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Accurate and robust correspondence matching is of utmost importance for various 3D computer vision tasks.
However, traditional explicit programming-based methods often struggle to handle challenging scenarios,
and deep learning-based methods require large well-labeled datasets for network training. In this article,
we introduce Epipolar-Constrained Cascade Correspondence (E3CM), a novel approach that addresses these
limitations. Unlike traditional methods, E3CM leverages pre-trained convolutional neural networks to match
correspondence, without requiring annotated data for any network training or fine-tuning. Our method utilizes
epipolar constraints to guide the matching process and incorporates a cascade structure for progressive refine-

ment of matches. We extensively evaluate the performance of E3CM through comprehensive experiments and

demonstrate its superiority over existing methods. To promote further research and facilitate reproducibility,

we make our source code publicly available at https://mias.group/E3CN/.

1. Introduction

Correspondence matching forms the foundation for a variety of
3D computer vision tasks, such as simultaneous localization and map-
ping (SLAM) [1-3], structure from motion (SfM) [4-6], dense dispar-
ity estimation and transformation [7-9], and online stereo rig self-
calibration [10,11]. Currently, popular correspondence matching algo-
rithms are classified into two categories: (i) explicit programming-based
and (ii) deep learning-based.

Explicit programming-based correspondence matching methods typ-
ically extract keypoints based on human-defined local features, such
as rotated binary robust independent elementary features (ORB) [12]
and scale-invariant feature transform (SIFT) [13], followed by making
pairs between correspondences with nearest neighboring (NN) match-
ing [14]. In contrast, recent deep learning-based methods [15-17]
learn to detect and describe local features with neural networks, result-
ing in significantly enhanced robustness in correspondence matching
when compared to explicit programming-based techniques. Further-
more, matchers based on graph neural networks [18] have been devel-
oped and utilized to predict correct matches while effectively filtering
out incorrect ones.

In scenarios involving large perspective changes or repetitive tex-
tures, explicit programming-based methods tend to exhibit subpar per-
formance. However, deep learning-based methods, as demonstrated

in [15-17], have made remarkable strides in improving matching
accuracy within such challenging scenarios. Nevertheless, it is worth
noting that the existing deep learning-based methods often rely on a
large amount of labeled training data, which typically includes precise
information regarding camera positions and poses. To address the
limitations associated with these methods, a novel approach, referred
to as deep feature matching (DFM), was introduced [19]. DFM em-
ploys a hierarchical matching strategy based on the Visual Geometry
Group (VGG) network, pre-trained on the ImageNet [20] database.
An intriguing aspect of DFM is that it does not necessitate additional
training using data annotated with correspondences, thus mitigating
the need for a large amount of labeled data. Furthermore, DFM offers
significantly improved accuracy and robustness compared to explicit
programming-based methods, surpassing even some approaches trained
with correspondences. However, it is important to note that DFM's
hierarchical correspondence matching process is based on homography
matrices [21], which imposes a limitation on its applicability. Specifi-
cally, DFM is most effective when dealing with cases that involve only
planar surfaces. In scenarios where the scene contains non-planar or
complex surfaces, the performance of DFM may be compromised. The
reliance on homography matrices can lead to suboptimal performance
in more intricate stereoscopic scenes, especially indoor scenes with
short sight distances.
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Fig. 1. Our proposed E3CM algorithm can be applied to various 3D computer vision applications, including: (a) keypoint matching, (b) cross-modal correspondence matching, and

(c) online stereo rig self-calibration.

Hence in this paper, we introduce Epipolar-Constrained

Cascade Correspondence Matching (E3CM), a plug-and-play solution
designed specifically for stereo rigs. Our method leverages feature
maps derived from pre-trained backbones (on the ImageNet database),
incorporating a cascade outlier rejection module that relies on pose
estimation and epipolar constraints. This combination of techniques
enables E3CM to effectively handle the typical and prevalent scenarios
encountered in real-world stereoscopic scenes. The matching process
begins from the final layer of multiple selected feature maps. We
utilize the obtained matches to estimate the camera’s pose. Using the
estimated pose, we then apply the epipolar constraint to eliminate
outliers in the previous layer. Subsequently, a new pose is estimated
based on the matches after outlier removal. This iterative process
continues until reaching the first layer, gradually enhancing the pose
estimation accuracy and increasing the number of correct matches.
Additionally, we extend the utilization of pre-trained backbones, en-
abling a comprehensive comparison among various backbones. To
further enhance the reliability of matches within the feature maps,
we introduce a novel confidence score, which effectively decreases the
probability of incorrectly estimating camera poses, further enhancing
the overall performance of E3CM. As depicted in Fig. 1, E3CM can be
effectively utilized for cross-modal correspondence matching as well as
various 3D computer vision tasks, exemplified with online stereo rig
self-calibration in this paper.

The structure of the remaining paper is as follows: Section 2 pro-
vides an overview of existing works related to correspondence match-
ing, outlining the advancements and limitations in the field. Section 3
presents the details of our proposed E3CM algorithm, explaining the
key components and techniques employed. The experimental results for
performance evaluation are illustrated in Section 4. Section 5 delves
into a comprehensive discussion of the applicability of our work, ad-
dressing its potential applications and limitations. Finally, Section 6
serves as a summary of the paper, highlighting the key findings and
contributions.

2. Related work

Correspondence matching is a crucial task in 3D computer vision
applications, such as visual odometry, image stitching, and online
stereo rig self-calibration. Traditional explicit programming-based cor-
respondence matching approaches [12,22-24] are typically based on
hand-crafted techniques. These approaches primarily rely on local gra-
dients, local corners, and local blob features to detect and describe
keypoints. However, they often struggle to perform well in low-texture
scenes, which makes them less reliable for downstream applications.

Recent advancements in deep learning-based approaches for key-
point detection, description, and matching have demonstrated supe-
rior accuracy and robustness compared to traditional methods. Super-
Point [15] is a notable method in the field of keypoint detection and
description. It is a self-supervised detector-descriptor framework that

initially introduces a detector referred to as MagicPoint using synthetic
images and then trains a descriptor by generating random homogra-
phy matrices as ground truth. This training strategy has been widely
adopted in many other works. Another deep learning-based method,
D2-Net [16], is a trainable convolutional neural network (CNN) that
performs joint detection and description of local features. It extracts
keypoints by computing the maximum values on a feature map that is
four times smaller than the source image. However, D2-Net prioritizes
repeatability, which leads to reduced matching performance in regions
with high texture repetition. In response to this limitation, R2D2 [17]
builds upon D2-Net by emphasizing the reliability of feature points.

While NN matching has been widely utilized in the matching stage,
it often overlooks the assignment structure and disregards visual infor-
mation. SuperGlue [18] presents a novel approach to tackle this issue.
It leverages a graph neural network (GNN) with an attention mecha-
nism to integrate positional information and keypoint descriptions, and
computes the correspondences using the Sinkhorn algorithm [25,26].

In addition to the traditional two-stage pipeline consisting of both
a detector and descriptor, several existing works have adopted end-
to-end frameworks for correspondence matching. Neighborhood con-
sensus networks (NCNet) [27] were proposed to match dense corre-
spondences without the need for a separate feature detector. However,
due to intensive correlation score computation on down-scaled fea-
ture maps, NCNet’s performance in camera pose estimation tasks is
suboptimal. To address this limitation, efficient neighborhood consen-
sus network via submanifold sparse convolutions (SparseNCNet) [28]
employs a sparse representation of the correlation tensor by storing
a portion of the scores and replacing dense 4D convolutions with
sparse convolutions. Densely connected recurrent convolutional neural
network (DRC-Net) [29] follows SparseNCNet and introduces a hier-
archical framework to generate dense matches with higher accuracy.
An epipolar-guided pixel-level correspondence matching approach, re-
ferred to as Patch2pix [30], leverages pre-trained backbones to extract
potential patch-level matches and refines the matches to pixel-level
accuracy using two-stage regressors. Another detector-free framework,
local feature matching with Transformers (LoFTR) [31], builds upon
the Transformer network and achieves superior performance compared
to SuperPoint with SuperGlue.

Furthermore, various strategies have been proposed to improve the
accuracy of matches by effectively rejecting outliers. Neural-guided
random sample consensus (RANSAC) [32] utilizes probabilities to
weigh the matches. AdaLAM [33] assumes that close matching pairs
share the same local affine transformation and rejects outliers that
deviate from the affine matrix within a neighboring area. Another
approach, presented in [34], employs neural networks to predict binary
labels for outlier identification.

The work presented in [19] can be considered as a baseline for the
task of matching keypoints using a pre-trained backbone network. It
employs a coarse-to-fine strategy to match features from deep layers
to shallow layers. Additionally, it also estimates homography matrices
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Fig. 2. The framework of our proposed epipolar-constrained cascade correspondence matching approach: (I initial deep correspondence matching; (2) epipolar-constrained cascade

refinement.

using feature maps to refine correspondences. However, their approach
is limited to cases that involve only planar surfaces. In our work, we
address this limitation by introducing the epipolar-constrained cas-
cade refinement strategy, which replaces the two-stage method and
enables matching in more general scenarios. Additionally, this paper
evaluates the effectiveness of our proposed E3CM approaches using
various popular backbone networks, including VGG [35], ResNet [36],
DenseNet [37], MobileNet [38], and GoogleNet [39]. These backbone
networks have all been pre-trained on the ImageNet database.

3. Methodology
3.1. Initial deep correspondence matching

Our proposed initial deep correspondence matching approach is
developed based on DFM [19], where a VGG-19 [35] network pre-
trained on the ImageNet database is employed to extract deep feature
maps, f* and f%, from a given pair of color images, I and I%. Based
on the hypothesis that the given image pairs can be linked by a ho-
mography matrix H®4, DFM warps the color images using an estimated
homography matrix before the second-stage correspondence matching.
However, this limits its applicability to scenarios that primarily involve
a planar surface. Additionally, DFM only demonstrates its compatibility
with pre-trained VGG models, as it requires the resolution of the first
feature map to be identical to that of the input images. To address these
limitations, we extend the applicability of the method to general cases
by removing the redundant image warping step. Moreover, we enhance
its compatibility with other state-of-the-art CNNs to broaden its usage
and accommodate different network architectures.

Correspondence matching at layer / can be solved with NN match-
ing. Let f{* and f be the feature maps (size: H/2' x W /2! x C}) at
layer | € [0, L - 1] extracted from a given pair of images I and I?
(resolution: H x W pixels). Given a pair of points p;‘ = (h?; w;‘) in f}!
and p? = (h?: wP)in £, where 0 < "* < H/2' and 0 < w]"® < W /2!,
we measure t_he distance o between their representatlons f{p”‘} and
e(pf) of size: C; x 1 as follows:

d(p.pP) =1-d(c(pl). c(pP). (6}
where

C(PA}T[.(‘DB
®(c(p).c(pf)) = ()
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Fig. 3. Confidence score computation.

is the cosine distance between f{p;"} and f{pf). A map D, (size:
H /2! x W /2! x (H /2! x W /2")) storing the measured cosine distances
between all possible matches can thus be obtained. Given p;", if the
ratio of its minimum distance (corresponding to P, B) versus its second-
minimum distance (corresponding to ij) is lower than the pre-set
threshold (empirically set to 0.9), (p;l,pf ) are considered as a pair of
satisfactorily matched correspondences.

Compared to the traditional approaches that determine correspon-
dences by detecting, describing, and matching local visual features via
explicit programming, our proposed CNN-based approach, on the other
hand, can directly perform correspondence matching on deep hierar-
chical feature maps. One of the most representative characteristics of
CNNs is that the feature maps at shallow layers have higher resolutions
and smaller receptive fields, while the feature maps at deeper layers
have lower resolutions and larger receptive fields. Therefore, more
confident but fewer correspondences can be obtained when it comes to
the deeper layers of the CNNs. Based on this important characteristic,
we develop an epipolar-constrained cascade refinement strategy for
outlier rejection, as presented in the following subsection.

3.2. Epipolar-constrained cascade refinement

As illustrated in Fig. 3, given a pair of matched points p;" and pf" s
respectively in the feature maps f;" and f% 5 they correspond to two

patches Q' = (g 2121 04 of =(q® }r1 Hl,zu of size 2! x2' in the

1j =0, j=0
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original images I and I®. We define a confidence score

=3

3L

to measure the reliability of the matched image patches Qf =

2l —1,2 Al -1 Al _ 12_]
{qll}f =0=0 andQ{ {q iJ}r —0.j=0

between g, and q , measured using the feature maps at the shallowest
layer,' m;; = {0, I] is determined by NN matching (a good match
corresponds to 1, while a bad match corresponds to 0).

Since the camera pose between I and I can be estimated using
at least eight pairs of matched correspondences, we choose eight pairs
of image patches with the highest confidence scores to compute the
fundamental matrix F, with respect to the /th layer, where the cen-
tering point of each desired image patch is used in the eight-point
algorithm [40]. The fundamental matrix F, estimated using f ;" and
I IB is used to reject outliers (not satisfying the epipolar constraint)
for correspondence matching using f ;"_ , and f f;]. In this paper, the
Sampson distance [40]

T 2
()" Fipp')
Ppp pt = 2 P T 52 — @
(Fipl)) + (Fiplt)s + (F/pf )+ (F[p});

is used to determine inliers and outliers, where (F p"‘}i and (F pB)i
represent the square of the kth entry of the vector Fp* and Fp?%,
respectively. As illustrated in Fig. 2, such an outlier rejection algorithm
performs iteratively from the deepest layer to the shallowest layer.

(3)

_~| E

» where d, ; represents the distance

4. Experiments

4.1. Image matching

We first conduct experiments on the HPatches dataset [44] to
evaluate the performance of our correspondence matching method. The
dataset consists of two main parts: ‘Viewpoint’ and ‘Illumination’.

As shown in Fig. 4, our method using DenseNet161 as the backbone
outperforms SuperPoint+SuperGlue (trained with correspondences) un-
der low threshold values in all three situations: ‘Overall’, ‘Illumination’,
and ‘Viewpoint’. While our method may not achieve the best perfor-
mance in the ‘Illumination’ scenario, it excels in another two situations,
particularly in the ‘Viewpoint’ scenario. Additionally, our method pro-
duces a significantly higher number of matches compared to other
methods, resulting in higher mean matching accuracy (MMA) scores.

1 An image might have to be resampled so that its resolution is identical
to that of the feature map at the shallowest layer.

We also evaluate the performance of our proposed method with re-
spect to different backbones, including VGG19, DenseNetl61,
ResNet152, MobileNet-Large, and GoogleNet. Among these backbones,
DenseNetl161 achieved the best performance. To ensure a fair com-
parison with DFM, we use VGG19 as the backbone for the following
experiments.

We analyze the network structures and speculated about possible
reasons for the observed performance differences. ResNet, with its
residual network structure, may hinder the flow of information between
layers, leading to the loss of low-dimensional feature information,
which is not ideal for using feature map channels directly as descriptors
for feature matching. As for MobileNet-Large and GoogleNet, their
lighter network structures inherently result in a loss of performance
compared to more complex networks.

4.2. Homography matrix estimation

In the evaluation on the HPatches dataset, we estimate the homog-
raphy matrix using our proposed E3CM method and compare it with the
ground-truth homography matrix provided by the dataset. We select the
four corners of the image and project them using both the ground-truth
and estimated homography matrices. The average distance between the
projected corner points is then calculated, and we evaluate the method
using thresholds of (1, 3, 5). This allows us to determine the percentage
of image pairs that fall below each threshold.

As shown in Table 1, while our E3CM method may not perform
as well as the state-of-the-art methods, it outperforms many methods
that require training with correspondences. Furthermore, our method
achieves the best performance in homography matrix estimation among
the plug-and-play and training-free methods.

4.3. Pose estimation

We also evaluate our proposed method on the MegaDepth dataset
[45] in terms of pose estimation accuracy. MegaDepth consists of
one million internet images from 196 different outdoor scenes and
provides ground-truth poses for each image. In addition, it provides
sparse reconstructions from COLMAP [4] and depth maps computed
via multi-view stereo approaches.

Following the setup of DISK [46] and LoFTR, we specifically focus
on the “Sacre Coeur” and “St. Peter’s Square” scenes for testing. From
these scenes, we select the same 1500 image pairs as LoFTR for a
fair comparison. We estimate the pose using the computed matches
by calculating the essential matrix. The pose error is then evaluated
by calculating the area under the curve (AUC) of the pose error at
thresholds of 5°, 10°, and 20°. The pose error is defined as the max-
imum angular error in rotation and translation. Although AUC of



C. Zhou et al.

Table 1

Accuracy of Homography Matrix Estimation on the HPatches dataset. The table presents the percentages of correctly estimated homographies

with average corner error distances below 1/3/5 pixels.

Category Method Homography estimation accuracy
<lpx <3px <5px
Training-free SIFT [13] + NN [14] 0.36 0.76 0.85
NCNet [27] 0.48 0.61 0.71
LIFT [41] 0.39 0.73 0.78
R2D2 [17] + NN [14] 0.47 0.78 0.83
DRC-Net [29] 0.46 0.66 0.77
Fully supervised SOSNet [42] 0.52 0.81 0.86
MAGSAC [43] 0.51 0.79 0.84
Pacth2pix [30] 0.51 0.79 0.86
SuperPoint [15] + SuperGlue [18] 0.53 0.84 0.90
LoFTR [31] 0.66 0.86 0.92
Plug-and-nla DFM [19] 0.41 0.74 0.86
gand-play E3CM (Ours) 0.49 078 0.88

Table 2

Evaluation on MegaDepth: The table presents the percentages of correctly estimated poses with pose errors below 5/10/20 degrees. ‘P’ refers

to the matching precision.

Category Method Pose estimation AUC P
@5° @lo° @20°
Training-free SIFT [13] + NN [14] 4.78 10.71 20.44 17.19
NCNet [27] 4.82 11.31 22.96 54.85
LIFT [41] 6.03 13.71 27.96 39.97
R2D2 [17] + NN [14] 35.07 52.83 68.03 81.33
DRC-Net [29] 31.18 47.81 62.80 85.72
Fully supervised SOSNet [42] 40.16 56.45 72.83 82.47
MAGSAC [43] 43.98 55.74 68.18 81.03
Patch2pix [30] 43.32 58.34 70.27 83.06
SuperPoint [15] + SuperGlue [18] 42.28 62.36 77.86 93.34
LoFTR [31] 52.80 69.19 81.18 97.18
Plug-and-nla DFM [19] 35.17 50.64 61.12 77.19
grand-play E3CM(ours) 39.85 54.11 65.86 91.14

Table 3

Evaluation on YFCC100M: The table presents the percentages of correctly estimated poses with pose errors below 5/10/20 degrees. ‘P’ refers

to the matching precision in this context.

Category Method Pose estimation AUC P
@5” @lo® @20°
Training-free SIFT [13] + NN [14] 4.67 12.04 24.33 12.04
NCNet [27] 2.40 7.61 17.10 35.56
LIFT [41] 10.67 21.19 31.96 17.01
R2D2 [17] + NN [14] 18.49 35.73 54.80 68.66
DRC-Net [29] 20.06 38.16 57.02 62.04
Fully supervised SOSNet [42] 21.12 41.80 56.96 68.70
MAGSAC [43] 23.87 42.97 60.31 75.71
Patch2pix [30] 26.25 43.23 59.75 72.89
SuperPoint [15] + SuperGlue [18] 34.18 50.32 64.16 84.90
LoFTR [31] 37.71 54.69 67.00 87.08
Plug-and-nla DFM [19] 15.30 28.57 42,91 61.68
grand-play E3CM(ours) 17.63 31.07 45.51 76.61

pose error is influenced by RANSAC, which can discard mismatches
and estimate the correct pose, it does not provide a comprehensive
evaluation of the matching method. Therefore, we also calculate the
matching precision (following SuperGlue [18]) as another evaluation
metric for correspondence matching.

The evaluation on the YFCC100M dataset follows a similar approach
to that on MegaDepth. We select the same image pairs from YFCC100M
as used in SuperGlue [18] to ensure a fair comparison. We compute the
AUC of pose error with thresholds of 5°, 10°, and 20° and also obtain
the matching precision.

As shown in Tables 2 and 3, E3CM demonstrates advantages in pose
estimation compared to traditional hand-crafted methods and some
methods that require training with correspondences. Additionally, our
method effectively rejects outliers and achieves high matching preci-
sion. As depicted in Fig. 5, the matches in the right column have a

much higher matching accuracy rate compared to the matches in the
left column, even though both columns have similar pose estimations.
While matching accuracy may not be critical in pose estimation, it plays
a significant role in other computer vision tasks that rely on correspon-
dence matching, such as stereo rig self-calibration, as discussed in the
following subsection.

4.4. Stereo rig self-calibration

Among the various computer stereo vision tasks that require cor-
respondence matching, stereo rig self-calibration is of particular im-
portance. Stereo rig self-calibration heavily relies on highly accurate
correspondence matching. Even a small portion of bad matches can lead
to significant deviations in the calibration results. The stereo rig self-
calibration pipeline [10] typically involves correspondence matching in
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Fig. 5. Experimental results on the MegaDepth dataset. Green lines indicate good matches with a Sampson distance below 1x 107, while red lines represent bad matches. The
images on the left column show the results of direct matching on feature maps without using E3CM, while the images on the right column show the matching results using E3CM.

) : ~ ' — : ~
[ H — = s
g T : g ’ I g -
R e i 5 . e
L 1 5 o B 8 Ll f %
R2D2  Superpoint DFM  E3CM R2D2  Superpoint DFM  E3CM R2D2  Superpoint DFM E3CM
+Superglus +Superglue +Superglue
tx ty tz
= = = o
E
£ | g g . |
£ B, o T
é ) . ' E . [ u_é ¥ —_— i
- ; o+ F oI
B . e E ' R .-
& 51 m
R2D2  Superpoint DFM E3CM R2D2  Superpoint  DFM E3CM R2D2  Superpoint DFM E3CM
+Superglue +Superglue +Superglue
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Fig. 7. Checkerboard’s average reprojection errors, obtained using different correspon-
dence matching methods.

the first stage and the optimization of extrinsics based on the matches
and epipolar constraints. Hence, we can evaluate the accuracy of front-
end correspondence matching methods based on the results of the
back-end stereo rig self-calibration.

Following [10], we replace the corner detector [48] and BRIEF [49]
with other keypoint extraction and matching methods based on deep
neural networks. Additionally, we perform stereo rig self-calibration in
several scenes. To enhance calibration stability, we input all matches
within ten frames into the optimizer in our experiments. The calibration
results are presented as boxplots, a common evaluation approach in
the calibration domain, as shown in Fig. 6. Our method exhibits fewer
outliers and smaller ranges in the calibration results compared to other
methods, indicating that our plug-and-play method is more accurate
and robust, even outperforming some fully supervised approaches.

Stereo rig calibration is a critical step in terms of achieving accurate
3D measurements [50,51]. Therefore, we further compute the repro-
jection error of checkerboard pattern corners with respect to different
calibration results obtained using 1, 3, 5, and 10 frames, respectively.
We compare the performance of several state-of-the-art methods, in-
cluding our proposed E3CM and SuperPoint+SuperGlue. The results
shown in Fig. 7 suggest that E3CM outperforms SuperPoint+SuperGlue
in all calibration set-ups, achieving a significantly lower reprojection
error.

To provide a more intuitive evaluation, we generate dense disparity
maps using RAFT-Stereo [47], as shown in Fig. 8. We generate disparity
maps for both rectified and unrectified stereo image pairs. It is evident
from Fig. 8 that the unrectified disparity maps yield erroneous depth
estimations, while the well-rectified disparity maps obtained using our
proposed correspondence matching method accurately reflect the depth
relationships between different objects in the scenes.

5. Discussion

Our method is well-suited for stereo vision systems. However, for
monocular vision systems that require correspondence matching be-
tween consecutive frames, the accuracy of our method may be signifi-
cantly affected if there are dynamic objects in the scene. This is because
our method relies on the assumption of a stationary background with
features, such as a building, while a moving object is present. In such
cases, our method may estimate incorrect poses during the epipolar-
constrained cascade refinement. Specifically, in monocular cameras, if
points from both stationary and dynamic objects are selected simultane-
ously during pose estimation, the relative pose estimation between the

former and latter frames of the monocular camera will be erroneous.
This discrepancy arises because monocular camera pose estimation
computes the camera-to-scene relationship, and when the scene con-
tains moving objects, it introduces changes that invalidate the pose
estimation process. In contrast, stereo vision systems have relatively
static cameras with respect to each other. Therefore, this problem does
not arise in stereo vision systems since the pose estimation is computed
from camera to camera and is independent of the scene. Although our
method is somewhat limited to stereo vision systems, stereo vision
remains a critical aspect of computer vision, and our method can still
find broad applications in this context.

The epipolar-constrained cascade refinement method is effective for
pose estimation and outlier rejection. When matching directly in the
source image, the limited feature information per pixel often leads
to numerous mismatches with similar features but different spatial
locations. Consequently, using these matches directly for pose esti-
mation can result in incorrect pose estimations. Moreover, removing
outliers based on these estimated poses would propagate incorrect
matches further. In contrast, matches in the deep feature map, which
are convoluted from patches in the source image, contain more se-
mantic information [52]. As a result, the probability of mismatches
is significantly reduced compared to direct matching in the source
image. Although the pose estimation based on these points, which
correspond to patches in the source image, may not be highly accurate,
it is generally reasonable and relatively correct. As the number of
layers decreases, the coordinates of the points corresponding to the
patches in the source image become more accurate. Consequently, the
pose estimation based on these points becomes more precise, and the
matches obtained by removing outliers based on the estimated pose also
improve in accuracy. In essence, our proposed method ensures that the
initial pose estimation is reasonable and progressively becomes more
accurate. Therefore, outlier rejection based on the initial pose estima-
tion is effective and accurate. Additionally, estimating a pose during
the epipolar-constrained cascade refinement requires a minimum of
eight pairs of matched points. However, in our experiments, we rarely
encountered cases with fewer than eight pairs.

We compute the fundamental matrix by mapping the points in
the feature maps to the corresponding pixels in the source image.
This process does not require camera intrinsics. However, if camera
intrinsics are available, we can directly calculate the essential matrix in
the feature maps without the need for mapping the points to the source
image pixels. In our experiments, we observe a slight improvement
in accuracy using this approach, although the improvement is not
significant. The reason is that mapping the points in the feature maps
to the pixels in the source image and then computing the fundamental
matrix is equivalent to pose estimation based solely on the pixels, which
ignores the information from other pixels in the patch. On the other
hand, computing the essential matrix directly in the feature maps is
equivalent to pose estimation based on the patches in the source image,
which includes more information and can result in improved accuracy.

6. Conclusion

In this paper, we introduced a new plug-and-play correspondence
matching method that leverages an epipolar-constrained cascade re-
finement strategy. Our approach is compatible with various pre-trained
backbone networks, allowing for flexibility in choosing the most suit-
able backbone for the task. We argue that pre-trained networks from
other vision tasks can be effectively utilized in the correspondence
matching task, often achieving comparable or even superior perfor-
mance compared to fully supervised methods specifically designed for
correspondence matching. By leveraging the representation learning
capabilities of pre-trained networks, we can leverage the rich knowl-
edge acquired from large-scale datasets, enabling efficient and accurate
correspondence matching. Through our experiments and evaluations,
we have demonstrated the effectiveness of our approach and its ability
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(a)

(b)

(c)

Fig. 8. Stereo rig self-calibration results: (a) reference RGB images; (b) disparity images for the unrectified stereo image pairs; (¢) disparity images for the rectified stereo image
pairs which are obtained via stereo rig self-calibration. The disparity maps are computed using RAFT-Stereo [47].

to leverage pre-trained networks for correspondence matching tasks.
We believe that our method opens up new possibilities for utilizing pre-
trained networks in a broader range of vision tasks, offering improved
performance and efficiency.

CRediT authorship contribution statement

Chenbo Zhou: Writing - original draft, Validation, Formal anal-
ysis, Visualization, Software, Methodology, Investigation, Conceptual-
ization, Data curation. Shuai Su: Validation, Formal analysis, Visu-
alization, Software, Methodology, Investigation, Data curation. Qijun
Chen: Methodology, Writing — review & editing, Funding acquisition,
Resources, Supervision, Project administration. Rui Fan: Methodology,
Writing - review & editing, Resources, Supervision, Project adminis-
tration, Data curation, Formal analysis, Validation, Software, Funding
acquisition.

Declaration of competing interest

The authors declare the following financial interests/personal rela-
tionships which may be considered as potential competing interests:
Qijun Chen reports financial support was provided by Ministry of
Science and Technology. Qijun Chen reports financial support was
provided by National Natural Science Foundation of China. Rui Fan
reports financial support was provided by Science and Technology
Commission of Shanghai Municipality.

Data availability
The data that has been used is confidential.

References

[1] J. Engel, et al., Direct sparse odometry, IEEE Trans. Pattern Anal. Mach. Intell.
40 (3) (2017) 611-625.

[2] R. Mur-Artal, et al., ORB-SLAM: A versatile and accurate monocular SLAM
system, IEEE Trans. Robot. 31 (5) (2015) 1147-1163.

[3] Y. Yu, et al, Accurate and robust visual localization system in large-scale
appearance-changing environments, IEEE/ASME Trans. Mechatronics 27 (6)
(2022) 5222-5232.

[4] J.L. Schonberger, J.-M. Frahm, Structure-from-motion revisited, in: Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
2016, pp. 4104-4113.

(5]

(6]
(7]
(8]

(9]

[10]

1]

[12]

[13]
[14]

[15]

(18]

(17]

18]

[19]

[20]

[21]

[22]

(23]

[24]

C. Wu, Towards linear-time incremental structure from motion, in: 2013
International Conference on 3D Vision (3DV), IEEE, 2013, pp. 127-134.

R. Fan, et al., Autonomous Driving Perception, Springer, 2023.

R. Fan, et al, Pothole detection based on disparity transformation and road
surface modeling, IEEE Trans. Image Process. 29 (2019) 897-908.

R. Fan, et al., Graph attention layer evolves semantic segmentation for road
pothole detection: A benchmark and algorithms, IEEE Trans. Image Process. 30
(2021) 8144-8154.

R. Fan, M. Liu, Road damage detection based on unsupervised disparity map
segmentation, IEEE Trans. Intell. Transp. Syst. 21 (11) (2020) 4906-4911.

Y. Ling, 5. Shen, High-precision online markerless stereo extrinsic calibration,
in: 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), IEEE, 2016, pp. 1771-1778.

J. Wu, et al, Simultaneous hand-eye/robot-world/camera-IMU calibration,
IEEE/ASME Trans. Mechatronics 27 (4) (2021) 2278-2289.

E. Rublee, et al.,, ORB: An efficient alternative to SIFT or SURF, in:
2011 International Conference on Computer Vision (ICCV), IEEE, 2011, pp.
2564-2571.

D.G. Lowe, Distinctive image features from scale-invariant keypoints, Int. J.
Comput. Vis. 60 (2) (2004) 91-110.

M. Muja, D.G. Lowe, Scalable nearest neighbor algorithms for high dimensional
data, IEEE Trans. Pattern Anal. Mach. Intell. 36 (11) (2014) 2227-2240.

D. DeTone, et al, Superpoint: Self-supervised interest point detection and
deseription, in: Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition Workshops (CVPRW), 2018, pp. 224-236.

M. Dusmanu, et al., D2-Net: A trainable CNN for joint detection and description
of local features, in: Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), 2019.

J. Revaud, et al., R2D2: repeatable and reliable detector and descriptor, in: Pro-
ceedings of the 33rd International Conference on Neural Information Processing
Systems (NeurIPS), 2019, pp. 12414-12424.

P.-E. Sarlin, et al., Superglue: Learning feature matching with graph neural
networks, in: Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), 2020, pp. 4938-4947.

U. Efe, et al., DFM: A performance baseline for deep feature matching, in:
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition Workshops (CVPRW), 2021, pp. 4284-4293.

A. Krizhevsky, et al., Imagenet classification with deep convolutional neural
networks, in: Advances in Neural Information Processing Systems (NeurIPS), Vol.
25, 2012,

R. Fan, et al., Learning collision-free space detection from stereo images: Homog-
raphy matrix brings better data augmentation, IEEE/ASME Trans. Mechatronics
27 (1) (2022) 225-233.

D.G. Lowe, Object recognition from local scale-invariant features, in: Proceedings
of the Seventh IEEE International Conference on Computer Vision (ICCV), Vol.
2, IEEE, 1999, pp. 1150-1157.

H. Bay, et al., SURF: Speeded up robust features, in: European Conference on
Computer Vision (ECCV), Springer, 2006, pp. 404-417.

P.F. Alcantarilla, T. Solutions, Fast explicit diffusion for accelerated features in
nonlinear scale spaces, IEEE Trans. Pattern Anal. Mach. Intell. 34 (7) (2011)
1281-1298.



C. Zhou et al.

[25]
[26]
[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]
[39]
[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]
[49]

[50]

M. Cuturi, Sinkhorn distances: Lightspeed computation of optimal transport, in:
Advances in Neural Information Processing Systems (NeurIPS), Vol. 26, 2013.
R. Sinkhorn, P. Knopp, Concerning nonnegative matrices and doubly stochastic
matrices, Pacific J. Math. 21 (2) (1967) 343-348.

I. Rocco, et al, Neighbourhood consensus networks, in: Advances in Neural
Information Processing Systems (NeurIPS), Vol. 31, 2018.

I. Rocco, et al., Efficient neighbourhood consensus networks via submanifold
sparse convolutions, in: European Conference on Computer Vision (ECCV),
Springer, 2020, pp. 605-621.

X. Li, et al,, Dual-resolution correspondence networks, in: Advances in Neural
Information Processing Systems (NeurIPS), Vol. 33, 2020, pp. 17346-17357.

Q. Zhou, et al, Patch2Pix: Epipolar-guided pixel-level correspondences, in:
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), 2021, pp. 4669-4678.

J. Sun, et al., LoFTR: Detector-free local feature matching with transformers,
in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), 2021, pp. 8922-8931.

E. Brachmann, C. Rother, Neural-guided RANSAC: Learning where to sample
model hypotheses, in: Proceedings of the IEEE/CVF International Conference on
Computer Vision (ICCV), 2019, pp. 4322-4331.

L. Cavalli, et al., Adalam: Revisiting handerafted outlier detection, 2020, arXiv
preprint arXiv:2006.04250.

K.M. Yi, et al, Learning to find good correspondences, in: Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2018, pp.
2666-2674.

K. Simonyan, A. Zisserman, Very deep convolutional networks for large-scale
image recognition, in: 3rd International Conference on Learning Representations
(ICLR), Computational and Biological Learning Society, 2015.

K. He, et al., Deep residual learning for image recognition, in: Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition (CVFR), 2016,
pp. 770-778.

G. Huang, et al., Densely connected convolutional networks, in: Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition (CVFR), 2017,
pp. 4700-4708.

A.G. Howard, et al.,, Mobilenets: Efficient convolutional neural networks for
mobile vision applications, 2017, arXiv preprint arXiv:1704.04861.

C. Szegedy, et al., Going deeper with convolutions, in: Proceedings of the IEEE
Conference on Computer Vision and Pattem Recognition (CVPR), 2015, pp. 1-9.
R. Hartley, A. Zisserman, Multiple View Geometry in Computer Vision,
Cambridge University Press, 2003.

K.M. Yi, et al., Lift: Learned invariant feature transform, in: Computer Vision—
ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, October
11-14, 2016, Proceedings, Part VI 14, Springer, 2016, pp. 467-483.

Y. Tian, et al., SosNet: Second order similarity regularization for local descriptor
learning, in: Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), 2019, pp. 11016-11025.

D. Barath, et al.,, MAGSAC: Marginalizing sample consensus, in: Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),
2019, pp. 10197-10205.

V. Balntas, et al., HPatches: A benchmark and evaluation of handerafted and
learned local descriptors, in: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2017, pp. 5173-5182.

Z. Li, N. Snavely, MegaDepth: Learning single-view depth prediction from
internet photos, in: Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), 2018, pp. 2041-2050.

M. Tyszkiewicz, et al, DISK: Learning local features with policy gradient, in:
Advances in Neural Information Processing Systems (NeurIPS), Vol. 33, 2020,
pp. 14254-14265.

L. Lipson, et al., RAFT-Stereo: Multilevel recurrent field transforms for stereo
matching, in: 2021 International Conference on 3D Vision (3DV), IEEE, 2021,
pp. 218-227.

J. Shi, et al., Good features to track, in: 1994 Proceedings of IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), IEEE, 1994, pp. 593-600.
M. Calonder, et al., BRIEF: Binary robust independent elementary features, in:
European Conference on Computer Vision (ECCV), Springer, 2010, pp. 778-792.
R. Fan, et al., Road surface 3D reconstruction based on dense subpixel disparity
map estimation, IEEE Trans. Image Process. 27 (6) (2018) 3025-3035.

[51]

[52]

R. Fan, et al., Rethinking road surface 3-D reconstruction and pothole detection:
From perspective transformation to disparity map segmentation, IEEE Trans.
Cybern. 52 (7) (2022) 5799-5808.

R. Fan, et al., SNE-RoadSeg: Incorporating surface normal information into
semantic segmentation for accurate freespace detection, in: European Conference
on Computer Vision (ECCV), Springer, 2020, pp. 340-356.

Chenbo Zhou is currently an undergraduate student
at Tongji University. His research interests include
correspondence matching and stereo vision.

Shuai Su is currently a Ph.D. candidate with the Robotics
and Artificial Intelligence Laboratory at Tongji University.
His research interests include correspondence matching and
simultaneous localization and mapping.

Qijun Chen received the B.S. degree in automation from
Huazhong University of Science and Technology, Wuhan,
China, in 1987, the M.S. degree in information and control
engineering from Xi'an Jiaotong University, Xi'an, China, in
1990, and the Ph.D. degree in control theory and control
engineering from Tongji University, Shanghai, China, in
1999. He is currently a Full Professor in the College of
Electronics and Information Engineering, Tongji University,
Shanghai, China. His research interests include robotics
control, environmental perception, and understanding of
mobile robots and bicinspired control.

Rui Fan received the B.Eng. degree in Automation from the
Harbin Institute of Technology in 2015 and the Ph.D. degree
(supervisors: Prof. John G. Rarity and Prof. Naim Dahnoun)
in Electrical and Electronic Engineering from the University
of Bristol in 2018, He worked as a Research Associate
(supervisor: Prof. Ming Liu) at the Hong Kong University of
Science and Technology from 2018 to 2020 and a Postdoc-
toral Scholar-Employee (supervisors: Prof. Linda M. Zangwill
and Prof. David J. Kriegman) at the University of California
San Diego between 2020 and 2021. Rui began his faculty
career as a Full Research Professor with the College of
Electronics & Information Engineering at Tongji University
in 2021, and was then promoted to a Full Professor in
the same college, as well as at the Shanghai Research
Institute for Intelligent Autonomous Systems in 2022. Rui
served as an associate editor of ICRA’23 and IR0S'23, and
as a senior program committee member of AAAI'23/24.
Rui is the general chair of the AVVision community and
organized several impactful workshops and special sessions
in conjunction with WACV'21, ICIP'21,/22/23, ICCV'21, and
ECCV'22. Rui was named in Stanford University List of Top
2% Scientists Worldwide in 2022. His research interests
include computer vision, deep learning, and robotics.



