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Abstract—Potholes are one of the most common forms of road
damage, which can severely affect driving comfort, road safety,
and vehicle condition. Pothole detection is typically performed by
either structural engineers or certified inspectors. However, this
task is not only hazardous for the personnel but also extremely
time consuming. This article presents an efficient pothole detec-
tion algorithm based on road disparity map estimation and
segmentation. We first incorporate the stereo rig roll angle into
shifting distance calculation to generalize perspective transfor-
mation. The road disparities are then efficiently estimated using
semiglobal matching. A disparity map transformation algorithm
is then performed to better distinguish the damaged road areas.
Subsequently, we utilize simple linear iterative clustering to group
the transformed disparities into a collection of superpixels. The
potholes are finally detected by finding the superpixels, whose
intensities are lower than an adaptively determined threshold.
The proposed algorithm is implemented on an NVIDIA RTX
2080 Ti GPU in CUDA. The experimental results demonstrate
that our proposed road pothole detection algorithm achieves
state-of-the-art accuracy and efficiency.

Index Terms—Disparity map transformation, perspective
transformation, pothole detection, simple linear iterative clus-
tering.
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I. INTRODUCTION

POTHOLE is a considerably large structural road failure,

caused by the contraction and expansion of rainwater that
permeates the ground under the road surface [1]. Frequently
inspecting roads and repairing potholes is crucial for road
maintenance [2]. Potholes are regularly detected and reported
by certified inspectors and structural engineers [3]. However,
this process is not only time consuming and costly but also
dangerous for the personnel [4]. In addition, such detection
is always qualitative and subjective because decisions depend
entirely on an individual’s experience [5]. Therefore, there
is an ever-increasing need to develop a robust and precise
automated road condition assessment system that can detect
potholes both quantitatively and objectively [6].

Over the past decade, various technologies, such as vibra-
tion sensing, active sensing, and passive sensing, have been
utilized to acquire road data and detect road damage [7].
Fox et al. [8], for example, developed a crowdsourcing system
to detect and localize potholes by analyzing the accelerometer
data obtained from multiple vehicles. While vibration sensors
are cost effective and only require small storage space, the pot-
hole shape and volume cannot be explicitly inferred from the
vibration sensor data [4]. In addition, road hinges and joints are
often mistaken for potholes [3]. Therefore, researchers have
been focusing on developing pothole detection systems based
on active and passive sensing. Tsai and Chatterjee [9], for
instance, mounted two laser scanners on the Georgia Institute
of Technology Sensing Vehicle (GTSV) to collect 3-D road
data for pothole detection. However, such vehicles are not
widely used, because of high equipment purchase costs and
long-term maintenance costs [4].

The most commonly used passive sensors for pothole
detection include Microsoft Kinect and other types of digi-
tal cameras [10]. A Kinect was used to acquire road depth
information, and image segmentation algorithms were applied
for pothole detection in [11]. However, the Kinect is not
designed for outdoor use and often fails to perform well
when exposed to direct sunlight, resulting in wrong (zero)
depth values [11]. Therefore, it is more effective to detect
potholes using digital cameras, as they are cost effective
and capable of working in outdoor environments [4]. Given
the dimensions of the acquired road data, passive sensing
(computer vision) approaches [10] are generally grouped into
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two categories: 1) 2-D vision-based and 2) 3-D reconstruction-
based approaches [12].

The 2-D vision-based road pothole detection algorithms
generally comprise three steps: 1) image segmentation; 2) con-
tour extraction; and 3) object recognition [3]. These methods
are usually developed based on the following hypotheses [12].

1) Potholes are concave holes.

2) The pothole texture is grainier and coarser than that of
the surrounding road surface.

3) The intensities of the pothole region-of-interest (Rol)
pixels are typically lower than those of the surrounding
road surface, due to shadows.

Basic image segmentation algorithms are first applied on
RGB or grayscale road surface images to separate the dam-
aged and undamaged road areas. The most commonly used
segmentation algorithms are triangle thresholding [13] and
Otsu’s thresholding [14]. Compared with the former, Otsu’s
thresholding algorithm minimizes the intraclass variance and
exhibits better damaged road region detection accuracy [15].
Next, image filtering [16], edge detection [17], region grow-
ing [18], and morphological operations [19] are utilized to
reduce redundant information (typically noise) and clarify the
potential pothole Rol contour [5]. The resulting pothole Rol
is then modeled by an ellipse [1], [9], [12], [16]. Finally, the
image texture within this elliptical region is compared with
that of the surrounding road region. If the elliptical Rol has
a coarser and grainier texture than that of the surrounding
region, a pothole is considered to have been detected [12].

Although such 2-D computer vision methods can recog-
nize road potholes with low computational complexity, the
achieved detection and localization accuracy is still far from
satisfactory [11], [12]. In addition, since the actual pothole
contour is always irregular, the geometric assumptions made
in the contour extraction step can be ineffective. Furthermore,
visual environment variability, such as road image texture,
also significantly affects segmentation results [20]. Therefore,
machine-learning methods [21]-[23] have been employed
for better road pothole detection accuracy. For example,
AdaBoost [21] was utilized to determine whether or not a
road image contains a damaged road Rol. Bray et al. [22] also
trained a neural network (NN) to detect and classify road dam-
age. However, supervised classifiers require a large amount of
labeled training data, and such data labeling procedures can
be very labor intensive [5].

3-D pothole models cannot be obtained by using only a
single image. Therefore, depth information has proven to be
more effective than RGB information for detecting gross road
damages, for example, potholes [6]. Therefore, the main pur-
pose of this article is to present a novel road pothole detection
algorithm based on its 3-D geometry reconstruction. Multiple
(at least two) camera views are required to this end [24].
Images from different viewpoints can be captured using either
a single moving camera or a set of synchronized multiview
cameras [4]. In [25], a single camera was mounted at the
rear of the car to capture the visual 2-D road footage. Then,
scale-invariant feature transform (SIFT) [26] feature points are
extracted in each video frame. The matched SIFT feature cor-
respondences on two consecutive video frames are used to find
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the fundamental matrix. Then, cost energy related to all of
the fundamental matrices was minimized using bundle adjust-
ment. Each camera pose was, therefore, refined, and the 3-D
geometry was reconstructed in a structure from motion (SfM)
manner [24], [25]. However, SfM can only acquire sparse point
clouds, which renders pothole detection infeasible. Therefore,
pothole detection using stereo vision technology has been
researched in recent years, as it can provide dense disparity
maps [4].

The first reported effort in employing stereo vision for road
damage detection utilized a camera pair and a structured light
projector to acquire 3-D crack and pothole models [27]. In
recent years, surface modeling (SM) has become a popular and
effective technique for pothole detection [28]-[30]. In [28], the
road surface point cloud was represented by a quadratic model.
Then, pothole detection was straightforwardly realized by find-
ing the points whose height is lower than those of the modeled
road surface. In [29], this approach was improved by adding
a smoothness term to the residual function that is related to
the planar patch orientation. This greatly minimizes the out-
lier effects caused by obstacles and can, therefore, provide
more precise road surface modeling results. However, find-
ing the best value for the smoothness term is a challenging
task, as it may vary from case to case [30]. Similarly, random
sample consensus (RANSAC) was utilized to reduce outlier
effects, while fitting a quadratic surface model to a disparity
map rather than a point cloud [30]. This helps the RANSAC-
SM algorithm perform more accurately and efficiently than the
methods in both [28] and [29].

Road surface modeling and pothole detection are still open
research. One problem is that the actual road surface is
sometimes uneven, which renders quadratic surface modeling
somewhat problematic. Moreover, although comprehensive
studies of 2-D and 3-D computer vision techniques for pothole
detection have been made, these two categories are usually
implemented independently [5]. Their combination, however,
can possibly advance the current state-of-the-art to achieve
highly accurate pothole detection results. For instance, our
recent work [31] combined both iterative disparity transfor-
mation and 3-D road surface modeling for pothole detection.
Although [31] is computationally intensive, its achieved suc-
cessful detection rate and the overall pixel-level accuracy are
much higher than those of both [28] and [30].

Therefore, in this article, we present an efficient and
robust road surface 3-D reconstruction and pothole detection
algorithm based on road disparity map estimation and segmen-
tation. The block diagram of our proposed road surface 3-D
reconstruction and pothole detection algorithm is shown in
Fig. 1. We first generalize the perspective transformation (PT)
algorithm proposed in [4], by incorporating the stereo rig roll
angle into the PT parameter estimation process, which not only
increases the disparity estimation accuracy but also reduces its
computational complexity [4]. Due to its inherent parallel effi-
ciency, semiglobal matching (SGM) [32] is utilized for dense
subpixel disparity map estimation. A fast disparity transfor-
mation (DT) algorithm is then performed on the estimated
subpixel disparity maps to better distinguish between dam-
aged and undamaged road regions, where an energy function
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with respect to (w.r.t.) the stereo rig roll angle and the road
disparity projection model is minimized. Finally, we use a sim-
ple linear iterative clustering (SLIC) algorithm [33] to group
the transformed disparities into a collection of superpixels.
The potholes are subsequently detected by finding the super-
pixels, whose values are lower than an adaptively determined
threshold. Different potholes are also labeled using connected
component labeling (CCL) [15].!

The remainder of this article continues in the fol-
lowing manner. Section II introduces the proposed road
surface 3-D reconstruction and pothole detection system.
Section III presents the experimental results and discusses the
performance of the proposed system. In Section IV, we dis-
cuss the practical application of our system. Finally, Section V
concludes this article and provides recommendations for future
work.

II. ALGORITHM DESCRIPTION
A. Generalized Perspective Transformation

Road pothole detection focuses entirely on the road sur-
face, which can be treated as a ground plane. Referring to the
u-v-disparity analysis provided in [34], when the stereo rig
is perfectly parallel to the road surface (stereo rig roll angle
¢ = 0), the road disparity projections in the v-disparity domain
can be represented by a straight line: f(a, p) = ap+ajv, where
a=[ap,a;]" and p=Ilu v]T is a pixel in the disparity map.
a can be obtained by minimizing [35]

Eo = |ld — [1; vlal3 (1)

where d =[dy,...,di]" is a k-entry vector of road disparity
values, 1; is a k-entry vector of ones, and v = [vy, ..., vel T
is a k-entry vector of the vertical coordinates of the road dis-
parities. However, in practice, ¢ is always nonzero, resulting
in the road disparity map to be rotated by ¢ around the image
center. This leads to a gradual disparity change in the hori-
zontal direction, as shown in Fig. 2(d). Applying an inverse
rotation by ¢ on the original road disparity map yields [36]

, |: cos ¢ sin¢}

- —sing cos¢

2)

where p’ represents the corresponding pixel of p in the rotated
road disparity map. Therefore, the road disparity projections

1our project webpage is at ruirangerfan.com/projects/tcyb2021-rethinking.

Block diagram of our proposed road surface 3-D reconstruction and pothole detection system.
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Fig. 2. (a) Original left road image. (b) Transformed right road image.
(c) Estimated dense disparity map w.rt. (a) and (b). (d) Estimated dense
disparity map w.r.t. the original left and right road images.

in the v-disparity domain can be represented by [37]

f@a,p,®) =ag+aj(vcos¢ — usin¢). 3)

Compared to [4], (3) depicts PT in a more general way, as ¢ is
also considered in the a estimation. The estimation of a and ¢
will be discussed in Section II-C. Equation (1) can, therefore,
be rewritten as follows [36]:

Eo = [|d — T(¢)al3 @)

where
T(¢) = [1x cos¢v — singu] 5)
and u = [ug,...,u]" is a k-entry vector of the horizontal

coordinates of the road disparities. PT is then realized by shift-
ing each pixel on row v in the right image «(a, p, ¢) pixels
to the left, where « can be computed using

k(a,p,¢) = mv_ivg[ao +ai(veos¢g —xsing) —dpr]  (6)

where W denotes the image width and Spr is a constant set to
ensure that the values in the disparity map [see Fig. 2(c)] w.r.t.
the original left road image [see Fig. 2(a)] and the transformed
road right image [see Fig. 2(b)] are non-negative.

B. Dense Stereo Matching

In our previous publication [4], PT-SRP, an efficient sub-
pixel dense stereo matching algorithm was proposed to recon-
struct the 3-D road geometry. Although the achieved 3-D
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geometry reconstruction accuracy is higher than 3 mm, the
propagation strategy employed in this algorithm is not suitable
for parallel processing on GPUs [38]. In [38], we proposed
PT-FBS, a GPU-friendly road disparity estimation algorithm,
which has been proven to be a good solution to the energy
minimization problem in the fully connected Markov random
field (MRF) models [39]. However, its cost aggregation pro-
cess is still very computationally intensive. Therefore, in this
article, we use SGM [32] together with our generalized PT
algorithm for road disparity estimation.

In SGM [32], the process of disparity estimation is formu-
lated as an energy minimization problem as follows:

Ev=) [c(p.dp) + Y 118(|dp —dg| = 1)

p qeNp

+ Z 228 (|dp — dg| > 1) (7)
qeNp

where ¢ denotes the stereo matching cost and q represents
a pixel in N, (the neighborhood system of p). dp and dgq
are the disparities of p and q, respectively. A; penalizes
the neighboring pixels with small disparity differences, that
is, one pixel; and A, penalizes the neighboring pixels with
large disparity differences, that is, larger than one pixel. §(-)
returns 1 if its argument is true and O otherwise. However, (7)
is a complex NP-hard problem [32]. Therefore, in practical
implementation, (7) is solved by aggregating the stereo match-
ing costs along all directions in the image using dynamic
programming [32]

ngg (p’ dp) = C(p, dp)

+ min c;gg(p —r,dp),

U c;gg(p —r,dp +k)
ke{—1,1)

+ A1, min ¢, (p — 1, 0) + kz) ()
1

where cggg(p, dp) represents tl~1e aggregated stereo matching
cost at p in the direction of r. dp, the optimum disparity at p,

can, therefore, be estimated by solving
dp = min ) " ch.. (p. dp). )
r

The estimated road disparity map Dy w.r.t. Fig. 2(a) and (b)
is shown in Fig. 2(c). Since the right road image has been
transformed into the left view using PT in Section II-A, the
road disparity map D; w.r.t. the original left and right road
images, as shown in Fig. 2(d), can be obtained by using

D1(p) = Do(p) + «(a,p. ¢). (10)

C. Disparity Transformation

As discussed in Section II-A, the road disparity projection
can be represented using (3), which has a closed-form solution
as follows [31]:

—1
a@) = (T@) T(¢)) T)'d. an

IEEE TRANSACTIONS ON CYBERNETICS

v-disparity maps
I
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Fig. 3. Ep,,;, wr.t different estimated ¢. Ground-truth ¢ >~ —0.41.

Fig. 4. (a) Transformed road disparity map. (b) Superpixel clustering result.
(c) Superpixel-clustered transformed road disparity map. (d) Pothole detection
result, where different potholes are shown in different colors.

Ey,,;, (the minimum Ep) has the following expression [35]:

-1
Eoy(@) =d7d—d"T@)(T) ' T@)) T@)Td (12)

Compared to the case when the stereo rig is perfectly parallel
to the road surface, a nonzero roll angle results in a much
higher Ey .. [38], as shown in Fig. 3. ¢ can be estimated by
minimizing (12), which is equivalent to solving dEy,; /¢ = 0
and finding its minima [37]. Its solution is given in [37]. The
disparity transformation can then be realized using [40]

Da(p) = D1(p) — f(a,p, #) + dpr

where D; denotes the transformed disparity map, as shown in
Fig. 4(a), and dpr is a constant set to ensure that the trans-
formed disparity values are non-negative. It can be clearly seen
that the damaged road areas become highly distinguishable.

(13)

D. Superpixel Clustering

In Section II-C, the disparity transformation algorithm
allows better discrimination between damaged and undamaged
road areas. The road potholes can therefore be detected by
applying image segmentation algorithms on the transformed
disparity maps. However, the thresholds chosen in these algo-
rithms may not be the best for optimal pothole detection
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accuracy, especially when the transformed disparity histogram
no longer exhibits an obvious bimodality. Furthermore, small
blobs with low transformed disparity values are always mis-
taken for potholes, as discussed in [37]. Hence, in this article,
we use superpixel clustering to group the transformed dispar-
ities into a set of perceptually meaningful regions, which are
then used to replace the rigid pixel grid structure.

Superpixel generation algorithms are broadly classified as
graph based [41], [42] and gradient ascent based [43]-[45].
The former treats each pixel as a node and produces superpix-
els by minimizing a cost function using global optimization
approaches, while the latter starts from a collection of ini-
tially clustered pixels and refines the clusters iteratively until
error convergence. SLIC, an efficient superpixel algorithm was
introduced in [33]. It outperforms all other state-of-the-art
superpixel clustering algorithms, in terms of both boundary
adherence and clustering speed [33]. Therefore, it is used for
transformed disparity map segmentation in our proposed road
pothole detection system.

SLIC [33] begins with an initialization step, where p cluster
centers are sampled on a regular grid. These cluster centers
are then moved to the positions (over their eight-connected
neighbors) corresponding to the lowest gradients. This not only
reduces the chance of selecting noisy pixels as a superpixel but
also avoids centering a superpixel on an edge [33]. In the next
step, each pixel is assigned to the nearest cluster center, whose
search range overlaps its location. Finally, we utilize k-means
clustering to iteratively update each cluster center until the
residual error between the previous and updated cluster centers
converges. The corresponding SLIC [33] result is shown in
Fig. 4(b), where it can be observed that each pothole consists
of a group of superpixels.

E. Pothole Detection

After SLIC [33], the transformed disparity map is grouped
into a set of superpixels, each of which consists of a collec-
tion of transformed disparities with similar values. Then, the
value of each superpixel is replaced by the mean value of its
containing transformed disparities, and a superpixel-clustered
transformed disparity map D3, as illustrated in Fig. 4(c), is
obtained. Pothole detection can, therefore, be straightforwardly

Y 640

Fig. 6. Point clouds of the detected road potholes.

realized by finding a threshold 7, and selecting the superpixels,
whose values are lower than ;.

In this article, we first introduce a 2-D thresholding method
based on k-means clustering. The proposed thresholding
method hypothesizes that a transformed disparity map only
contains two parts: 1) foreground (pothole) and 2) background
(road surface), which can be separated using a threshold #.
The threshold #; for selecting the pothole superpixels is then
determined as follows:

ts =ty — dpp (14)
where Spp is a tolerance. To find the best ¢, value, we formu-
late the thresholding problem as a 2-D vector quantization
problem, where each transformed disparity D,(p) and its
m-connected neighborhood system A}, provide a vector

T

1
g=|Da(p). — > Da(®) (15)

qeN,

The threshold is determined by partitioning the vectors into
two clusters S = {Si1,S>}. The vectors g are stored in a
2-D histogram, as shown in Fig. 5. According to the MRF
theory [46], for an arbitrary point (except for the discontinu-
ities), its transformed disparity value is similar to those of its
neighbors in all directions. Therefore, we search for the thresh-
old along the principal diagonal of the 2-D histogram, using
k-means clustering. Given a threshold #;, the 2-D histogram can
be divided into four regions (see Fig. 5): regions 1 and 2 rep-
resent the foreground and the background, respectively; while
regions 3 and 4 store the vectors of noisy points and disconti-
nuities. In the proposed algorithm, the vectors in regions 3 and
4 are not considered in the clustering process. The best thresh-
old is determined by minimizing the within-cluster disparity
dispersion, as follows [47]:

2
argsminE2=argsminZZHg—MiH2 (16)

i=1 geS;

where u; denotes the mean of the points in S;. E> to # is
shown in Fig. 5. The corresponding pothole detection result
is shown in Fig. 4(d), where different potholes are labeled in
different colors using CCL. In addition, the point clouds of
the detected potholes are extracted from the 3-D road point
cloud, as shown in Fig. 6.
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Examples of dense stereo matching experimental results. (a) Left stereo images, where the areas in purple are our manually selected road Rols.

(b) Ground-truth disparity maps. (c)—(e) Disparity maps estimated using PT-SRP [4], PT-FBS [38], and GPT-SGM, respectively.
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Fig. 8. Evaluation of road pothole 3-D geometry reconstruction. Point cloud A
is acquired using a BQ Ciclop 3-D laser scanner; pothole could B is generated
using our proposed road disparity map estimation algorithm.

IIT1. EXPERIMENTAL RESULTS

In this section, we evaluate the performance of our proposed
pothole detection algorithm both qualitatively and quantita-
tively. The proposed algorithm was implemented in CUDA on
an NVIDIA RTX 2080 Ti GPU. The following two sections,
respectively, evaluate the performances of the road surface 3-D
reconstruction and road pothole detection subsystems.

A. Road Surface 3-D Reconstruction Evaluation

In our experiments, we utilized a stereo camera to cap-
ture synchronized stereo road image pairs. Our road pothole
detection datasets are publicly available at: https://github.com/
ruirangerfan/stereo_pothole_datasets.

1) Dense Stereo Matching Evaluation: Since the road pot-
hole detection datasets we created do not contain the disparity
ground truth, the KITTT stereo 2012 [48] and stereo 2015 [49]
datasets are used to evaluate the accuracy of our proposed
stereo matching algorithm (GPT-SGM). As GPT-SGM only
aims at estimating road disparities, we manually selected a
road Rol (see the purple areas in the first column of Fig. 7) in
each road image to evaluate the disparity estimation accuracy.

Two metrics are used to measure disparity estimation
accuracy.

1) Percentage of error pixels (PEP) [50]

1
ep = 525(|D1(P) —Da(p))| > &) x 100%  (17)
P

where g denotes the total number of disparities used
for accuracy evaluation, D4 represents the ground-truth

TABLE I
COMPARISON OF ¢, AND ¢ AMONG PT-SRP [4], PT-FBS [38]
AND OUR PROPOSED DENSE STEREO ALGORITHM

Algorithm =T €£p i%é) =g & (pixels)
PT-SRP [4] 5.0143 03913  0.0588 0.4237
PT-FBS [38] 45979 0.2174  0.0227 0.4092
GPT-SGM (proposed) | 4.6069  0.1859  0.0083 0.4079

disparity map, & denotes the disparity error tolerance,
and § is introduced in Section II.
2) Root mean-squared error (RMSE) [51]

1
a= | > (Di(p) — Da(p))*. (18)
P

Furthermore, we also compare our algorithm with PT-SRP [4]
and PT-FBS [38]. The experimental results are given in Fig. 7.
Their comparisons w.r.t. different e, and e; are shown in
Table I, where we can observe that GPT-SGM outperforms
PT-SRP [4] and PT-FBS [38] in terms of e, when ¢ = 2 and
& = 3, while PT-FBS [38] performs slight better than GPT-
SGM when ¢ = 1. Compared with PT-FBS [38], the value
of ep obtained using GPT-SGM reduces by 14.5% (¢ = 2)
and 63.4% (e = 3). In addition, compared with PT-FBS [38],
when ¢ = 1, e obtained using GPT-SGM increases by only
0.2%. Furthermore, GPT-SGM achieves the lowest e, value
(~0.4079 pixels). Therefore, the overall performance of GPT-
SGM is better than both PT-SRP [4] and PT-FBS [38]. Our
proposed GPT-SGM algorithm runs at a speed of 98 fps on
an NVIDIA RTX 2080 Ti GPU.

2) 3-D Road Geometry Reconstruction Evaluation: To
acquire the pothole point cloud ground truth, we first poured
gypsum plaster into a pothole and dug the gypsum mold out,
when it had become dry and had hardened. Then, the 3-D
pothole model was acquired using a BQ Ciclop 3-D laser scan-
ner. The laser scanner is equipped with a Logitech C270 HD
camera and two one-line laser transmitters. The camera cap-
tured the reflected laser pulses from the gypsum mold and
constructed its 3-D model using the laser calibration param-
eters. An example of the BQ Ciclop 3-D laser scanner and
the created pothole ground truth is shown in Fig. 8. Next, we
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(b)

(a)

®

Fig. 9. Experimental results of road pothole detection. (a) Left road images. (b) Transformed road disparity maps. (c)—(f) Results obtained using [28], [30],

[31], and the proposed algorithm, respectively. (g) Road pothole ground truth.

utilized the iterative closest point (ICP) algorithm [52] to reg-
ister point cloud A and point cloud B, which were acquired
using laser scanning and dense stereo matching, respectively.
In order to improve the performance of the ICP algorithm,
we first transformed the road surface point cloud to make it
as close as possible to the XZ plane. This transformation can
be straightforwardly realized using the camera height, roll,
and pitch angles. The merged pothole point cloud is shown in
Fig. 8. To quantify the accuracy of the pothole 3-D geome-
try reconstruction, we measured the root-mean-squared closest
distance error e,

1 q
€c = ZIZHPAI' —Pg, ;
i=1

where Pg denotes a 3-D point in the generated pothole point
cloud, P denotes the closest point to Py in the ground truth,
and g denotes the total number of points used for evaluation.
The average e. value we achieved is 2.23 mm, which is lower
than what we achieved in [4].

19)

B. Road Pothole Detection Evaluation

Examples of the detected potholes are shown in Fig. 9. In
our experiments, the potholes that are either located at the
image corners or composed of only one superpixel are con-
sidered to be the fake ones. To evaluate the performance of
the proposed pothole detection algorithm, we first compared
the detection accuracy of the proposed method with those of
the algorithms in [28], [30], and [31]. The results obtained
using [28], [30], and [31] are shown in (c), (d), and (e), respec-
tively, of Fig. 9. The successful detection rates w.r.t. different
algorithms and datasets are given in Table II, where we can
see that the rates of [28] and [30] are 73.4% and 84.8%,
respectively. The proposed algorithm can detect potholes with
a better successful detection rate (98.7%). The incorrect detec-
tion occurs because the road surface at the corner of the image
has a higher curvature. We believe this can be avoided by
reducing the view angle.

Furthermore, we also compare these pothole detec-
tion algorithms in terms of the pixel-level precision,
recall, accuracy, and F-score, defined as: precision =
[ng/(np + ngp)], recall = [myp/(nyp + n)l, accuracy =
[(p + 1)/ (p + nen + ngp + 1)), and F-score = 2 X
[(precision x recall)/(precision + recall)], where ny, ngp, ngp
and ny, represents the numbers of true-positive, false-positive,
false-negative, and true-negative pixels, respectively. The com-
parisons w.r.t. these four performance evaluation metrics are
also given in Table II, where it can be seen that the proposed
algorithm outperforms [28], [30] and [31] in terms of both
accuracy and F-score when processing datasets 1 and 3.
Reference [31] achieves the best results on dataset 2. Our
method achieves the highest overall F-score (89.42%), which
is over 3% higher than that of our previous work [31].

In Table II, we also provide the runtime of [28], [30], [31],
and our proposed method on the NVIDIA RTX 2080 Ti GPU.
It can be seen that the proposed system performs much faster
than [31]. Although our proposed method performs slower
than [28] and [30], SLIC [33] takes the biggest proportion
of the processing time. The total runtime of DT and pot-
hole detection is only about 3.5 ms. Therefore, we believe by
leveraging a more efficient superpixel clustering algorithm, the
overall performance of our proposed pothole detection system
can be significantly improved. Moreover, as discussed above,
the proposed pothole detection performs much more accurately
than both [28] and [30], where an increase of approximately
9% is witnessed on the F-score.

Many recent semantic image segmentation networks have
been employed to detect freespace (drivable area) and road
pothole/anomaly [40], [56], [57]. Therefore, we also com-
pare the proposed algorithm with three state-of-the-art deep
convolutional NNs (DCNNs): 1) fully convolutional network
(FCN) [53]; 2) SegNet [54]; and 3) DeepLabv3+ [55].
Since only a very limited amount of road data are avail-
able, we employ k-fold cross-validation [59] to evaluate the
performance of each DCNN, where k represents the total num-
ber of images. Each DCNN is evaluated k times. Each time,
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TABLE II
ROAD POTHOLE DETECTION PERFORMANCE COMPARISON OF [28], [30], [31], AND THE PROPOSED METHOD

Dataset Method DCorreF: ¢ Incorrsact Misdetection Recall | Precision | Accuracy | F-score | Runtime (ms)
etection | Detection
[28] 11 11 0 0.5199 0.5427 0.9892 0.5311 33.19
Dataset 1 [30] 22 0 0 0.4622 0.9976 0.9936 0.6317 22.90
[31] 22 0 0 0.4990 0.9871 0.9940 0.6629 117.72
Proposed 21 1 0 0.7005 0.9641 0.9947 0.8114 47.21
[28] 42 10 0 0.9754 0.9712 0.9987 0.9733 30.77
Dataset 2 [30] 40 8 4 0.8736 0.9907 0.9968 0.9285 21.39
[31] 51 1 0 0.9804 0.9797 0.9991 0.9800 124.53
Proposed 52 0 0 0.9500 0.8826 0.9920 0.9150 45.32
[28] 5 0 0 0.6119 0.7714 0.9948 0.6825 35.72
Dataset 3 [30] 5 0 0 0.5339 0.9920 0.9957 0.6942 26.24
[31] 5 0 0 0.5819 0.9829 0.9961 0.7310 132.44
Proposed 5 0 0 0.7017 0.9961 0.9964 0.8234 49.90
[28] 58 21 0 0.7799 0.8220 0.9942 0.8004 33.23
Total [30] 67 8 4 0.6948 0.9921 0.9954 0.8173 23.51
[31] 78 1 0 0.7709 0.9815 0.9964 0.8635 124.90
Proposed 78 1 0 0.8903 0.8982 0.9961 0.8942 47.48
TABLE III

COMPARISON OF THREE STATE-OF-THE-ART DCNNS TRAINED FOR ROAD POTHOLE DETECTION

DCNN Disp TDisp RGB
accuracy | F-score | accuracy | F-score | accuracy | F-score
FCN [53] 0.971 0.606 0.983 0.797 0.949 0.637
SegNet [54] 0.966 0.516 0.979 0.753 0.894 0.463
DeepLabv3+ [55] 0.968 0.673 0.987 0.856 0.977 0.742

k— 1 subsamples (disparity maps, transformed disparity maps,
or RGB images) are used to train the DCNN, and the remain-
ing subsample is retained for testing DCNN performance.
Finally, the obtained k groups of evaluation results are aver-
aged to illustrate the overall performance of the trained DCNN.
The quantification results are given in Table III, where it can
be observed that the DCNNs trained with the transformed
disparity maps (abbreviated as TDisp) outperform themselves
trained with either disparity maps (abbreviated as Disp) or
RGB images (abbreviated as RGB). This demonstrates that
DT makes the disparity maps become more informative.
Furthermore, Deeplabv3+ [55] outperforms all other compared
DCNNs for pothole detection. It can further be observed that
our proposed pothole detection algorithm outperforms all the
compared DCNNSs in terms of both accuracy and F-score. We
believe this is due to the fact that only a very limited amount
of road data are available and, therefore, the advantages of
DCNNSs cannot be fully exploited.

IV. DISCUSSION

Potholes are typically detected by experienced inspectors in
fine-weather daylight and are an extremely labor-intensive and
time-consuming process. The proposed road pothole detection
algorithm can perform in real time on a state-of-the-art graph-
ics card. Compared with the state-of-the-art DCNN-based
methods, our algorithm does not require labeled training data
to learn a pothole detector. The accuracy we achieved is much
higher than that of the existing computer vision-based pothole
detection methods, especially those based on 2-D image anal-
ysis. Although computer vision-based road pothole detection
has been extensively researched over the past decade, very few
researchers have considered applying computer stereo vision

in road pothole detection. Therefore, we created three pothole
datasets using a stereo camera to contribute to the research and
development of automated road pothole detection systems. In
our experiments, the stereo camera was mounted at a rela-
tively low height to the road surface, in order to increase the
accuracy of disparity estimation. Our datasets can be used by
other researchers to quantify the accuracy of their developed
road surface 3-D reconstruction and road pothole detection
algorithms.

V. CONCLUSION AND FUTURE WORK

In this article, we presented an efficient stereo vision-based
road surface 3-D reconstruction and road pothole detection
system. We first generalized the PT algorithm [4] by con-
sidering the stereo rig roll angle into the process of PT
parameter estimation. DT made the potholes highly distin-
guishable from the undamaged road surface. SLIC grouped
the transformed disparities in a collection of superpixels.
Finally, the potholes were detected by finding the superpixels,
which have lower values than an adaptive threshold determined
using k-means clustering. The proposed pothole detection
system was implemented in CUDA on an RTX 2080 Ti
GPU. The experimental results illustrated that our system can
achieve a successful detection rate of 98.7% and an F-score
of 89.4%.

A challenge is that the road surface cannot always be con-
sidered as a ground plane, resulting in the wrong detection.
Therefore, in future work, we will design an algorithm to
segment the reconstructed road surface into different planar
patches, each of which can then be processed separately using
the proposed algorithm.
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