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MFuseNet: Robust Depth Estimation With
Learned Multiscopic Fusion

Weihao Yuan , Rui Fan , Michael Yu Wang , and Qifeng Chen

Abstract—We design a multiscopic vision system that utilizes a
low-cost monocular RGB camera to acquire accurate depth esti-
mation. Unlike multi-view stereo with images captured at uncon-
strained camera poses, the proposed system controls the motion of a
camera to capture a sequence of images in horizontally or vertically
aligned positions with the same parallax. In this system, we propose
a new heuristic method and a robust learning-based method to
fuse multiple cost volumes between the reference image and its
surrounding images. To obtain training data, we build a synthetic
dataset with multiscopic images. The experiments on the real-world
Middlebury dataset and real robot demonstration show that our
multiscopic vision system outperforms traditional two-frame stereo
matching methods in depth estimation. Our code and dataset are
available at https://sites.google.com/view/multiscopic.

Index Terms—Visual learning, deep learning in robotics and
automation, computer vision for automation, depth estimation,
multiscopic vision.

I. INTRODUCTION

UNDERSTANDING surrounding 3-dimensional (3D) en-
vironments is an essential perception task for numerous

robotic applications, including manipulation, exploration, and
navigation [1]–[4]. Robots usually rely on accurate depth esti-
mation of a scene to avoid obstacles and manipulate objects. In
industrial environments, a color camera is usually installed on
moving agents such as autonomous ground vehicles (AGV) and
robot arms that can control the camera movement. Therefore,
can we obtain highly accurate depth maps with a monocular
camera by controlling the camera motion?
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For depth estimation, we typically utilize depth sensors such
as stereo cameras, structured-light sensors, and time-of-flight
sensors, but these depth sensors are usually expensive compared
to a single RGB camera. Researchers have been working on
depth estimation with a single monocular RGB camera, but
monocular depth estimation is still far from perfect. We demon-
strate that if we can control the motion of an RGB camera and
capture images at well-controlled positions and orientations,
monocular depth estimation can be significantly improved.

The principle of stereo matching is one of the fundamental
techniques for depth estimation with two cameras. A stereo
sensor is equipped with two cameras displaced horizontally so
that the corresponding pixels in the two cameras are on the same
horizontal line. Thus stereo matching can estimate a disparity
map that represents the position differences between corre-
sponding pixels in stereo images [5]. On the other hand, structure
from motion (SFM) [6] and multi-view stereo (MVS) [7] do not
constrain the camera poses so that the pixel correspondence is
not on a fixed line, which makes finding pixel correspondences
more challenging.

We extend the idea of stereo matching to multiscopic vision
to obtain high-quality depth with a single camera with regulated
motion, in which more constraints can be enforced in recon-
structed depth maps. We study depth estimation with a single
camera by taking multiple images at specified camera poses. We
refer to the problem of depth estimation with multiple images
captured at aligned camera locations as multiscopic vision, as
an analog to stereo vision with two horizontally aligned images.
Inspired by the principle of stereo vision that depth estimation
with two perfectly aligned images is relatively easier than with
two images with arbitrary unknown camera poses, we believe
capturing multiple images with aligned camera locations can
bring benefits to obtaining more accurate and robust depth
estimation.

As shown in Fig. 1, we command a robot arm to move a
camera along its image plane so that all images are co-planar.
Then the search for pixel correspondence can be conducted only
on a fixed line direction. If we further move the camera along
the horizontal or vertical axis, the disparity will only be along
the horizontal or vertical axis. Furthermore, if the camera is
moved with the same distance for every surrounding image, the
disparity of each pixel relative to the center image should be the
same, which is a strong regularization for computing an accurate
disparity map.

A multiscopic vision system brings clear benefits to depth
estimation when compared to multiview stereo (MVS) and
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Fig. 1. Multiscopic vision system. A camera is moved under control so that
the captured images are co-planar with the same parallax. The point P on the
pyramid can not be perceived from the left view but can be seen from other views.
The depth map for the center view can be obtained by fusing the matching costs
between the center view and all other views.

stereo matching. Compared to MVS that only performs stereo
matching between pairs of images,1 our system can aggregate
cost volumes from all images simultaneously because all the
captured images are aligned horizontally or vertically. For stereo
matching, finding pixel correspondences is challenging because
occlusion, reflection, illumination, no-texture can affect the
matching easily. In a multiscopic system, depth estimation is
much more robust in the presence of multiple cost volumes that
can be combined.

Previous approaches estimating disparity with multiscopic
images fuse the information from different images with different
types of heuristic terms [9]–[13]. These heuristic terms are
based on hand-crafted prior knowledge and are usually overly
simplified. In this letter, we first propose a new heuristic method
to fuse multiple cost volumes to get a better disparity estimation.
Then we propose a learning-based framework that trains a
convolutional neural network called MFuseNet for cost volume
fusion. The network is optimized to output the optimal disparity
map by taking multiple cost volumes as input.

While there is no large multiscopic dataset for training, we
use a 3D rendering engine to generate a synthetic multiscopic
dataset with hundreds of different scenes. Although our network
is trained with a small amount of data from this synthetic
dataset, the model can be well generalized to real-world data and
outperform heuristic methods. Our network is lightweight, with
only tens of thousands of parameters, which makes the network
well generalized to different scenes without overfitting. Besides,
multiscopic matching with multiple aligned images generates
much more accurate depth maps than two-view stereo matching.
Visually, the depth map produced by multiscopic vision contains
fairly few occlusion pixels, as shown in Fig. 1. Note that in
multiscopic vision, each pixel in the reference image likely
appears in at least one of its surrounding images.

1Note that simultaneous rectification of more than two images is generally
impossible when their camera centers are not on one line [8]

Our main contributions concerning regulated monocular per-
ception system and multiscopic fusion are summarized as fol-
lows:

1) We design a regulated perception system for accurate
depth estimation. The system captures multiscopic images
with the co-planar, parallel, and same-parallax structure
using a monocular camera.

2) We propose a novel learning-based model for multiscopic
cost volume fusion. The proposed model obtains more
accurate depth maps than previous methods do.

3) We generate a synthetic multiscopic dataset using a 3D
rendering engine for training. With only tens of images,
our lightweight network could be trained and generalized
well to real-world scenes.

II. RELATED WORK

We first review prior systems designed for capturing multi-
scopic images for depth estimation and afterward discuss algo-
rithms that fuse multiscopic information to compute disparity
maps.

One type of multiscopic systems is based on camera arrays
in which multiple cameras are placed on arrays [12], [14], [15].
A camera array brings the benefits that multiple cost volumes
can be constructed by stereo matching between any two cameras
on a row for robust depth estimation. It also resolves the partial
invisibility issue as each point in the scene is likely visible in sev-
eral cameras [12], [15]. However, building a camera array with
multiple cameras is bulky and expensive, and the rectification
of different cameras is another challenge.

To take advantage of identical camera parameters, some stereo
vision systems use a single camera to perform depth estimation.
By analyzing the optical structure, Adelson and Wang proposed
a single lens stereo system with a plenoptic camera that could
produce photos from different viewpoints [16]. These captured
images could be then used as stereo images for depth estimation.
However, the stereo baseline is usually limited to the size of the
lens aperture. Similar works using plates or mirrors to guide
the light were proposed to obtain virtual stereo images. These
optics design also introduces complex optical uncertainty and
geometric calculation [17]–[20]. All these systems are only for
stereo vision rather than multiscopic vision.

Most approaches for multiscopic vision are only demonstrated
on synthetic data, and a few are performed on camera arrays.
Kolmogorov et al. and Maitre et al. [9], [12] treated the input
images symmetrically while Wei et al. [10] treated the images
asymmetrically. Occlusion models were built by Wei et al. [10]
and Drouin et al. [11] to handle the occlusion problem. Total
variation regularization for multiple disparities and cross-filling
was proposed for array disparity estimation [13]. Also, some
methods calculate each disparity map with stereo matching and
then merge the output disparity maps [21].

All prior methods for the fusion of multiple cost volumes are
manually designed, which may introduce human prior knowl-
edge and bias. In this letter, we use a low-cost monocular camera
to capture images in horizontally or vertically aligned camera
positions. Then we propose a new heuristic fusion method and
a deep learning-based fusion method to merge multiple cost
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Fig. 2. Five images captured using our multiscopic perception system from
different viewpoints. The parallax between the center view and any adjacent
view is the same.

volumes. To the best of our knowledge, this is the first time of
fusing multiscopic cost volumes utilizing convolutional neural
networks.

III. HEURISTIC MULTISCOPIC FUSION

In this section, we first introduce our monocular multiscopic
vision system to capture axis-aligned images and then propose
our heuristic multiscopic fusion methods based on classical
stereo algorithms to illustrate how the multiscopic matching is
different from stereo matching. This can give us a hint about the
role of MFuseNet and what is done inside the network.

A. Monocular Multiscopic Perception

In our multiscopic vision system presented in Fig. 1, we can
actively control the motion of a camera. We move it to the left
and right along the horizontal axis, as well as up and down
along the vertical axis. We capture one center image and four
axis-aligned images with the same baseline in the left, right,
bottom, and top views, as displayed in Fig. 2. The center image
and any surrounding image can form a pair of stereo images.
The five images can be captured with arbitrary baselines in
our active perception system. The baseline can be adjusted for
different purposes: accurate depth estimation for distant objects
may require large baselines and stereo matching is easier with
smaller baselines.

With the center image as the reference, the other four images
can jointly contribute to the disparity estimation. Besides, each
point in the center image is likely seen in one of the other four
images. For example, the point P in Fig. 1 cannot be observed
from the left view but can be perceived completely from other
views.

B. Multiscopic Matching

We will introduce block matching first and then multiscopic
matching. Block matching is a simple and straightforward stereo
matching method, which minimizes the matching error between
two blocks in the left image and the right image. To find the
most similar block, we need to check all possible blocks in the
same row from the minimum disparity to the maximum plausible

Fig. 3. A multiscopic system with three images is formed by moving a camera
horizontally along the image plane with the same distance. Thus there are three
images captured from the left view, the center view, and the right view. The gray
optical axes are perpendicular to the image planes in blue. The points Ol, Oc,
and Or are optical centers. A point P in 3D space is projected onto the 2D
image planes corresponding to the three pixels ql, pc, and qr . q′l, q

′
r , and q′c are

the counterparts of ql, qr , and qc in other images.

disparity. The sum of absolute difference (SAD) is often used
to measure the visual similarity between two blocks. For a pixel
(u, v) in the left image, its SAD cost with block size 2ρ+ 1 and
disparity d can be calculated as

cSAD(u, v, d) =

u+ρ∑

x=u−ρ

v+ρ∑

y=v−ρ

|Il(x, y)− Ir(x− d, y)|, (1)

where cSAD(u, v, d) is the block matching cost at pixel (u, v), ρ
is the radius of the block, Il(x, y) is the intensity of pixel (x, y)
in the left image, and Ir(x− d, y) denotes the intensity in the
right image.

The images in multiscopic vision are taken with parallel
optical axes and co-planar image planes. Since the baselines for
four surrounding images are the same, the disparity of a pixel
between the center image and any surrounding image should
be the same. This is demonstrated in Fig. 3. Considering a
multiscopic system with three images as an example, for a point
P in 3D space, it is projected onto the camera image planes as
three image pixels ql, pc, and qr. The disparity dl between pc
and ql and the disparity dr between pc and qr are the same.

In real-world applications, our multiscopic vision system
takes five images, as shown in Fig. 2. Thus the block matching
cost is composed of four parts, each for one surrounding image:

cSAD1(u, v, d) =

u+ρ∑

x=u−ρ

v+ρ∑

y=v−ρ

|Ir(x− d, y)− Ic(x, y)|, (2)

where Ir, Ic denote the images taken from the right view and
the center view. cSAD2, cSAD3, cSAD4 can be computed in a similar
way between Ic(x, y) and Il(x+ d, y), It(x, y + d), Ib(x, y −
d) in the left, top and bottom images, respectively. Then the
fusion of these four cost functions to form the final data term is
crucial. One naive idea is to take the average,

cave =
1

4
(cSAD1 + cSAD2 + cSAD3 + cSAD4). (3)

The visual result of using cave shown in Fig. 4(b) suggests that
it does remove much more noise and reconstruct the reflective
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Fig. 4. The disparity maps of stereo and multiscopic block matching. (a) Stereo
BM is the block matching method using cSAD1. Block matching with mean,
minimum, and heuristic SAD cost fusion produce disparity maps (b), (c), (d)
respectively, displayed in Jet colormap. All these methods use a winner-take-all
strategy for the disparity maps.

tabletop better than using cSAD1 as shown in Fig. 4(a), but
disparity errors still exist in occluded areas. For the center image,
some regions can not be seen in some surrounding images. For
instance, the region to the left of the toy cannot be seen in the right
image. Thus the cost cSAD1 for this region would be large and may
affect the overall data term cave. Therefore we consider another
fusion strategy by choosing the smallest one when combining
the four cost functions:

cmin = min{cSAD1, cSAD2, cSAD3, cSAD4}. (4)

The disparity map computed with cmin is presented in Fig. 4(c).
We can see that the occlusion region is reconstructed clearly, but
the noise is persistent in some areas. To overcome this, we design
a heuristic fusion strategy. We first sort the four costs on each
pixel and use three smallest costs cI, cII, cIII (cI is the smallest).
Then we remove the second-highest cost if it is much higher
than the other two:

cheu =

{
1
2 (c

I + cII), if cIII > 3cII

1
3 (c

I + cII + cIII), otherwise,
(5)

which leads to a cleaner disparity map as shown in Fig. 4(d).

C. Multiscopic Graph Cuts

Graph cuts (GC) optimization is one of the most popular
global optimization methods for stereo matching. It is a process
that assigns a label of disparity to each pixel in the reference im-
age such that an energy function is minimized. Our multiscopic
graph cuts model is based on the stereo matching algorithm by
Kolmogorov and Zabih [22].

In our graph cuts optimization, the energy is composed of 4
terms defined as

E = Edata + Eocclusion + Esmooth + Eunique. (6)

Data termEdata is used to evaluate the similarity of two image
patches. Note that our images may not be perfectly aligned due
to the limited precision of robot arm movement, the epipolar line
may deviate slightly from the horizontal or vertical direction. To

Fig. 5. The disparity maps obtained by stereo and multiscopic graph cuts
using heuristic fusion method. Note that for stereo graph cuts, the disparities
on occluded regions are not estimated accurately, and matching on the metal
tabletop is not accurate due to reflection.

compensate this, we use an improved Birchfield and Tomasi’s
(BT) dissimilarity for the data term [22], [23]:

cBT1(u, v, d) = max{0, Ic(u, v)− Imin
r (u− d, v),

Imax
r (u− d, v)− Ic(u, v)}, (7)

where Imin
r and Imax

r are respectively the smallest and largest
values on the subpixel neighborhood around pixel (u− d, v) in
the right image. For a pixel q in the right image:

Imin
r (q) = min

σ

{
1

2
(Ir(q) + Ir(q + σ))

}
,

Imax
r (q) = max

σ

{
1

2
(Ir(q) + Ir(q + σ))

}
, (8)

where σ ∈ {(0, 0), (−1, 0), (1, 0), (0,−1), (0, 1)}. Therefore
the stereo matching for correspondence is actually performed
between the half higher row and the half lower row.
Edata now is an integration of four parts. The other three are

between Ic(u, v) and Il(u+ d, v), It(u, v + d), Ib(u, v − d).
These four costs are then merged using the same heuristic rule
to get the fused cost cGC(u, v, d).

Occlusion term Eocclusion is used to maximize the number of
matches. To encourage more disparity assignment in graph cuts
optimization, any inactive pixel without assignment is penalized
by a constant K [22].

Smoothness term Esmooth encourages assigning similar dis-
parity to adjacent pixels, especially for those with a similar
color. Thus if two adjacent pixels p1, p2 in the center image have
different disparity assignments, aL1 penalty would be added as:

V =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

λ1Δd, max{|Ic(p1)− Ic(p2)|, |Ir(q1)− Ir(q2)|,
|Il(m1)− Il(m2)|, |It(n1)− It(n2)|,
|Ib(k1)− Ib(k2)|} < θ

λ2Δd, otherwise

Δd = min{|d1 − d2|, dCUTOFF}, (9)

where q1, q2,m1,m2, n1, n2, k1, k2 are the corresponding
pixels of p1, p2 in the right, left, top, bottom images respectively,
θ is a threshold to evaluate the color similarity, λ1 and λ2 are
penalty constants, and Δd is the disparity difference truncated
at a threshold dCUTOFF.

Uniqueness term Eunique enforces the uniqueness of pixel
correspondences. For a pixel in the center image, we do not allow
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Fig. 6. The network structure of MFuseNet. For n cost volumes with size
D ×H ×W , they are processed respectively and then fused to get the final
disparity. The feature channels of 3D CNN is 4 such that the size of each cost
volume before concatenation is 4×D ×H ×W .

two pixels in the surrounding image match it simultaneously and
vice versa. This will be punished by an infinity penalty of∞ [22].

With this energy, the visual results of multiscopic graph
cuts and stereo graph cuts with the same hyper-parameters are
displayed in Fig. 5. To suppress the discontinuous disparity
artifacts, we enlarge input images twice before the graph cuts
optimization. Compared with the stereo graph cuts, the occlusion
parts and reflective tabletop are reconstructed much better, and
the noise is better suppressed.

IV. MULTISCOPIC FUSION WITH MFUSENET

Manually designed heuristic fusion approaches are prone to
human bias and are usually simplified. To better fuse multiple
cost volumes, we propose to use deep neural networks to merge
them. In this section, we first present the network structure
we use to fuse cost volumes, after which we describe how we
generate the synthetic dataset.

A. Network Structure

We employ a 3D convolutional neural network (3D CNN) to
fuse multiple cost volumes. As displayed in Fig. 6, each cost vol-
ume is first fed into cascaded 3D CNN layers to extract features.
These features are concatenated as the input to a network similar
to 3D U-net to generate the disparity prediction [24]. With
the 3D U-net architecture, information at different scales can
be processed to incorporate both local and global information.
Since the size of cost volumes is large, we only use a small
number of feature channels, such that the number of parameters
in MFuseNet is only around 10 thousand. A compact network
makes it easy to train and be generalized to unseen scenarios
well rather than over-fitting to the training data.

To obtain the final output, we apply a disparity regression
function [25] at the end of the network to get a continuous
disparity map. A softmax activation function is utilized to get
a probability map with size 1×D ×H ×W . Then the final
disparity is calculated as the sum of each disparity d weighted
by its probability pd:

d̂i =

D∑

d=1

d× pd. (10)

Fig. 7. Color images and ground-truth disparity maps in the synthetic multi-
scopic dataset, and the disparity maps obtained by MFuseNet.

Fig. 8. The disparity maps obtained by MC-CNN using stereo images and
MFuseNet using multiscopic images without post-processing. Details in the
black boxes are zoomed.

The final loss for a disparity map with N pixel is calculated
as the smooth L1 loss:

L
(
d̂, dgt

)
=

1

N

N∑

i=1

l(d̂i − dgti ) (11)

where dgt is the ground-truth disparity map and

l(x) =

{
1
2x

2 |x| < 1

|x| − 1
2 otherwise.

With this loss, the fusion network can be trained with cost vol-
umes calculated by any algorithm. In this letter we only use the
ones obtained by MC-CNN [26] since it generates intermediate
cost volumes after semi-global matching.

B. Synthetic Multiscopic Dataset

Since there is no available large dataset for multiscopic vision,
we synthesize a dataset with hundreds of scenes using 3D render
engine House3D [27] and SceneNet RGB-D [28]. For each scene
in our dataset, there are one center image and four surrounding
images with resolution 1280× 1080. Each color image has its
corresponding ground-truth disparity map. The baseline varies
from 0.05 to 0.2 in meters, and the maximum disparity is 255.
Two example scenes are presented in Fig. 7. For now, there are
around 500 scenes of images, and we are keeping generating
more data. This dataset can be utilized in many applications
beyond multiscopic depth estimation: multiscopic super resolu-
tion, i.e. using multiscopic images to compute an image with
much more resolutions; multiscopic view synthesis [29], i.e.
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Fig. 9. The disparity estimation results of different algorithms for two sets of images, Aloe and Lampshade in the Middlebury 2006 stereo dataset. The first image
is the reference RGB image, i.e., the left image for stereo algorithms and the center image for multiscopic algorithms. Two images are used for stereo algorithms,
and three images are used for multiscopic algorithms.

TABLE I
MATCHING RESULTS ON 21 SCENES IN THE MIDDLEBURY 2006 STEREO DATASET [30]

Fig. 10. The camera is mounted at the end of a robot arm and moved
horizontally and vertically to take pictures from different views.

using a few of views to predict novel views like predicting the
right view using left view and center view.

C. Network Training

To train the lightweight MFuseNet with the synthetic dataset,
we only use 27 scenes with maximum disparity 60 (maximum
disparity in the Middlebury dataset). Although the number of
scenes is relatively small, the network can be well optimized
and performs stably on unseen scenarios. Two disparity maps
obtained by MFuseNet and the corresponding synthetic images
used during training are shown in Fig. 7. The real-world result on
the multiscopic images captured by our monocular perception
system is presented in Fig. 8. Compared with the output of
stereo MC-CNN, the disparity map by MFuseNet is cleaner and
smoother. In addition, the object boundary appears sharper in
our disparity result.

V. EXPERIMENTS

In this section, we present the details of our system setup
and experiments results. The quantitative evaluation on the
Middlebury 2006 stereo dataset and the qualitative experiments
on real robots are demonstrated.

A. System Setup

To build the multiscopic vision system, we mount a monocular
camera at the end of a robot arm, as displayed in Fig. 10. The
sensor we use is an ordinary USB video camera with Sony
IMX322 inside, whose resolution is 1920× 1080. The robot arm
is UR10, a collaborative industrial robot whose repeatability is
±0.1 mm. UR10 has six rotating joints, so the end has 6 degrees
of freedom. Hence the camera can move freely with any pose.

To capture a series of images with multiscopic structure, we
command the UR10 to move the camera in its image plane,
generating a set of co-planar images. For every movement with
the same distance, we take one picture of the environment. Our
system can only handle static scenes because it takes time to
capture multiple images with a robot arm. We can take multiple
images, and each of these images has the same parallax with
its adjacent images. For example, we can take 9 images in
3 rows and 3 columns, which forms a multiscopic array. Also,
we can adjust the baseline according to the need. For the sake
of simplicity, we use five images in the real robot experiments
to estimate disparity.

Our algorithm is run on a computer with an Nvidia GPU
of GeForce GTX 1080 Ti. To evaluate the performance of our
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Fig. 11. The disparity estimation results of different algorithms for a reflective workpiece.

multiscopic algorithm, we conduct a quantitative evaluation
on the Middlebury 2006 stereo dataset [30], which contains
calibrated and rectified image sequence for depth estimation.
For both heuristic fusion and MFuseNet fusion, we use only
three adjacent images to compute the disparity. Note that we
can use our system to capture more images and do multiscopic
matching with five or even more images.

B. Evaluation on Middleburry

The images in the Middlebury dataset are well calibrated
and rectified, so it can quantitatively show the improvement of
multiscopic matching without the influence of image calibration
error. Since there are only images captured in the horizontal
direction in this dataset, we choose the first three images. We
use the first image as the left image, the second one as the center
image, and the third image as the right image for the multiscopic
algorithm. The baseline between two adjacent images is 40 mm.
With the center image as a reference image, there are two cost
volumes to be combined. One is between the left image and the
center image, and the other one is between the right image and
the center image. Because there are only two cost volumes, the
heuristic fusion can be directly using the smaller one according
to Equ. 4.

The maximum searching disparity is set to 60 and the mini-
mum is set to 1. For graph cuts, the occlusion penalty K is set to
10 and the smoothness parameters λ1, λ2, θ, dCUTOFF are set to
9, 3, 8, 5, respectively. For MC-CNN, the pre-trained accurate
Middlebury network model is used in the experiment. Then
based on the cost volumes obtained from MC-CNN, MFuseNet
is trained using the left, center, and right images from 27
synthetic scenes with maximum disparity 60 in the multiscopic
mode, and using the center and right images in the stereo mode.
All the results are obtained without any post-processing.

We use five metrics to evaluate the matching results, as is
summarized in Table I. The RMS is the root-mean-square error,
AvgErr is the average absolute error, Bad0.5 is the percentage
of pixels whose error is greater than 0.5. Bad1 and Bad2 are
defined similarly. It can be seen from these five metrics that
the multiscopic framework can improve the correspondence
matching a lot even with only three images. Also, MFuseNet
fusion can outperform heuristic fusion significantly. The aver-
age decrease of the average absolute error on 21 Middlebury
scenes can reach 69.5%, and the one of root-mean-square error
is 70.3%. Compared with heuristic fusion, MFuseNet fusion
can achieve around another 40% absolute error decrease. Even

TABLE II
QUANTITATIVE RESULTS ON TSUKUBA

though MFuseNet is trained with only 27 sets of synthetic
images, it can generalize and perform well in different scenes.

For qualitative comparison, we randomly choose two scenes
of images from the Middlebury dataset, Aloe and Lampshade.
In Fig. 9, we show the disparity results of stereo graph cuts, mul-
tiscopic heuristic graph cuts, stereo MC-CNN, and multiscopic
MFuseNet fusion without any post-processing. Compared to the
stereo matching, multiscopic matching produces less noise and
better reconstruction in occluded areas. Compared to heuristic
fusion, MFuseNet produces cleaner and smoother estimation,
although the heuristic graph cuts generates sharper edges of
some objects.

C. Evaluation on Tsukuba Multiview Data

To compare our method with prior multiscopic matching
algorithms in a similar setup, we also evaluate our approach
on Tsukuba multiscopic data [31], as is shown in Table II.
The disparity value differing from the ground truth by more
than one is considered erroneous. This scene has only a small
disparity range and sharp edges for thin objects like the lamp,
so graph cuts perform better on this image. However, we can
still see multiscopic fusion outperforms stereo MC-CNN in this
example. The output disparity maps are shown in Fig. 12, in
which the multiscopic output is computed using five frames.
The result shows that our method achieves the minimum error.

D. Real Robot Experiments

To show the effectiveness of our approach in real-world
robotic applications, we also perform real-world multiscopic
experiments. Note that the images captured by our system are
not perfectly calibrated and rectified, so there is more noise in the
correspondence matching. In this case the multiscopic matching,
which is more robust than stereo matching, is in more demand. In
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Fig. 12. The disparity maps of Tsukuba obtained by stereo graph cuts and
multiscopic graph cuts using heuristic fusion method.

our experiments on real robots, we first capture one center image
and then capture four surrounding images from the left, right,
top, and bottom views. The first example, a toy, is presented in
the previous section, and another example is presented in Fig. 11.
The disparity maps in these two examples clearly show the
multiscopic matching reduces a lot of noise in texture-less areas,
the occlusion parts, and reflective regions. The reflective metal
workpiece, which is everywhere in the industrial environment,
can be reconstructed much better.

VI. CONCLUSION

In this work, we propose a monocular multiscopic vision
system for robust depth estimation. A camera mounted at the
end of a robot arm is controlled to move in the image plane and
take multiple axis-aligned images with the same parallax. We can
find pixel correspondences easily because all the captured im-
ages are axis-aligned. We extend stereo matching algorithms to
multiscopic algorithms by fusing four cost volumes between the
center image and surrounding images, with a new heuristic fu-
sion method and a neural network fusion method. The evaluation
shows that a more accurate disparity map could be obtained with
multiscopic matching compared to stereo matching. The noise is
significantly reduced on occluded areas and reflective surfaces.
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