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Abstract—Supervised learning with deep convolutional neural
networks (DCNNs) has seen huge adoption in stereo matching.
However, the acquisition of large-scale datasets with well-labeled
ground truth is cumbersome and labor-intensive, making super-
vised learning-based approaches often hard to implement in prac-
tice. To overcome this drawback, we propose a robust and effective
self-supervised stereo matching approach, consisting of a pyramid
voting module (PVM) and a novel DCNN architecture, referred to
as OptStereo. Specifically, our OptStereo first builds multi-scale
cost volumes, and then adopts a recurrent unit to iteratively up-
date disparity estimations at high resolution; while our PVM can
generate reliable semi-dense disparity images, which can be em-
ployed to supervise OptStereo training. Furthermore, we publish
the HKUST-Drive dataset, a large-scale synthetic stereo dataset,
collected under different illumination and weather conditions for
research purposes. Extensive experimental results demonstrate the
effectiveness and efficiency of our self-supervised stereo matching
approach on the KITTI Stereo benchmarks and our HKUST-Drive
dataset. PVStereo, our best-performing implementation, greatly
outperforms all other state-of-the-art self-supervised stereo match-
ing approaches. Our project page is available at sites.google.com/
view/pvstereo.

Index Terms—Computer vision for automation, data sets for
robotic vision, deep learning for visual perception.

1. INTRODUCTION

UMANS live in a three-dimensional (3D) world, but our
H eyes can only perceive objects in two dimensions. The
miracle of human depth perception is due to our brain’s ability
to analyze the difference between the two two-dimensional (2D)
images which are projected on the retinas of our eyes. In a broad
sense, each pair of corresponding points on the retinas send
signals to the binocular neurons in the primary visual cortex,
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Fig. 1. A schema of our proposed self-supervised stereo matching approach,
where OptStereo is combined with PVM for self-supervised disparity estimation,
and F refers to a left-to-right flipping operation.

which then estimates the relative positional difference between
each pair of correspondence points [1]. This relative positional
difference is generally referred to as disparity [2].

Similarly, two synchronized digital cameras can be utilized
to extrapolate the 3D information of a given scenario. This
process is typically known as stereo vision or stereo match-
ing [2]. Stereo vision is a critical technology employed in many
robotics and computer vision applications, such as freespace
segmentation [3]-[5] and anomaly detection [6]—[8]. Existing
stereo matching approaches are either mathematical modeling-
based or data-driven ones. The former ones generally formulate
stereo matching as block matching or energy minimization prob-
lems [9], while the latter ones typically employ data-driven clas-
sification and/or regression models, e.g., convolutional neural
networks (CNNs), to learn a feasible solution to stereo matching.
With recent advances in deep learning, many researchers have
resorted to deep CNNs (DCNNGs) for stereo matching [10]-[12].
However, these approaches generally require a large amount
of human-annotated training data to learn the best DCNN pa-
rameters. Such a data labeling process can be extremely time-
consuming and labor-intensive. Furthermore, the limitation in
DCNN generalization often fails these approaches when adapt-
ing to new scenarios in practice. Hence, there is a strong mo-
tivation to develop a self-supervised stereo matching approach,
which does not require any human-annotated disparity ground
truth to learn the best DCNN parameters [13].

Hence in this letter, we propose a novel approach for self-
supervised stereo matching, as illustrated in Fig. 1. Specifically,
we develop a module named Pyramid Voting Module (PVM),
which can be deployed in any supervised stereo matching
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DCNN, converting it into a self-supervised approach. With the
use of our PVM, researchers will no longer require any hand-
labeled data to train DCNNs for dense stereo matching, which
greatly alleviates the labor for disparity ground truth labeling.
Moreover, existing stereo matching DCNNs mainly rely on 3D
convolutions [10]-[12] or coarse-to-fine paradigms [14]-[16].
Unfortunately, the former ones can consume a lot of compu-
tational resources, resulting in their limited ability to achieve
real-time performance; while the latter ones generally suffer
from the accumulated errors from the coarse pyramid level,
which can in turn propagate to subsequent levels and further
cause significant performance degradation. To address these
issues, we propose a new DCNN architecture, referred to as
OptStereo, which is motivated by traditional optimization-based
approaches. Our OptStereo first builds multi-scale cost volumes,
and then adopts a recurrent unit to iteratively update disparity
estimations at high resolution. This novel architecture enables
our OptStereo to 1) avoid the error accumulation problem in
coarse-to-fine paradigms and 2) achieve a great trade-off be-
tween accuracy and efficiency. Furthermore, we publish the
HKUST-Drive dataset, a large-scale synthetic stereo dataset
created under different illumination and weather conditions,
available at sites.google.com/view/pvstereo for research pur-
poses. It contains 11568 pairs of stereo driving scene images
and the corresponding dense ground-truth disparity images.
To validate the effectiveness and efficiency of our proposed
self-supervised stereo matching approach, we conduct extensive
experiments on the popular KITTI Stereo benchmarks [17], [18]
as well as our HKUST-Drive dataset. Extensive experimental
results demonstrate that our best-performing implementation,
PVStereo, outperforms all other self-supervised stereo match-
ing approaches. The major contributions of this letter can be
summarized as follows:

® PVM, a novel module capable of generating reliable semi-
dense disparity images that can be used for supervising
DCNN training.

® OptStereo, a novel DCNN architecture that can achieve a
great trade-off between accuracy and efficiency for stereo
matching.

e HKUST-Drive, a large-scale synthetic stereo dataset col-
lected under different illumination and weather conditions
for research purposes.

The remainder of this letter is organized as follows: Section II
introduces existing traditional and data-driven approaches for
stereo matching. Then, Section III presents our proposed frame-
work for self-supervised stereo matching. The experimental re-
sults are illustrated in Section IV. Finally, Section V summarizes
the letter.

II. RELATED WORK

A. Traditional Stereo Matching Approaches

Traditional stereo matching approaches can be classified into
three main categories: 1) local, 2) global, and 3) semi-global [9].
Local algorithms simply select a group of image blocks from
the target image and match them with a fixed image block
selected from the reference image [19], [20]. The desirable
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disparities possess either the lowest matching costs, e.g., sum
of absolute differences (SAD), or the highest correlation costs,
e.g.,normalized cross-correlation (NCC) [21]. The optimization
strategy utilized in local algorithms is typically referred to as
winner-takes-all (WTA) [22].

Unlike local algorithms, global algorithms typically formulate
stereo matching as an energy minimization problem, which
can be solved by some Markov random field (MRF)-based
optimization approaches, such as graph cuts (GC) [23] and belief
propagation (BP) [24]. Semi-global matching (SGM) [25] ap-
proximates the MRF inference by performing cost aggregation
along all directions in the image to improve both the accuracy
and efficiency for stereo matching [26]. However, traditional
methods are either inaccurate (local algorithms) or computation-
ally intensive (global algorithms). With recent advances in deep
learning, data-driven approaches can achieve a great trade-off
between accuracy and efficiency.

B. Data-Driven Stereo Matching Approaches

1) Supervised Stereo Matching Approaches: Supervised
stereo matching approaches can be classified into three cate-
gories: 1) learning better feature correspondences, 2) learning
better regularization, and 3) learning dense disparity images
in an end-to-end way. The first category of approaches utilize
the learned distinguishable features to compute stereo matching
costs, and then apply traditional cost aggregation and regular-
ization for disparity estimation [27]. The second category of
approaches learn both regularization and cost aggregation, e.g.,
the spatial-variant penalty-parameters in SGM [28].

Recently, researchers have turned their focuses towards the
third category, due to its excellent performance on public bench-
marks. Such end-to-end approaches generally rely on 3D convo-
Iutions [10]-[12] or coarse-to-fine paradigms [14]-[16]. Specif-
ically, Chang et al. [10] proposed PSMNet, a pyramid stereo
matching network consisting of spatial pyramid pooling and sev-
eral 3D convolutional layers. GwcNet [11] and AcfNet [12] were
developed based on PSMNet for further performance improve-
ment. However, 3D convolutions can consume a lot of com-
putational resources, making these approaches difficult to per-
form in practice. To improve the DCNN inference speed, some
researchers have adopted coarse-to-fine paradigms to replace
3D convolutions. Specifically, Tankovich et al. [14] proposed
HITNet, which generates disparity predictions hierarchically
from 1/64 resolution to 1/4 resolution. Similarly, Wang et al. [15]
and Yee et al. [16] also followed this paradigm to improve the
DCNN inference speed. However, these approaches typically
have limited capability to recover errors from coarse resolutions,
which can lead to significant performance degradation. Unlike
the above-mentioned prior works, our proposed OptStereo em-
ploys a recurrent unit to iteratively update disparity estimations
at high resolution, which helps achieve a great trade-off between
accuracy and efficiency for stereo matching.

2) Unsupervised Stereo Matching Approaches: To reduce
the labor for disparity ground truth labeling, many researchers
have proposed unsupervised stereo matching approaches [29]—
[31]. Specifically, Zhong et al. [29] proposed a self-supervised
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Fig. 2. An illustration of our proposed PVM. The input stereo images are
processed to generate reliable semi-dense disparity images for supervising
DCNN training. The red and blue paths are used to produce the left and right
semi-dense disparity images, respectively.

stereo matching approach, which uses a novel training loss to ex-
ploit the loop constraint in image warping process and handle the
texture-less areas. Given coarse information about the scenes and
the optical system, Tulyakov et al. [30] developed an approach to
generate disparity estimations in a weakly-supervised manner.
Moreover, Liu et al. [31] proposed Flow2Stereo, which lever-
ages the geometric constraints behind stereoscopic videos to per-
form disparity and optical flow estimation in a self-supervised
manner. Different from these approaches, we propose PVM
in this letter for reliable semi-dense disparity generation. The
generated disparity images are then used to supervise DCNN
training. Compared to the prior works, our PVM is easy-to-use,
efficient and accurate. Extensive experimental results provided
in Section IV demonstrate the superiority of our PVStereo
over all other state-of-the-art self-supervised stereo matching
approaches.

III. METHODOLOGY

A. Pyramid Voting Module

Our PVM can produce a reliable semi-dense disparity image
D under a multi-scale disparity voting strategy, as illustrated in
Fig. 2. The produced D can be utilized to supervise DCNNs
in learning dense disparity estimation, and therefore, our PVM
can convert any supervised stereo matching DCNN into a self-
supervised approach.

Our PVM is designed based on two hypotheses:

1) confident disparities possess similar values, and

2) their matching costs or correlations are consistent,

regardless of image resolution. Therefore, our PVM aims at
seeking out consistent disparities among multi-scale stereo im-
age pairs from two pyramids. Given a pair of left and right stereo
images I; and I,., PVM first generates two groups of stereo image
pairs, constructing a left and a right pyramid, respectively. One
group is used to produce the left semi-dense disparity image D,
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(see the red flow in Fig. 2), while the other one is used to produce
the right semi-dense disparity image D, (see the blue flow in
Fig. 2). Each group contains a collection of K stereo image pairs
at different scales, as illustrated as (I}, I}),..., (I¥,1K). In
this letter, Iﬁr represents an I; ,, downsampled by a scale k + ¢,
where € € (—1,1) is a random scalar and € = 0 when k = 1.
Each generated stereo image pair (If, 1¥) can separately produce
a left and a right disparity image ]jfr via a traditional stereo
matching algorithm (abbreviated as TSM in Fig. 2) [20]. Based

on the above hypotheses, a representation C can be obtained:

1 & 1 &
TOICHIEE DS éh(p))?) : )

k=1

where p is an image pixel; and éﬁr € [0,1] denotes the nor-
malized inverse stereo matching cost or normalized correla-
tion (a better stereo matching corresponds to a higher éf_r
value). A voting map V can then be obtained, where V(p) =
(C(p,1),k1) + 0(C(p,2), k). k1 and Ko are two thresholds;
and §(z,y) = 0 when x < y, otherwise, 0(x,y) = 1. Generat-
ing a denser ]NDZWT requires higher x; and k5. By finding the
disparities at which V(p) = 0, a reliable semi-dense confident
disparity image f)lm is produced. Finally, D, and D, are pro-
cessed by a left-right disparity consistency check (LRDCC)
operator to produce D, which is further employed to supervise
DCNN training. More details on the DCNN architecture and
training phase will be discussed in the next subsections.

B. OptStereo

Given a pair of left and right stereo images I; and I,., our
OptStereo is designed to estimate a dense disparity image D.
Fig. 3 illustrates the overview of our OptStereo, which consists
of three stages, i.e., feature extraction, cost volume computation
and iterative refinement.

1) Feature Extraction: We use two residual networks [32]
that share weights to extract visual features F'; and F,. with the
size of H x W x C from I; and I,, respectively. The spatial
size of F; and F,. is 1/8 of the input image resolution, and C'
is set to be 256. Moreover, the residual networks includes six
residual blocks, two at 1/2 resolution, two at 1/4 resolution and
two at 1/8 resolution.

2) Cost Volume Computation: In this stage, we compute
visual similarity for all possible matching pairs between F; and
F,.. Specifically, we construct a cost volume M € RH*WxW
by computing the dot product between all possible matching
pairs of feature vectors, which can be formulated as follows:

C
MO(i, j, k) =Y Fi(i, 4, h) - Fr(i, k, ). )
h=0

Following [33], we further construct multi-scale cost vol-
umes M*', M? and M? by employing average pooling on the
last dimension of M respectively, where M* has the size of
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Fig. 3.
estimations at high resolution.

H x W x (W/2*) for k = 0, 1,2, 3. The multi-scale cost vol-
umes {M° M M?, M?3} store information about both large
and small disparities, which can be used effectively to update
disparity estimations in the iterative refinement stage.

To better utilize the multi-scale cost volumes, we intro-
duce a lookup operation, which can extract values from
{MP° M*! M2 M3} to construct a local cost volume M.
Specifically, a dense disparity estimation D, with the size of
H x W can map a point p = (4, j) in F; to its correspondence
p' = (i, j) = (i,j — Ds(p)) in F,.. We also define a neighbor
area around j' as follows:

U(j")a=1{i"+ AjlAj € Z,|Aj] < d} A3)

where d is the constant lookup distance. Then, we can extract
values from MP* by adopting (i, 7) as the first two dimensional
indexes and every element of U (j'/2¥) as the last dimensional
index for k = 0, 1, 2, 3. Please note that we employ bilinear sam-
pling, since the adopted indexes are real numbers. In addition,
we set d = 4, which corresponds to a search range of 256 pixels
at the input image resolution. The values extracted from the
multi-scale cost volumes are then concatenated into a local cost
volume M; € R7*W>36 which provides useful visual similar-
ity information around the possible matching pairs indicated by
the dense disparity estimation for further refinement.

3) Iterative Refinement: In this stage, we employ a GRU-
based module [34] to iteratively update a sequence of dense
disparity estimations {D DN } at the 1/8 resolution with
an initialization DS =0. Spec1ﬁcally, in iteration k, we first use
the above-mentioned lookup operation to compute the local cost
volume Mf based on the previous dense disparity estimation
D#~!. Then, we denote the concatenation of D1, M/ and F,
as x*, and send x* to the GRU-based module, which has the
following formulation:

z" = o (Convsys ([h*1,x"]))
rk =0 (COHV3><3 ([hkilvxk}))

h* = tanh (CODV3><3 ([rk o hF 1 x

)

An illustration of our proposed OptStereo, which first builds multi-scale cost volumes, and then adopts a recurrent unit to iteratively update disparity

h* = (1-2z") eh" ! +2* o h¥, )
where [-,-], o and ® denote concatenation, sigmoid function
and element-wise multiplication, respectively. The outputted
hidden state h* is then processed by two convolutional layers
to generate the disparity update A]j’;, and the dense disparity
estimation D¥ is updated by D¥ = DF~1 1 AD¥. This process
iterates until N, = 8 is reached. Note that {D!,... , DN-} are
at the 1/8 resolution. We then employ an upsampling module
that consists of an upsampling layer followed by two convolu-
tional layers to generate the full resolution disparity estimations
{D',...,DV:}. In the inference phase, we take D™= as the
estlmated dense disparity image D.

The architecture of our OptStereo is inspired by traditional
optimization-based approaches. Specifically, the adoption of
the GRU-based module mimics the updates of a first-order
descent algorithm, and the bounded activations used in (4)
also encourage convergence to a fixed point [33]. Moreover,
since our OptStereo iteratively updates disparity estimations at
high resolution, it does not suffer from the error accumulation
problem in the coarse-to-fine paradigm. Our OptStereo can also
greatly minimize the trade-off between accuracy and efficiency
for stereo matching due to its simple but effective architecture.

C. Loss Function and Data Augmentation

In the training phase, we optimize the parameters of our
OptStereo by minimizing a loss function £, which consists of
three terms:

L=Lp+ A -Lr+X Lg, 5)

where Lp denotes the PVM guiding loss; Lz denotes the
reconstruction loss; Lg denotes the smoothing loss; and A, and
Mo are two hyper-parameters to weight the contributions of the
three above-mentioned loss terms.

The Lp term takes the reliable semi-dense disparity images
generated by our PVM as the supervision for training. Specif-
ically, we adopt the Huber loss function [(-) for the L£p term,
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which is defined as:

1 aE Ns—1 - )
Lp= =N — Y I(|D(p) — D' (p))),
Ei:17 s i=1 D peD
rz—05, z>1
o) = {0y 12 ©

where D denotes the reliable semi-dense disparity image gen-
erated by our PVM; D’ denotes the dense disparity image
estimated by our OptStereo; IV, is the number of observed pixels
in D; and 7y is set to be 0.8 in our experiments. Compared with
the L2 loss, the Huber loss function /() has lower sensitivity to
outliers and presents more robust performance at discontinuous
areas [35].

Since the £ p term only considers the sparse pixels, we include
the L term to add constraints on the densely predicted pixels.
Inspired by [36], given a pair of stereo images, the left image
I; can be reconstructed from the right image I, based on the
estimated disparity image D. To make the reconstruction process
differentiable, we employ a bilinear sampler in this process.
Finally, the £ term is defined as a combination of a single-scale
SSIM term [37] and an L1 norm term:

oL g LSS (;l(p),il(p))

DEiz

+ (1= a) [ue) - Le)| ™

1

where il is the reconstructed image from I,. according to ]5; and
Nil is the number of observed pixels in il. Similar to [36], we
use a simplified SSIM with a 3 x 3 block filter and set @ = 0.85
in our experiments.

Inspired by [38], we further add the L£g term to smooth the
disparity predictions. Since the disparity values at the place
where the image pixel intensity changes greatly usually vary
significantly, we define the Lg term as weighting the disparity
gradients (0D) with an edge-aware term using the image gradi-
ents (OI)):

Lo— NL 3 10.D(p)]e” 1L @ 1 |9, D(p)]e 10T @,
D peD

®)

Furthermore, in traditional stereo matching approaches, the

LRDCC is usually performed to refine the estimated disparities,

as the occluded areas are only visible in one image. Inspired

by the LRDCC, we flip the left and right stereo images in the

left-right direction, respectively, as shown in Fig. 1. The flipped

left and right images are considered as a pair of new right and

left images, respectively. This process can augment the training
data to improve the stereo matching performance of DCNNS.

IV. EXPERIMENTAL RESULTS AND DISCUSSION
A. Datasets and Implementation Details

We use three stereo datasets in our experiments:
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e The KITTI Stereo 2012 benchmark [17]: This dataset con-
tains 194 training stereo image pairs with sparse ground-
truth disparity images and another 195 testing stereo image
pairs without ground-truth disparity images.

e The KITTI Stereo 2015 benchmark [18]: This dataset con-
tains 200 training stereo image pairs with sparse ground-
truth disparity images and another 200 testing stereo image
pairs without ground-truth disparity images.

e QOur HKUST-Drive dataset: We publish a large-scale syn-
thetic dataset, named the HKUST-Drive dataset. This
dataset is created using the CARLA simulator [39]. It is
collected in six different scenarios under different illumi-
nation and weather conditions, e.g., clear, rainy, daytime
and sunset. There are a total 11568 pairs of stereo im-
ages with corresponding dense sub-pixel disparity ground
truth. We split it into a training set (6940 image pairs), a
validation set (2314 image pairs) and a testing set (2314
image pairs). Different from the KITTI stereo datasets [17],
[18], our HKUST-Drive dataset can effectively evaluate the
generalization ability of stereo matching approaches across
different weather and illumination conditions.

During the training phase, we use the Adam optimizer [40]
and adopt an initial learning rate of 10~%. The model is trained
on two NVIDIA GeForce RTX 2080 Ti graphics cards un-
til it converges. We also adopt an existing self-supervision
scheme [41] to improve the stereo matching performance on
the challenging areas, such as the occluded areas. Moreover, we
use two commonly used metrics for evaluation: 1) the average
end-point error (AEPE) that measures the average difference
between the disparity estimations and ground-truth labels and
2) the percentage of pixels (F1) with absolute disparity error
higher than 3 pixels [17].

In our experiments, we first conduct ablation studies on our
HKUST-Drive dataset in Section IV-B to 1) select the best
architecture of our PVM and OptStereo as well as the best
hyper-parameters for the loss function; and 2) demonstrate the
effectiveness of our data augmentation technique. Then, we
denote our best self-supervised implementation as PVStereo, and
compare it with the state-of-the-art self-supervised approaches
on our HKUST-Drive dataset. We also compare our OptStereo
with the state-of-the-art supervised approaches. The experimen-
tal results are shown in Section IV-C. After that, we evaluate our
PVStereo and OptStereo on the popular KITTI Stereo 2012 and
2015 benchmarks [17], [18], as presented in Section IV-D.

B. Ablation Study

We first explore the best architecture of our PVM. Fig. 4
compares the performance of our PVM and the corresponding
PVM-OptStereo with respect to different K. We can observe
that with the increase of K, the AEPE of the PVM decreases
while the invalid pixel percentage increases. Correspondingly,
the AEPE of our PVM-OptStereo first decreases but then in-
creases. Therefore, we minimize the trade-off between accuracy
and density, and set K to 6 in the rest of our experiments,
where the corresponding PVM-OptStereo can achieve the best
performance. Additionally, we can also observe that all the
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Fig. 4. Experimental results of the proposed approach with different variants
of our PVM on the HKUST-Drive dataset.

TABLE I
EXPERIMENTAL RESULTS OF THE PROPOSED APPROACH WITH DIFFERENT
VARIANTS OF OUR OPTSTEREO ON THE HKUST-DRIVE DATASET. THE
ADOPTED VARIANT IS BOLDED

No.  Multi-scale Cost Volumes DIi;(:;)Ill(;lg d AEPE (px)
(a) - 4 1.02
(b) v 1 1.16
(c) v 2 0.93
(d) 4 4 0.79

variants of our PVM-OptStereo outperform the corresponding
PVM. We believe that our designed loss function and proposed
data augmentation technique can provide effective fine-tuning
for the predicted dense disparity images, thus making them
outperform the corresponding semi-dense disparity images used
for training.

Table I compares the performance of the proposed approach
with different variants of our OptStereo. The comparison be-
tween (a) and (d) demonstrates the effectiveness of the adopted
multi-scale cost volumes. From (b)-(d), we can observe that
with the lookup distance d increasing, the performance of our
approach improves. Considering the balance between accuracy
and efficiency, we adopt (d) of Table I in the rest of our experi-
ments.

In addition, we test different combinations of Ay and A5 in
the loss function, and some of the experimental results are
presented in Fig. 5. We can observe that the proper introduction
of L and Lg can improve the performance effectively. We
analyze that L and Lg can perform effective supervision for
the pixels that are invalid in our PVM, and thus, can benefit
the overall performance of dense stereo matching. However, A1
and Lo must be kept low to not overcome the contribution of
Lp. Based on Fig. 5, we set A; = 0.1 and Ao = 0.1 in the rest
of our experiments. Furthermore, Fig. 5 demonstrates that our
data augmentation technique can effectively improve the stereo
matching performance. We analyze that the proposed technique
can leverage the relationship among stereo images to perform
effective training data augmentation, and thus, can benefit the
overall performance of dense stereo matching.
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Fig. 5. Experimental results of the proposed approach with different variants
of our loss function and data augmentation technique on the HKUST-Drive
dataset.
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Fig.6. Performance comparison of our OptStereo and PV Stereo with state-of-
the-art supervised and unsupervised approaches on the HKUST-Drive dataset.

C. Performance Comparison on Our HKUST-Drive Dataset

As previously mentioned, we denote our best self-supervised
implementation as PVStereo, and compare it with the state-of-
the-art self-supervised approaches on our HKUST-Drive dataset.
We also train our OptStereo in a supervised manner, and compare
it with the state-of-the-art supervised approaches. In addition,
we implement our PVM in existing HITNet [14], and denote
it as PVM-HITNet. For the other baseline supervised and un-
supervised approaches, we follow the hyperparameter setups as
reported in their letters.

The quantitative results are presented in Fig. 6. We can
clearly observe that our PVStereo significantly outperforms all
other state-of-the-art self-supervised approaches. Moreover, our
PVStereo can achieve a great trade-off between accuracy and ef-
ficiency for stereo matching. It is also evident that PVM-HITNet
can present competitive performance for self-supervised stereo
matching, which verifies the effectiveness of our PVM. Further-
more, our PVStereo can even achieve competitive performance
compared to supervised approaches such as HITNet [14], which
demonstrates the effectiveness of our proposed self-supervised
architecture. Please note that our OptStereo achieves a better
performance than state-of-the-art supervised approaches, which
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Significantly improved regions are marked with green dashed boxes.
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Flow2Stereo [31]

AcfNet [12]

4359

HITNet [14] PVStereo (Ours)

An example on our HKUST-Drive dataset, where rows (a) and (b) show the disparity estimations and the corresponding disparity error maps, respectively.

PVStereo (Ours) OptStereo (Ours)

Examples on the KITTI Stereo benchmarks [17], [18], where rows (a) and (b) show the disparity estimations and the corresponding disparity error maps,

respectively. Significantly improved regions are highlighted with green dashed boxes.

verifies the superiority of the proposed DCNN architecture over
existing architectures that rely on 3D convolutions or coarse-to-
feRarwligms s&d ghat HlrPVRIrad exnppler ok o AU tative
disparity estimations. Since our HKUST-Drive dataset covers
different scenarios under different illumination and weather
conditions, these results strongly demonstrate the great gener-
alization ability of our OptStereo and PV Stereo across different
scenarios as well as different weather and illumination condi-
tions.

D. Evaluation Results on the KITTI Stereo Benchmarks

We submit the results achieved by our OptStereo and
PVStereo to KITTI Stereo benchmarks [17], [18], and the
quantitative results are presented in Table II. It is evident that
our OptStereo achieves competitive performance compared to
state-of-the-art supervised stereo matching approaches, which
demonstrates the effectiveness of the proposed DCNN archi-
tecture. Moreover, our PVStereo outperforms all other state-of-
the-art self-supervised stereo matching approaches with a great
trade-off between accuracy and efficiency, which verifies the
superiority of our self-supervised stereo matching approach.
Furthermore, Fig. 8 illustrates some examples on the KITTI
Stereo benchmarks, where we can see that our OptStereo and
PVStereo can yield robust and accurate disparity estimations.

TABLE II
EVALUATION RESULTS ON THE KITTI STEREO 2012! [17] AND KITTI STEREO
20152 [18] BENCHMARKS. “NOC” AND “ALL” REPRESENT THE F1 (%) FOR
NON-OCCLUDED PIXELS AND ALL PIXELS, RESPECTIVELY. “S” DENOTES
SUPERVISED APPROACHES, AND PSGM [25] IS A TRADITIONAL APPROACH.
BEST RESULTS FOR SUPERVISED AND UNSUPERVISED APPROACHES ARE BOTH

BOLDED

KITTI 2012 KITTI 2015 Runtime
Approach S (s)

Noc All Noc All
PSMNet [10] v 1.49 1.89 2.14 2.32 0.41
GwcNet-g [11] v 1.37 1.70 1.92 2.11 0.32
AcfNet [12] v 117 1.54 1.72 1.89 0.48
OptStereo (Ours) v 1.20 1.61 1.36 1.82 0.10
pSGM [25] - 4.68 6.13 5.17 5.97 7.77
Flow2Stereo [31] - 4.58 5.11 6.29 6.61 0.05
MC-CNN-WS [30] - 3.02 445 4.11 4.97 1.35
SsSMnet [29] - 2.30 3.00 3.06 3.40 0.80
PVStereo (Ours) — 1.98 2.47 2.69 2.99 0.10

Ievlibs.net/datasets/kitti/eval_stereo_flow.php?benchmark=stereo
2cvlibs.net/datasets/kitti/eval_scene_flow.php?benchmark=stereo

V. CONCLUSION

This letter presented PV Stereo, a novel self-supervised ap-
proach for end-to-end stereo matching, which consists of a
PVM and a novel DCNN architecture, referred to as OptStereo.
Specifically, our OptStereo first builds multi-scale cost volumes,
and then adopts a recurrent unit to iteratively update disparity
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estimations at high resolution, which can not only avoid the
error accumulation problem in coarse-to-fine paradigms, but
also achieve a great trade-off between accuracy and efficiency
due to its simple but effective architecture. Moreover, our PVM
can generate reliable semi-dense disparity images, which can be
employed to supervise the training of OptStereo. Furthermore,
we published a large-scale synthetic stereo dataset, named the
HKUST-Drive dataset, collected under different illumination
and weather conditions for research purposes. Extensive ex-
periments on the popular KITTI Stereo benchmarks and our
HKUST-Drive dataset demonstrated the effectiveness and ef-
ficiency of our PVStereo, which greatly outperforms all other
state-of-the-art self-supervised stereo matching approaches. We
believe that our PV Stereo can be employed in many robotics ap-
plications, such as freespace detection, to improve their perfor-
mance. It is also promising to employ the proposed architecture
in other self-supervised tasks, such as self-supervised optical
flow estimation.
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