5

RGB+N 90.6 83.2

DFM-RTFNet (Ours) RGB+E 89.3 81.2
RGB+H 89.8 82.1

RGB+T (Ours) 92.5 86.5

2) KITTI Semantic Segmentation Dataset: Fig. 12 and

Table V present the qualitative and quantitative results on the
KITTI semantic segmentation dataset [40], respectively. We
can see that our transformed disparity images greatly improve
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the detection performance, and our DFM-RTFNet presents a
better performance than all other SOTA data-fusion networks,
which verifies that our DFM-RTFNet with the RGB + T setup
can be deployed effectively for self-driving cars in practice.

VI. CONCLUSION

In this article, we conducted a comprehensive study on the
drivable area and road anomaly detection for mobile robots,
including building a benchmark and proposing an effective
and efficient data-fusion strategy called DFM. Experimental
results verified that our transformed disparity images could
enable drivable areas to exhibit similar values, which could
benefit networks for the drivable area and road anomaly detec-
tion. Moreover, our proposed DFM can effectively generate
fused features with high activation values in critical areas
using content-dependent and spatially variant kernels, and thus
improve the overall detection performance. Compared with the
SOTA networks, our DFM-RTFNet can produce more accu-
rate and robust results for the drivable area and road anomaly
detection. Hence, it is suitable to be implemented in mobile
robots in practice. Furthermore, our DFM-RTFNet achieves
competitive performance on the KITTI road benchmark. We
believe that our benchmark and the data fusion idea in our
proposed network will inspire future research in this area. In
the future, we will develop effective and efficient data-fusion
strategies to further improve the detection performance.
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