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IMPORTANCE Automated deep learning (DL) analyses of fundus photographs potentially can
reduce the cost and improve the efficiency of reading center assessment of end points in
clinical trials.

OBJECTIVE To investigate the diagnostic accuracy of DL algorithms trained on fundus
photographs from the Ocular Hypertension Treatment Study (OHTS) to detect primary
open-angle glaucoma (POAG).

DESIGN, SETTING, AND PARTICIPANTS In this diagnostic study, 1636 OHTS participants from 22
sites with a mean (range) follow-up of 10.7 (0-14.3) years. A total of 66 715 photographs from
3272 eyes were used to train and test a ResNet-50 model to detect the OHTS Endpoint
Committee POAG determination based on optic disc (287 eyes, 3502 photographs) and/or
visual field (198 eyes, 2300 visual fields) changes. Three independent test sets were used
to evaluate the generalizability of the model.

MAIN OUTCOMES AND MEASURES Areas under the receiver operating characteristic curve
(AUROC) and sensitivities at fixed specificities were calculated to compare model
performance. Evaluation of false-positive rates was used to determine whether the DL model
detected POAG before the OHTS Endpoint Committee POAG determination.

RESULTS A total of 1147 participants were included in the training set (661 [57.6%] female;
mean age, 57.2 years; 95% CI, 56.6-57.8), 167 in the validation set (97 [58.1%] female; mean
age, 57.1 years; 95% CI, 55.6-58.7), and 322 in the test set (173 [53.7%] female; mean age,
57.2 years; 95% CI, 56.1-58.2). The DL model achieved an AUROC of 0.88 (95% CI, 0.82-0.92)
for the OHTS Endpoint Committee determination of optic disc or VF changes. For the OHTS
end points based on optic disc changes or visual field changes, AUROCs were 0.91 (95% CI,
0.88-0.94) and 0.86 (95% CI, 0.76-0.93), respectively. False-positive rates (at 90%
specificity) were higher in photographs of eyes that later developed POAG by disc or visual
field (27.5% [56 of 204]) compared with eyes that did not develop POAG (11.4% [50 of 440])
during follow-up. The diagnostic accuracy of the DL model developed on the optic disc end
point applied to 3 independent data sets was lower, with AUROCs ranging from 0.74 (95% CI,
0.70-0.77) to 0.79 (95% CI, 0.78-0.81).

CONCLUSIONS AND RELEVANCE The model’s high diagnostic accuracy using OHTS
photographs suggests that DL has the potential to standardize and automate POAG
determination for clinical trials and management. In addition, the higher false-positive rate in
early photographs of eyes that later developed POAG suggests that DL models detected
POAG in some eyes earlier than the OHTS Endpoint Committee, reflecting the OHTS design
that emphasized a high specificity for POAG determination by requiring a clinically significant
change from baseline.
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I n clinical trials assessing the efficacy of disease treat-
ments, such as medical or surgical intervention, the most
important consideration arguably is the primary end point.

The primary end point serves as an indicator of clinical trial
success as it measures efficacy of the assessed treatment.

The Ocular Hypertension Treatment Study (OHTS)1,2 be-
gan as a randomized clinical trial designed to determine the
safety and efficacy of topical ocular hypotensive medication
in delaying or preventing the onset of primary open-angle
glaucoma (POAG) in eyes with ocular hypertension. In OHTS,
the primary end point was development of POAG in one or
both eyes, defined as reproducible, clinically significant glau-
comatous optic disc changes or reproducible glaucomatous
visual field (VF) defects.3 Assessment of optic disc and VF
changes were determined by masked readers at the indepen-
dent Optic Disc Reading Center (ODRC) and Visual Field
Reading Center (VFRC). The final POAG determination was de-
cided by a 3-member end point committee of glaucoma ex-
perts who reviewed the photographs and VFs to determine
whether observed changes were due to POAG or another
disease (eg, ischemic optic neuropathy).

The use of 2 reading centers and a masked end point com-
mittee is a demanding, laborious, and complicated task. In ad-
dition, as agreement among the OHTS Endpoint Committee
members’ assessment was required, several consensus grad-
ing sessions were necessary before a final end point was de-
termined. The 3 committee members reached unanimity
in 61% of the end points in the first round of independent re-
views, 32.2% in the second round (reviews were completed in-
dependently to resolve disagreement), and 6.8% in a final
round (a consensus conference telephone call).4 This end point
determination process was used to ensure high specificity,
which was appropriate for the OHTS but not necessarily needed
for all clinical trials.

Recent improvements in machine learning methods have
resulted in automated glaucoma detection methods that could
be useful for automating end point determination in clinical
trials.5 Specifically, machine learning end points have the po-
tential to reduce the need for manual assessment, thereby im-
proving the reproducibility of the end point determinations.
For instance, deep learning (DL) approaches, including deep
convolutional neural networks, have been used to detect glau-
coma and estimate structural and VF defects from fundus
photographs.6-13 Besides the increased consistency and po-
tential cost savings, an additional benefit of using these meth-
ods is that they provide a probability of disease output that
may be used to achieve a target sensitivity and specificity by
varying classification cutoffs. An advantage of using the OHTS
data set for DL model development to detect POAG is that it is
a large multicenter study that included a variety of cameras,
technicians, and study participants and the OHTS Endpoint
Committee definition of glaucoma.

The current report assessed automated diagnosis of POAG
by DL algorithms trained and tested on OHTS fundus stereo-
photographs. Generalizability was assessed in independent
samples from the OHTS and 3 external test sets. We hypoth-
esized that DL models trained on OHTS photographs would
successfully classify eyes as having POAG or as healthy in in-

dependent test sets at an acceptable level, suggesting that au-
tomated classification can supplant the need for multitiered
expert assessment of optic disc images in clinical trials. We also
compared results from models trained on the OHTS ODRC and
VFRC POAG assessment to describe the relative effectiveness
of each stage of OHTS photograph and VF classification to
assess the accuracy for detecting conversion to POAG in eyes
with ocular hypertension.

Methods
Data Collection
The OHTS1,2 was initiated in 1994 as the first large random-
ized clinical trial to document the safety and efficacy of topi-
cal ocular hypotensive medication in preventing or delaying
the onset of VF and/or optic nerve damage in participants with
ocular hypertension. Details of the study methods have been
reported previously.1,2 At study entry, written informed con-
sent was obtained from each participant. For this analysis, in-
stitutional review board approval was not needed because
only deidentified data were used. The current report fol-
lowed the Standards for Reporting of Diagnostic Accuracy
(STARD) reporting guideline.

The OHTS recruited 1636 participants with ocular hyper-
tension with elevated intraocular pressure from 22 sites. Each
participant was seen twice a year for Humphrey 30-2 VF test-
ing and once a year for stereoscopic optic nerve head (ONH)
photography. The demographic and clinical characteristics in-
cluded age, self-reported race and ethnicity, self-reported sex,
intraocular pressure, central corneal thickness, and refrac-
tive status. At study entry, all participants were required to have
normal-appearing ONHs based on review of stereoscopic op-
tic disc photographs and VFs within normal limits, as deter-
mined by the ODRC and VFRC, respectively. After each visit,
the ODRC compared the baseline test with the follow-up test
to determine if there was evidence of glaucomatous changes.
Specifically, if 2 consecutive sets of photographs demon-
strated change from the baseline, the case was reviewed by the
3 masked glaucoma specialist OHTS Endpoint Committee
members. Similarly, if the VFRC determined that 3 consecu-
tive sets of VFs were abnormal, then the case was reviewed by

Key Points
Question Can deep learning analysis of fundus photographs be
used to automate the determination of primary open-angle
glaucoma (POAG) end points in clinical trials?

Finding In this diagnostic study of 1636 participants in the Ocular
Hypertension Treatment Study (OHTS), deep learning models trained
and tested on 66 715 photographs achieved high diagnostic accuracy
for detecting POAG determined by the OHTS Endpoint Committee
using medical information, fundus photographs, and visual fields.

Meaning The high diagnostic accuracy of deep learning models
using OHTS photographs suggests that it has the potential to
automate end point determination and improve the efficiency of
POAG clinical trials.
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the OHTS Endpoint Committee. Each OHTS Endpoint Com-
mittee member independently reviewed the participant’s
medical history and compared baseline with follow-up pho-
tographs to determine whether the changes were clinically
significant and attributable to POAG and whether changes in
VFs were due to POAG. The advantages of using an end point
committee in the OHTS have recently been reported.4 In brief,
using an end point committee had a significant effect on the
accuracy of POAG incidence rate, with 16.3% of study partici-
pants reaching an unadjudicated all-cause end point but only
9.5% of participants developing a POAG OHTS Endpoint Com-
mittee–adjudicated end point. As treatment is unlikely to affect
a study participant without POAG, removal of these unadju-
dicated, all-cause end points led to a more accurate estimate
of the efficacy of treatment; treatment reduced the POAG-
adjudicated end point by 56% (relative risk, 0.44; 95% CI,
0.31-0.61), while it reduced all-cause end points by 33% (rela-
tive risk, 0.67; 95% CI, 0.54-0.84).4

For this report, we used OHTS photographs collected dur-
ing the OHTS randomized clinical phase 1 trial from 1994 to
2002 and the longitudinal follow-up OHTS phase 2 trial from
2002 to 2009 to determine whether DL algorithms can accu-
rately classify eyes based on optic disc changes and VF changes
identified by the ODRC, VFRC, and OHTS Endpoint Commit-
tees as the ground truth. All photographs, regardless of qual-
ity, were included. Specifically, we trained 5 DL algorithms to
identify each of the following 5 outcomes:
• OHTS Endpoint Committee determination

• Model 1: Optic disc changes attributable to POAG by End-
point Committee

• Model 2: VF changes attributable to POAG by Endpoint Com-
mittee

• Model 3: Optic disc or VF changes attributable to POAG by
Endpoint Committee

• Reading center determination
• Model 4: Optic disc changes attributable to POAG by ODRC
• Model 5: VF changes attributable to POAG by VFRC

Photographs taken on or after the initial classification of
POAG by the Endpoint Committee determinations were
included as POAG for DL models 1, 2, and 3. For the reading
center determinations, photographs taken on the visit deter-
mined by the ODRC or VFRC as POAG were considered POAG
for models 4 and 5, respectively. In contrast to the ground
truth used in the DL models for the OHTS Endpoint Commit-
tee determinations, POAG was not inferred on photographs
taken after the initial reading center determination of
change unless the eye was considered as POAG by the OHTS
Endpoint Committee.

DL Models, Training, and Selection
Details of data set preparation, including data augmentation,
are described in the eMethods and eFigure 1 in the Supple-
ment. In our experiments, a ResNet-5014 model pretrained
on the ImageNet database (Stanford Vision Lab)15 was fine-
tuned for POAG detection. As illustrated in eFigure 2 in the
Supplement, we modified the fully connected layer so that it
could output 2 scalars indicating the probability of healthy and
POAG classes, with respect to the model classifications.

The OHTS data set was divided into training, validation,
and test sets, with 85%, 5%, and 10% of participants, respec-
tively, included in each set, so that all images from a single
participant were included in the same partition. Each of the 5
models used the exact same training, validation, and test sets.

The DL model training was carried out on 2 NVIDIA
Geforce RTX 2080 Super GPUs, each with 8-GB GDDR6
memory. Because the OHTS data set is imbalanced with most
eyes not developing POAG (1299 of 1636 [79.4%]), we imple-
mented additional class weights into the loss function
(eMethods in the Supplement).

Performance Evaluation
The trained DL models were evaluated on the OHTS test set
as well as 3 additional independent test data sets of optic disc
photographs labeled as glaucoma or healthy: (1) ACRIMA,16 (2)
Large-scale Attention-Based Glaucoma (LAG),17 and (3) Diag-
nostic Innovations in Glaucoma Study (DIGS) and African
Descent and Glaucoma Evaluation Study (ADAGES).18

The ACRIMA public data set provides cropped fundus photo-
graphs. We applied the same cropping strategy to the LAG and
DIGS/ADAGES data sets that we applied to the OHTS photo-
graphs (eMethods and eFigure 1 in the Supplement). Because
these data sets are only used to test the generalizability of our
DL model, we did not apply flipping and rotation operations
to the external independent data sets.

Performance in distinguishing between healthy eyes and
eyes with glaucoma was evaluated using sensitivity, specific-
ity, precision, and area under the receiver operating character-
istic curve (AUROC). To evaluate model accuracy for detecting
early glaucoma, we conducted a subset analysis in eyes with a
VF mean deviation (MD) better than −6 dB. The AUROC scores
of different models were statistically compared using a clus-
tered bootstrap approach to address multiple images from
the same eyes.19 To help evaluate clinical utility, sensitivity at
4 fixed levels of specificity (80%, 85%, 90%, and 95%) was
evaluated. We also calculated precision (also known as positive
predictive value) at fixed specificities, which is particularly in-
formative along with recall (also known as sensitivity) in im-
balanced data sets.20 Furthermore, Grad-CAM++,21 a common
network explanation and visualization technique, was used to
help understand the model decision-making process. Com-
pared with saliency and occlusion map–based DL model visu-
alization methods, Grad-CAM++ has several advantages includ-
ing that it (1) can be used for any DL model, (2) does not require
model retraining to produce saliency maps, (3) uses softmax
scores as weights to remove the dependence on unstable gra-
dients, and (4) removes irrelevant noise to create a saliency map.

Statistical Analysis
Baseline patient-level characteristics are presented as means
with 95% CIs for continuous variables and counts with per-
centages for categorical variables. The statistical significance
of comparisons between patient-level characteristics across
training, validation, and test data sets was determined by χ2

tests for categorical variables. For eye-level characteristics,
mean and confidence interval estimates were derived from
linear mixed-effects models, with a random intercept to
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account for within-participant correlations. All P values were
2-tailed, and significance was set at P < .05. All analyses were
performed using R version 3.6.3 (The R Foundation).

Results
A total of 1147 participants were included in the training set
(661 [57.6%] female; mean age, 57.2 years; 95% CI, 56.6-57.8),
167 in the validation set (97 [58.1%] female; mean age, 57.1
years; 95% CI, 55.6-58.7), and 322 in the test set (173 [53.7%]
female; mean age, 57.2 years; 95% CI, 56.1-58.2) (Table 1). The
fundus photograph–based DL models detected conversion to
POAG with good accuracy. Specifically, the best diagnostic ac-
curacy of the DL model was achieved for the OHTS Endpoint
Committee POAG attribution based on optic disc changes
(model 1; AUROC, 0.91; 95% CI, 0.88-0.94) followed by either
optic disc or VF changes (model 3; AUROC, 0.88; 95% CI, 0.82-
0.92) and VF only change (model 2; AUROC, 0.86; 95% CI, 0.76-
0.93) (Table 2). The AUROCs of the ODRC and VFRC POAG at-
tribution by optic disc photographs and by VFs were 0.89
(95% CI, 0.85-0.92) and 0.83 (95% CI, 0.76-0.88), respec-
tively. The diagnostic accuracy of detecting early POAG (VF MD
of −6 dB or greater) also was generally high for the OHTS
Endpoint Committee and the ODRC, with AUROCs ranging
from 0.83 (95% CI, 0.70-0.91) to 0.90 (95% CI, 0.87-0.94).
Model performance was lower for the VFRC POAG determina-
tion of early glaucoma (AUROC, 0.80; 95% CI, 0.72-0.86).

To determine whether photograph quality was associ-
ated with model performance, we used an objective DL algo-

rithm to assign a quality metric in a subset of OHTS fundus
photographs.22 Including only the highest-quality images (ap-
proximately 73% of the test eyes contributing at least 1 pho-
tograph to the analysis) in a post hoc analysis, the algorithm
increased the model accuracy (AUROC) from 0.86 (95% CI,
0.76-0.93) to 0.90 (95% CI, 0.87-0.93) for model 2 (OHTS End-
point Committee determination of VF changes) and from 0.83
(95% CI, 0.76-0.88) to 0.87 (95% CI, 0.82-0.91) for model 5
(VFRC determination). No improvement was found for mod-
els 1 (OHTS Endpoint Committee determination of optic disc
changes), 3 (OHTS Endpoint Committee determination of op-
tic disc or VF changes), or 4 (ODRC determination).

We also investigated the model’s accuracy if fewer visits
were included in the test set, as is often observed in other stud-
ies. Using 3 randomly chosen visits per eye instead of using all
OHTS photographs resulted in similar findings to those ob-
tained using all photographs, with AUROCs ranging from 0.83
(95% CI, 0.75-0.89) for model 5 to 0.91 (95% CI, 0.85-0.95)
for model 1 (eTable 2 in the Supplement).

Given that the OHTS data set is imbalanced with a much
larger proportion of eyes without POAG than with POAG, it is
more likely that the model will identify an eye without POAG
as having POAG (ie, false-positives) than classifying the smaller
number of eyes with POAG as not having POAG (false-negatives).
For this reason, we also reported sensitivity (recall) and pre-
cision (positive predictive value) at fixed specificities (Table 2).
The sensitivity decreased with increasing specificity, while
precision values increased with increasing specificity.

The false-positive rates at 90% specificity were higher in
photographs of eyes with ocular hypertension acquired be-

Table 1. Characteristics of the Ocular Hypertension Treatment Study Training, Validation, and Test Sets

Characteristic

No. (%)

P valueTraining set Validation set Test set
Participants, No. 1147 167 322 NA

Eyes, No. 2294 334 644 NA

Eye visits, No. 26 313 3807 7220 NA

Mean age (95% CI), y 57.2 (56.6 to 57.8) 57.1 (55.6 to 58.7) 57.2 (56.1 to 58.2) >.99

Sex

Female 661 (57.6) 97 (58.1) 173 (53.7)
.44

Male 486 (42.4) 70 (41.9) 149 (46.3)

Self-reported race

European descent 871 (75.9) 120 (71.9) 238 (73.9)
.43

African descent 276 (24.1) 47 (28.1) 84 (26.1)

Mean baseline visual field MD
(95% CI), dB

−0.02 (−0.10 to 0.06) 0.02 (−0.20 to 0.23) −0.12 (−0.27 to 0.04) .50

Baseline photograph-based
vertical cup-disc ratio, mean
(95% CI)

0.39 (0.38 to 0.40) 0.36 (0.33 to 0.40) 0.39 (0.37 to 0.41) .28

Did not develop glaucomaa

Participants, No. 955 138 267 NA

Eyes, No. 2046 298 569 NA

Eye visits, No. 22 796 3272 6208 NA

Mean visual field MD
(95% CI), dB

−0.18 (−0.25 to −0.12) −0.09 (−0.25 to 0.07) −0.16 (−0.28 to −0.05) .53

Developed a POAG end point
by visual field or photograph

Participants, No. 192 29 55 NA

Eyes, No. 248 36 75 NA

Eye visits, No. 3517 535 1012 NA

Abbreviations: MD, mean deviation;
NA, not applicable; POAG, primary
open-angle glaucoma.
a The number of eyes includes all eyes

for the did not develop glaucoma
group plus fellow eyes from a subset
of participants in the developed a
POAG end point by visual field or
photograph group in which one eye
developed a POAG end point and
the fellow eye did not.
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fore they reached a POAG end point compared with the false-
positive rate of eyes with ocular hypertension that did not de-
velop POAG (OHTS Endpoint Committee for optic dis or VF
changes [model 3]: 27.5% [56 of 204] vs 11.4% [50 of 440];
OHTS Endpoint Committee for optic disc changes [model 1]:
24.7% [47 of 190] vs 8.4% [38 of 454]; OHTS Endpoint Com-
mittee for VF changes [model 2]: 21.2% [46 of 217] vs 5.4% [23
of 427]). The Figure illustrates the increasing probability of ob-
serving a false-positive over the course of the OHTS phase 1
and 2 trials in eyes that eventually developed POAG com-
pared with eyes that did not. The mean time between the oc-
currence of the first false-positive result and the develop-
ment of POAG ranged from 4.5 years (95% CI, 3.4-5.6) for the
optic disc photograph POAG end point (model 1) to 5.2 years
(95% CI, 4.1-6.3) for the optic disc or VF POAG end point (model
3) (eTable 1 in the Supplement).

Table 3 shows the diagnostic accuracy of the DL models
trained based on the OHTS optic disc end points on the 3 in-
dependent clinical data sets, which was lower compared
with the OHTS test set (DIGS/ADAGES: AUROC, 0.74; 95% CI,
0.69-0.79; ACRIMA: AUROC, 0.74; 95% CI, 0.70-0.77;
LAG: AUROC, 0.79; 95% CI, 0.78-0.81).

We used Grad-CAM++21 to determine which regions of
the photographs were saliently important for the DL models’
decision-making (eFigure 3 in the Supplement). The Grad-
CAM++ visualization results suggest that the region within the
ONH had the most impact on model decisions. The neuroreti-
nal rim areas are identified as most important, and the periph-
ery contributed comparatively little to clear model decisions
for both healthy eyes and eyes with POAG in correct and
incorrect classifications. Borderline results were those in which
p ranged from 0.3 to 0.7 and seem to be less focused on the
ONH regions.

Discussion
These results suggest that the DL models using fundus pho-
tographs only can provide good accuracy for the determina-
tion of glaucomatous change based on the optic disc (AUROC,
0.91; 95% CI, 0.88-0.94), VF (AUROC, 0.86; 95% CI, 0.76-
0.93) or either (AUROC, 0.88; 95% CI, 0.82-0.92) by OHTS
Endpoint Committee members who incorporated the partici-
pant’s medical history and both fundus photographs and VF
information in their decision-making process. Given the chal-
lenging and subjective nature of POAG determination, these
results suggest a role for artificial intelligence in improving the
accuracy and consistency of the process at lower cost.5 More-
over, models used here provide a probability of glaucoma as
output, and classification thresholds can be adjusted. Speci-
ficity and sensitivity of the diagnostic classification can be
adjusted to reflect clinical trial goals. With this in mind,
we presented sensitivity and precision results at various lev-
els of specificity.

The DL models tested on the OHTS Endpoint Committee
determination of POAG generally performed better than those
tested on the OHTS ODRC and VFRC determinations when
identifying glaucoma from fundus photographs. This is likelyTa
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in part due to the OHTS design. Reading center personnel re-
viewed either photographs or VFs alone and did not have ac-
cess to other clinical information to help determine if changes
were attributable to POAG or other causes. As expected, mod-
els trained using optic disc changes determined by the ODRC
as ground truth performed better than models trained using
VF changes determined by the VFRC as ground truth. The high
diagnostic accuracy of the current model suggests that DL can
be used to automate the determination of POAG for clinical
trials and management.

The reported higher false-positive rate in early photo-
graphs of eyes that later developed POAG compared with eyes
that did not develop POAG (Figure; eTable 1 in the Supple-
ment) suggests that DL models detected POAG in some eyes
earlier than the OHTS Endpoint Committee or reading cen-
ters. These false-positives likely were true-positives detect-
ing disease-related change on average more than 4 years ear-
lier in eyes with ocular hypertension; this was, in part, a result
of the OHTS study design that emphasized high specificity for
glaucomatous determination.4 The models used here pro-
vide a probability of glaucoma as output, allowing changes in
sensitivity and specificity to desired levels by adjusting the cut-
offs used to define POAG. This makes DL models adaptable to
different study goals. For instance, one may wish to adjust the
desired specificity for the purpose of attempting to detect mod-
erate to severe glaucoma, where a false-negative may result
in delayed treatment, leading to a preventable loss of vision.

In the current study, we also reported the generalizabil-
ity of results from OHTS DL models to 3 external data sets,
an important step in assessing model performance. The cur-
rent DL models showed somewhat better generalizability to
the LAG data set than the DIGS/ADAGES and ACRIMA data
sets. Poorer performance in independent test sets likely is
affected by differences among test sets in ground truth
determination, types of cameras, and technician experience
as well as differences in study populations. There is also con-
siderable evidence that assessment of optic disc photo-
graphs for glaucoma determination is highly variable, even
among glaucoma experts.23-26 Given the variability in assess-
ment of photographs for glaucoma detection, it is likely that
there are differences in the criteria used to detect glaucoma
in the different external test data sets. Differences in labeling
and study populations have been shown to affect DL model
performance.10 A strength of the OHTS is that the POAG
determination and study population are very well docu-
mented. However, even during the OHTS POAG determina-
tion by 3 glaucoma specialist OHTS Endpoint Committee
members, there was initial consensus in only 61% of eyes
evaluated; 39% of eyes required regrading and/or discussion
to reach consensus on POAG status.

OHTS is a multicenter study with a wide range of cam-
eras, technician expertise, and participants; the current DL
model was able to incorporate these differences into its clas-
sification as evidenced by the strong performance in the
OHTS independent test set (optic disc and VF changes:
AUROC, 0.91; 95% CI, 0.88-0.94). Given that clinical trials re-
quire standardization of end points and few use end point
committees for their review of reading center results, we be-

Figure. False-positive Rates by Ocular Hypertension Treatment Study
(OHTS) Endpoint Committee Determination of Primary Open-Angle
Glaucoma
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These figures illustrate the higher probability of observing a false-positive
throughout the course of the Ocular Hypertension Treatment Study (OHTS)
phase 1 and 2 trials in eyes that developed a primary open-angle glaucoma
(POAG) end point (converting eyes) compared with those that did not
(nonconverting eyes). The results are calculated at 90% specificity for the
OHTS Endpoint Committee determination based on optic disc changes
(model 1), OHTS Endpoint Committee determination based on visual field
changes (model 2), and OHTS Endpoint Committee determination based on
either optic disc or visual field changes (model 3).
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lieve DL can help provide standardized assessment across
study centers, thereby increasing the efficiency and reducing
the cost of clinical trials.

Thakur and colleagues27 also used DL to detect glaucoma
in OHTS fundus photographs and reported somewhat higher
AUROCs than the current study. Specifically, the AUROC for
classifying eyes with and without glaucoma based on the OHTS
Endpoint Committee was 0.94 (95% CI, 0.94-0.96) com-
pared with 0.88 (95% CI, 0.82-0.92) in the current study. This
discrepancy in classification performance may be due in part
to the fact that Thakur et al27 excluded approximately 24% of
the available photographs due to extreme artifacts. In con-
trast, we included all available OHTS photographs to better
reflect clinical practice. Our analysis of the association of
photograph quality with model performance suggests that re-
moving poor-quality photographs can improve the diagnos-
tic accuracy in some but not all models. Thus, decreased per-
formance in our model could be in part due to less-than-ideal
images that were included in the DL model training, valida-
tion, and tests sets. These less-than-ideal images cannot be
avoided in clinical settings.

The current study also investigated the relative perfor-
mance of DL models in a subset of eyes with early glaucoma.
Although AUROCs were up to 0.03 lower, the general pattern
of performance was similar to that observed when all eyes
with glaucoma were included; AUROCs generally were
greater for the OHTS Endpoint Committee POAG determina-
tion tests sets and AUROCs were greater for ODRC than VFRC
POAG determination.

Limitations
There are several possible limitations to this study. First, the
number of eyes that developed POAG is much smaller than
the number of eyes that did not develop POAG, resulting in an

imbalanced data set. To address this common problem, we
implemented additional class weights into the model. Sec-
ond, the class activation maps identified regions on the ONH
and neuroretinal rim for clear model decisions, both accurate
and inaccurate. The areas used by the model in the border-
line results (those photographs without a clear model deci-
sion on whether the eye had POAG or not) were less focused
on the ONH and the generally accepted parapapillary regions
where characteristics of POAG are most frequently observed
(eFigure 3 in the Supplement). Third, we included all photo-
graphs in our modeling to better reflect real-world scenarios
for clinical management and clinical trials in which poor-
quality photographs are sometimes the only ones available. Re-
moving poor-quality photographs in a post hoc analysis re-
sulted in small to moderate increases in AUROCs. Fourth, we
cropped all photographs, which may have reduced model
performance if informative information is located in the pe-
ripheral retina.

Conclusions
In conclusion, the high diagnostic accuracy of the current DL
model based on OHTS photographs suggests that DL models
have the potential to standardize and automate the determi-
nation of POAG end points for clinical trials and manage-
ment. We believe integration of DL analyses of photographic
images and other test results in clinical trials could reduce the
cost and improve the consistency and accuracy of end point
assessments, either by decreasing or replacing the personnel
required to complete the task. Moreover, given the perfor-
mance of the DL analysis in comparison with expert human
observation, this approach may be promising to provide
decision support in clinical settings.
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eMethods. Implemented class weights added to loss function to address POAG vs non-POAG end 
point imbalance 

Dataset Preparation 

Because the 22 OHTS sites used different fundus cameras, resulting in inherent variability in image quality 

and resolution, the training of DL models was much more challenging than if photographs came from a 

single site or camera. To provide consistent model inputs, we first extracted a region centered on the ONH 

using a semantic segmentation DL model, DeepLabv3+ (with a ResNet-18 backbone network trained for 

ONH extraction). A square region surrounding the extracted ONH was then automatically cropped for 

input to the DL model, where the side length of each cropped image is approximately two times larger 

than the ONH diameter. The cropped fundus images were then resized to 224×224 pixels. A single 

reviewer manually reviewed each cropped image to ensure it was correctly centered on the ONH (see 

Supplemental eFigure 1). The OHTS stereophotographs included both simultaneous and sequential 

photographs – which cover different areas of the optic nerve head.  The images were cropped to provide 

consistent inputs to the deep learning model. 

 

Data Augmentation 

Several data augmentation strategies were applied to increase variation in the training set. To mimic 

the inclusion of both OD and OS orientations, horizontally mirrored versions of all photographs were 

added. In addition, we completed horizontal and vertical translation (≤40 pixels) and rotation (≤5°), in 

which the ONH center of each photograph was randomly perturbed by a small amount to reflect the 

common situation in which photographs are not well-centered. Each augmented image was assigned 

the same label (healthy or POAG) as the original input image from which it was derived.  

 

Supplement highlights the conventional cross entropy loss L as follows: 

𝐿
𝑛

𝑛 𝑛
𝑦 log 𝑝

𝑛
𝑛 𝑛

1 𝑦 log 1 𝑝  
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where y denotes the class label (y = 0 for healthy images and y = 1 for POAG images), p represents 

POAG prediction probability output by the network, and n0 and n1 denote the number of healthy and 

POAG images, respectively. We utilized the stochastic gradient descent with momentum (SGDM) 

optimizer too minimize (1), where the learning rate is set to 0.001 and the batch size is set to 30. The DL 

models we used were initially trained on the ImageNet database. In addition, due to the class imbalance 

of the OHTS dataset, we selected the best parameters of each DL model based on its achieved F-scores 

on the validation set, as this metric is better to use for seeking a balance between precision and recall, 

especially when the class distribution is uneven. Furthermore, we adopt the early stopping mechanism on 

the validation set to avoid over-fitting, where the tolerance is 5 epochs. 
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eFigure 1. Examples of optic nerve head detection and fundus photograph cropping 
 

 

Examples of optic nerve head (ONH) detection and fundus photograph cropping: (a) raw fundus 
photographs; (b) ONHs (in red) detected by our trained DeepLabv3+ model; (c) cropped regions centered 
on the ONHs. The Ocular Hypertension Treatment Study (OHTS) dataset contains sequential (left two 
groups) and stereo (right two groups) fundus photographs. 
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eFigure 2. ResNet-50 architecture 
 

 

ResNet-50 architecture, where Conv. represents a convolution layer and FC represents a fully-
connected layer. A Softmax layer was added in the last to produce two scales indicating the 
probability distribution of healthy and primary open angle glaucoma (POAG) classes, respectively. 
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eFigure 3. Examples of deep learning model visualizations of the optic disc changes attributable to 
primary open-angle glaucoma (POAG) by the OHTS Endpoint Committee 

 
Examples of deep learning model visualizations of the optic disc changes attributable to primary open-
angle glaucoma (POAG) by the OHTS Endpoint Committee. Both clear model decisions (top) and 
borderline results (bottom) are shown. These results suggest that the region within the ONH had the 
greatest impact on clear model decisions (p, the probability of POAG estimated by the model, between 
0.0 and 0.1 or between 0.9 and 1.0). The borderline results (p between 0.3 and 0.7) were less 
consistent with respect to the location on the disc in which the model based its decisions. TP refers to 
true positive, TN refers to true negative, FP refers to false positive, FN refers to false negative. 
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eTable 1. Time elapsed between the earliest false-positive photograph for each case and later OHTS 
Endpoint Committee determination of POAG 

 

Ground 
Truth 

Determined 
by 

POAG Detection 
Modality 

Number of false 
positive (FP) 

results Participants 
(Eyes)/Visits 

Mean (95% CI) number of years between model first 
false positive results and OHTS Endpoint Committee 
detection of primary open angle glaucoma (POAG) 

Endpoint 
Committee 

Optic Disc 
Photograph and/or 
Visual Field 

31 (38) /198 5.2 (4.1, 6.3) 

Optic Disc 
Photograph 

27 (32) /158 4.5 (3.4, 5.6) 

Visual Field 22 (26) /125 4.6 (3.3 , 5.8) 
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eTable 2. Diagnostic accuracy of deep learning model performance in identifying POAG using only 3 
randomly selected visits/images in the test set 

 

Ground 
Truth 

Determined 
by 

POAG 
Detection 
Modality 

POAG (n) Area Under the Receiver Operating 
Characteristic Curve (95% CI) 

Sensitivity at Specificity of: 

Participants 
(Eyes)/Visits 

All eyes Early glaucoma 

VF MD ≥ -6 dB 

80% 85% 90% 95% 

Endpoint 

Committee 

Optic Disc 
Photograph 

and/or Visual 
Field 

47 (60) /102 0.89 (0.84, 0.94) 
 

0.87 (0.79, 0.92) 0.83 
 

0.81 
 

0.69 
 

0.56 
 

Optic Disc 
Photograph 

36 (46) / 76 0.91 (0.85, 0.95) 0.91 (0.87, 0.95) 
 

0.86 0.83 0.76 0.57 

 

Visual Field 

31 (35) / 61 0.85 (0.75, 0.92) 0.84 (0.72, 0.93) 0.74 
 

0.70 
 

0.69 
 

0.48 
 

Reading 
Centers 

Optic Disc 
Photograph 

49 (69) / 93 0.89 (0.83, 0.93) 0.89 (0.83, 0.93) 0.85 0.77 0.73 0.55 

Visual Field 42 (49) / 76 0.83 (0.75, 0.89) 0.81 (0.71, 0.89) 0.68 0.63 0.61 0.49 
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