
Automatic Calibration of Multiple 3D LiDARs in Urban Environments

Jianhao Jiao, Yang Yu, Qinghai Liao, Haoyang Ye, Rui Fan, Ming Liu

Abstract— Multiple LiDARs have progressively emerged on
autonomous vehicles for rendering a rich view and dense mea-
surements. However, the lack of precise calibration negatively
affects their potential applications. In this paper, we propose a
novel system that enables automatic multi-LiDAR calibration
method without any calibration target, prior environment
information, and manual initialization. Our approach starts
with a hand-eye calibration by aligning the motion of each
sensor. The initial results are then refined by an appearance-
based method by minimizing a cost function constructed by
point-plane distance. Experimental results on simulated and
real-world data demonstrate the reliability and accuracy of our
calibration approach. The proposed approach can calibrate a
multi-LiDAR system with the rotation and translation errors
less than 0.04rad and 0.1m respectively for a mobile platform.

I. INTRODUCTION

Accurate extrinsic calibration has become increasingly
essential for the broad applications of multiple sensors.
Numerous research work has been studied on [1]–[3]. Over
the past decades, LiDARs have appeared as a dominant
sensor in mobile robotics for their active nature of providing
accurate and stable distance measurements. They have been
widely utilized in mapping [4] and object detection [5].
However, LiDARs do not provide a high spatial resolution
of measurements and are also sensitive to occlusion. These
drawbacks limit their potential applications in robotic sys-
tems. Fig. 1 (bottom) displays two examples, which is a
point cloud captured by the top LiDAR. In block A, the
pedestrians and vehicles are scanned with a few points,
making the detection of these objects challenging. About
block B, points are gathering together because of occlusion.
Therefore, employing the multi-LiDAR setup on self-driving
cars is necessary.

Traditional calibration techniques for multiple sensors
are done by either placing markers in scenes or hand-
labeled correspondences. However, these approaches suffer
from impracticality and limited scalability to the multi-
LiDAR configuration. Additionally, there are surprisingly
few discussions on calibrating multiple 3D LiDARs. The
majority of current approaches involve one or more of the
following assumptions: prior knowledge about the structure
of environments [6], usage of additional sensors [7], and
user-provided initial values of the extrinsic parameters [8]. It

This work was supported by the National Natural Science Foundation of
China (Grant No. U1713211), the Research Grant Council of Hong Kong
SAR Government, China, under Project No. 11210017, and No. 21202816,
awarded to Prof. Ming Liu.

Jianhao Jiao, Yang Yu, Qinghai Liao, Haoyang Ye, Rui Fan and Ming Liu
are with RAM-LAB https://ram-lab.com/, in the Department of
Electronic and Computer Engineering, The Hong Kong University of Sci-
ence and Technology, Hong Kong SAR, China. {jjiao, yang.yu,
qinghai.liao, hy.ye, eeruifan, eelium}@ust.hk

𝑙1

𝑙2

𝑙3

X

Y

Z

X

Y

ZX
Y

Z
1.28m

1.2m

2.4m

BA

Top LiDAR

Front LiDAR

Tail LiDAR

Fig. 1. (Top) Our vehicle consists of a multi-LiDAR system with unknown
extrinsic parameters. (Bottom) A point cloud captured by l1. The white
boxes indicate two drawbacks presented in a single LiDAR configuration:
(A) measurement sparsity and (B) occlusion.

is also not trivial to register point clouds accurately without
initial guess. Inspired by the progress of the hand-eye calibra-
tion, we find that the extrinsic parameters can be recovered
from individual motion provided by each LiDAR. Moreover,
the geometric features in environments also form constraints
to sensors’ relative transformations. Hence, we can conclude
that the complementary usage of these approaches is a
prospective solution to calibrate multiple LiDARs,

In this paper, we proposed a novel system1 which allows
automatic calibration of multiple LiDARs in urban environ-
ments. It consists of three components: motion estimation
of each sensor, motion-based initialization, and appearance-
based refinement. We show a variety of experiments to
demonstrate the reliability and accuracy of this approach.
The contributions of this paper are summarized as follows:
• A pipeline to automatically calibrate the extrinsic pa-

rameters of multiple LiDARs which releases the as-
sumptions of calibration targets, prior knowledge about
surroundings, and initial values given by users.

• The usage of the motion-based method for initialization
and appearance-based method for refinement.

• Extensive experiments on simulated and real-world data.
The rest of the paper is organized into the following

sections. In Sect. II, the relevant literature is discussed. An
overview of the system pipeline is given in Sect. III. The
methodology of our approach, which includes motion esti-
mation, automatic initialization, and refinement is introduced
in Sect. IV, followed by experimental results presented in

1Code is available at https://github.com/ram-lab/MLC.

2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
Macau, China, November 4-8, 2019

978-1-7281-4004-9/19/$31.00 ©2019 IEEE 15

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on December 06,2020 at 22:08:17 UTC from IEEE Xplore. Restrictions apply.

LiDAR 1 (10 Hz)

LiDAR 2 (10 Hz)

LiDAR 3 (10 Hz)
LiDAR Odometry and Mapping

(Sect. IV-A)

Linear Rotation and

Translation Calibration

(Sect. IV-B)

Initialization

Overlap Filter & Registration

(Sect. IV-C)

Refinement

Motion Estimation

Fig. 2. This figure illustrates the full pipeline of the proposed approach (left) and the fused point clouds after calibration (right). Note that the red, green,
and purple point clouds are captured by the top LiDAR, front LiDAR, and tail LiDAR respectively.

Sect. V. Finally, Sect. VI summarizes the paper and discusses
possible future work.

II. RELATED WORK

Besides to multi-LiDAR calibration, there are also exten-
sive discussions on the calibration among LiDARs, cameras,
and IMUs. In this section, we categorize them as appearance-
based and motion-based methods.

A. Appearance-based approaches

Appearance-based approaches that recover the spatial off-
set using appearance cues in surroundings are considered
as a category of registration problem. The key challenge
is searching correspondences among data. Artificial markers
that are observable to sensors have been prevalently used to
acquire correspondences. Our previous work [6] calibrated
the same sensors using three planar surfaces. For calibrating
the LiDAR-camera setup, Zhou et al. [3] demonstrated a
technique to form line and plane constraints between the
two sensors in the presence of a chessboard, while Liao et
al. [9] published a toolkit using an arbitrary polygon, which
is more general. However, all these methods require markers
in scenes. Our approach only utilizes common features such
as edges and planes in outdoor environments.

The automatic markerless calibration in arbitrary scenes
has led the trend recently. He et al. [7] extracted geometric
features among scan points to achieve robust registration,
and their work was extended to a challenging scenario [10].
Levinson [8] first put forward an online calibration for a
camera-LiDAR system. This is accomplished by aligning
edge points with image contours and minimizing a cost
function. However, their success highly relies on the initial-
ization given by users. Compared with them, our approach
can roughly recover the extrinsics from the sensor’s motion,
which enables calibration without human intervention.

B. Motion-based approaches

The motion-based approaches treat calibration as a well-
researched hand-eye calibration problem [11], where the
extrinsic parameters are computed by combining the motions
of all available sensors. The hand-eye calibration problem is
usually referred to solve X in AX = XB, where A and
B are the motions of two sensors, and X is their relative
transformation. As described in [12], this problem has been
addressed since the 1980s. The ongoing research focuses on
the calibration of multiple sensors in outdoor environments.
Heng et al. [1] proposed CamOdoCal, a versatile algorithm
with a bundle adjustment to calibrate four cameras. Taylor

et al. [2] provided a more general solution to multi-modal
sensors. As presented in [13], motion-based approaches
can also be utilized to estimate temporal offset between
sensors. Furthermore, several state-of-the-art visual-inertial
navigation systems adopted the motion-based approaches for
online calibration [14]. Although motion-based methods have
been extensively developed, their accuracy is sensitive to
the accumulated drifts of estimated motion. In contrast, our
method takes advantages of geometric features to improve
the calibration of multiple LiDARs.

III. OVERVIEW

The notations are defined as follows. We denote [0,K] the
time interval during calibration, and define {lik} as the sensor
coordinate system of the ith LiDAR at timestamp k. The x–,
y– and z– axes of coordinate systems are pointing forward,
left and upward respectively. We denote I the number of
LiDARs to be calibrated, and l1 the reference LiDAR. The
transformation, rotation, and translation from {a} to {b} are
denoted by Ta

b , Ra
b , and tab respectively. Tl1

li or (Rl1

li , t
l1

li) are
the unknown transformations from {l1} to {li} to be solved.
LiDARs are synchronized, where point clouds are captured at
the same time. We assume that the vehicle is able to perform
sufficient motions over a planar surface. With these notations
and assumptions, the calibration problem can be defined as:

Problem: Given a sequence of point clouds during calibra-
tion, computing the extrinsics of a multi-LiDAR system by
combining motion information with surrounding appearance.

The pipeline of our proposed calibration system consists
of three phases, as illustrated in Fig. 2. The first phase takes
point clouds as input, and results in the incremental motions
of each LiDAR within a time interval [k − 1, k] (Sect. IV-
A). The second phase initializes Tl1

li using a least-squares
solution (Sect. IV-B). Finally, the third phase utilizes the
appearance cues in surroundings to register different LiDARs
for refinement (Sect. IV-C).

IV. METHODOLOGY

A. Motion Estimation

To calculate a set of incremental motion between consec-
utive frames of each LiDAR, the LeGO-LOAM algorithm
[15] is used. This method makes use of line and edge
features in environments to estimate sensors’ ego-motion.
In our implementation, the individual transformations of all
the sensors and extracted ground points are used to provide
constraints to the extrinsic parameters, which are discussed
in Sect. IV-B and Sect. IV-C.

16

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on December 06,2020 at 22:08:17 UTC from IEEE Xplore. Restrictions apply.

{𝒂𝒌−𝟏}

XY

Z

X Y

Z

{𝒃𝒌−𝟏}

{𝒂𝒌}

X

Y Z

X

Y

Z

{𝒃𝒌}

𝑘-1 𝑘

Fig. 3. The transformations between different LiDARs at [k − 1, k].

B. Initialization

With l1 as the reference sensor, we present a method of
calibrating l1 with li pairwise. To simplify the notations, we
replace {l1}, {li} with {a}, {b} to indicate the coordinate
system of the reference sensor and the target sensor respec-
tively. The constant transformation of two LiDARs can be
initialized by aligning their estimated motion. Fig. 3 depicts
the relationship between the motion of two LiDARs and their
relative transformation. As the vehicle moves, the extrinsic
parameters can be recovered using these poses for any k:

Tak−1
ak

Ta
b = Ta

bT
bk−1

bk
, (1)

where (1) can be decomposed in terms of its rotation and
translation components with the following equations:

Rak−1
ak

Ra
b = Ra

bR
bk−1

bk
, (2)

(Rak−1
ak

− I3)tab = Ra
bt

bk−1

bk
− tak−1

ak
. (3)

The method described in [1] is used to solve these two
equations. Based on (2), the pitch-roll rotation can be cal-
culated directly using the estimated rotations, while the yaw
rotation, the translation can be computed using (3).

1) Outlier Filter: The poses of sensors have two con-
straints that are independent of the extrinsic parameters,
which were presented as the screw motion in [16]:

θak−1
ak

= θ
bk−1

bk
(4)

rak−1
ak

· tak−1
ak

= r
bk−1

bk
· tbk−1

bk
, (5)

where θ denotes the angle of a rotation matrix R, and
r is the corresponding rotation axis2. The screw motion
residuals include rotation and translation residuals, which are
calculated as: |θa − θb|, ‖ra · ta − rb · tb‖2.

We adopt the screw motion residuals to evaluate the
performance of the previous motion estimation phase. Fig. 4
shows the screw motion residuals in a real-world example,
where we find the estimated motion is very noisy. Hence,
the outliers are filtered if both their rotation and translation
residuals are larger than the thresholds: εr, εt.

2) Pitch-roll rotation computation: It is efficient to use
rotation matrix to solve (2) since the orthogonal constraint
should be considered. For this reason, we employ the quater-
nion (q = [qw, qx, qy, qz]>) following Hamilton notation to

2The rotation angle and axis are calculated using the log(·)∨ operator
such that φ = log(R)∨,φ = θr.

Rotation residual

𝜖𝑟 𝜖𝑡

Translation residual

Fig. 4. An example of the screw motion residuals in rotation and translation
of a set of estimated motion. εr, εr are the thresholds to filter the outliers.

represent rotation. (2) can be thus rewritten by substituting
qa
b = (qa

b)z(qa
b)yx as below:

qan−1
an

⊗ (qa
b)yx = (qa

b)yx ⊗ q
bn−1

bn

⇒
[
Q1(qan−1

an
)−Q2(q

bn−1

bn
)
]
· (qa

b)yx

⇒ Qn−1
n · (qa

b)yx = 0, (6)

where

Q1(q) =

[
qwI3 + [qxyz]× qxyz

−q>xyz qw

]
Q2(q) =

[
qwI3 − [qxyz]× qxyz

−q>xyz qw

]
(7)

are matrix representations for left and right quaternion mul-
tiplication, [qxyz]× is the skew-symmetric matrix of qxyz =

[qx, qy, qz]>, and ⊗ is the quaternion multiplication operator.
With N pairs of filtered rotations, we are able to formulate

an over-constrained linear system as follows: Q0
1

...
QN−1

N


4N×4

· (qa
b)yx = QN · (qa

b)yx = 0, (8)

Using SVD to decompose QN = USV>, (qa
b)yx is com-

puted by the weighted sum of v3 and v4:

(qa
b)yx = λ1v3 + λ2v4, (9)

where v3 and v4 are the last two column vectors of V, and
λ1, λ2 are two scalars. Therefore, (qa

b)yx can be obtained by
solving the following equations:

x(qa
b)yx

y(qa
b)yx

= −z(qa
b)yx

w(qa
b)yx

‖(qa
b)yx‖ = 1, (10)

where xq, yq, zq, wq are the elements of a quaternion.
3) Yaw rotation and translation computation: Due to our

planar motion assumption, the translational offset on z– axis
is unobservable. Consequently, we set tz = 0 and rewrite (3)
by removing the third row as follows:

R1

[
tx
ty

]
−
[
cos(γ) − sin(γ)
sin(γ) cos(γ)

]
t1 = −t2, (11)

where tx and ty are unknown translations along x– and y–
axes, and γ is the unknown rotation angle around z– axis.
R1 is the 2× 2 upper-left submatrix of (R

an−1
an − I3), t1 =

[t11, t12]> are the first two elements of Ra
bt

bn−1

bn
, and t2

17

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on December 06,2020 at 22:08:17 UTC from IEEE Xplore. Restrictions apply.

Overlapping Region

Fig. 5. The FOV of each LiDAR and overlapping region are visualized.

denote the first two elements of tan−1
an . We can rewrite (12)

as a matrix-vector equation:

[
R1 J

]︸ ︷︷ ︸
G2×4


tx
ty

− cos(γ)
− sin(γ)

 , where J =

[
t11 −t12
t12 t11

]
. (12)

We can also construct a linear system from (12) with the
filtered motion: G0

1
...

GN−1
N


︸ ︷︷ ︸

A2N×4


tx
ty

− cos(γ)
− sin(γ)


︸ ︷︷ ︸

x4×1

= −

 (t2)01
...

(t2)N−1N


︸ ︷︷ ︸

b2N×1

, (13)

where x is obtained by applying the least-squares approach.

C. Refinement

In this section, we combine the coarse initialization results
with the sensor measurements to refine the extrinsic parame-
ters. Firstly, to recover the unknown tz , the ground points are
utilized. And then we estimate a set of transformations T b

a =
{(Ta

b)k} from {a} to {b} at each timestamp by registering
Pak and Pbk . To improve the registration accuracy, we also
apply an overlap filter to retain the points that lie in the
overlapping regions of two sensors.

1) Ground planes alignment: In the motion estimation
phase, we have extracted K pairs of ground points Gak ,Gbk
of the reference and target LiDARs. Since the segmented
point clouds are noisy, we implement the random sample
consensus (RANSAC) plane fitting algorithm to reject out-
liers. Denoting cak, c

b
k as the centroids of Gak ,Gbk after

filtering, we use the mean value of
(
cak − Ra

bc
b
k

)
z

at each
timestamp to determine tz .

2) Overlap Filter: Precise registration between LiDARs
is challenging since their overlapping field of view (FOV) is
both limited and unknown. To tackle this issue, we employ an
overlap filter to retains points that lie within the counterpart
LiDARs’ FOV, as the gray area depicted in Fig. 5. We denote
the original point cloud captured by a and b at k as Pak ,Pbk

respectively. a point p ∈ Pbk can be transformed from {b}
to {a} using the initial Ta

b as follows:

p̃ = Ta
bp. (14)

And then we employ the KD-Tree searching method

Fig. 6. This figure depicts the curves calibration error and registration
error with l1 	 l3 at R.T 2.

realize the overlap filter to construct Sak ,Sbk :

Sak =

{
∀p1 ∈ Pak : d(p1, p̃2) < r,∃p2 ∈ Pbk

}
Sbk =

{
∀p2 ∈ Pbk : d(p̃2,p1) < r,∃p1 ∈ Pak

}
,

(15)

where p1 and p2 are points, d(·, ·) is the Euclidean distance
between two points, and r is a threshold. We define the
overlap factor as:

Ωk =
|Sak |
|Pak |

· |S
bk |

|Pbk |
, (16)

where |·| is the size of a set. The point clouds with Ωk > 0.8
are selected as the inputs for the following registration step.

3) Registration: To estimate the relative transformations,
the point-to-plane Iterative Closest Point (ICP) is used.
After registering all the point cloud pairs captured at a
different timestamp, we obtain a set of transformations T a

b .
By computing the registration errors and calibration errors
computed with the ground truth of each element, we find
that their values are linear. An example of these errors
over timestamp is depicted in Fig. 6, where the curves of
registration error and calibration error have similar trends,
especially the positions of the peak. Hence, we apply it to all
calibration cases. In T a

b , only a series of transformations with
the minimum registration error are selected as candidates,
and the refinement results are computed as their mean values.

V. EXPERIMENT

In this section, we divide the evaluation into two separate
steps. Firstly, the initial calibration experiments are presented
with simulated data and real sensor sets. Then we test the
refinement on real sensor data and demonstrate that the initial
results can be improved using appearance cues.

A. Implementation Details
We use the ICP library [17] to process point clouds. With

empirically setting parameters: εr = 0.01, εt = 0.01, r = 10,
our method can obtain promising results. Since the success
of motion-based calibration highly depends on the quality
of motion which a vehicle undergoes, we design several
paths with different rotations and scales to test our proposed
algorithm. These paths include three simulated trajectories
(S.T 1-S.T 3) on simulation and two real trajectories (R.T 1-
R.T 2) on real sensor data. In the experiments, two platforms
with different sensor setups are used.

18

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on December 06,2020 at 22:08:17 UTC from IEEE Xplore. Restrictions apply.

X

Y
Z

X

Y

Z

{𝒍𝟏}
{𝒍𝟐}

Fig. 7. (Left) The simulated platform and (right) the three trajectories
which the platform follows.The rotation offset is about [0, 3.14, 1.57] rads
in roll, pitch, and yaw respectively. The corresponding translation are about
[−2.5, 1.5, 0] meters along x–, y–, and z– axes respectively.

TABLE I
THE INITIAL CALIBRATION RESULTS WITH SIMULATED DATA.

σ2 Trajectory Rotation Error [rad] Translation Error [m]
Kabsch Proposed Kabsch Proposed

σ2
1

S.T 1 0.10 0.01 0.22 0.28
S.T 2 0.80 0.00 0.66 0.28
S.T 3 0.08 0.01 0.80 0.48

σ2
2

S.T 1 1.37 0.07 2.13 1.25
S.T 2 0.94 0.04 1.80 1.20
S.T 3 1.17 0.02 1.66 1.44

1) Simulation: The simulation software3 is publicly avail-
able. For testing, we manually mount two sensors at dif-
ferent positions on the vehicle platform, as shown in Fig.
7 (left). The rotation offset between them is approximately
[0, 3.14, 1.57] rad in roll, pitch, and yaw, respectively. The
corresponding translation are approximately [−2.5, 1.5, 0]
meters along x–, y–, and z– axes respectively. We can thus
acquire the positions of these sensors in the form of ground
truth at 5 Hz. The refinement is not tested in simulation
because this platform does not provide stable point clouds
without time distortion.

2) Real Sensor: While our approach is not limited to a
particular number of sensors, we are interested in calibrating
between the reference LiDAR and two target LiDARs based
on our platform. As shown in Fig. 1, three 16-beam RS-
LiDARs4 are rigidly mounted on the vehicle. The setup
of this multi-LiDAR system has significant transformation
among sensors. Especially, l3 is mounted with approximately
180 degrees rotation offset in yaw. In later sections, we use
l1	 li to represent the configuration between l1 and li. Since
we do not know the precise extrinsic parameters, we use the
parameters (shown in Table II) provided by the manufacturer
to evaluate our proposed algorithm.

In evaluation, the error in rotation is measured by the
angle difference between the ground truth and the resulting
rotation, which is calculated as er = ‖ log(RgtR

−1
resulting)∨‖2.

Similarly, the error in translation is computed using vector
subtraction as et = ‖tgt − tresulting‖2. The translation error
on z– axis will not be counted of the initialization results
because of the planar movement assumption.

B. Performance of Initialization

We take the modified Kabsch algorithm [2] that operates
at matrix representation for comparison.

3https://github.com/osrf/car_demo/
4https://www.robosense.ai/rslidar/rs-lidar-16

Fig. 8. The testing environment for our calibration experiments.

Estimated Motions

R.T 1 R.T 2

Fig. 9. The black, red, and blue lines indicate the estimated motionof
l1, l2, l3 respectively at R.T 1-R.T 2.

1) Simulation: The simulated trajectories (S.T 1-S.T 3) are
visualized in Fig. 7 (right), where the third one is considered
as the most challenging one since it has few rotations. To test
the robustness of our proposed algorithm, the sensor’s motion
are added with zero-mean Gaussian noise n ∼ N (0, σ2).
σ2 is set to two values: σ2

1 = 0.0001 and σ2
2 = 0.001 for

evaluation. For each value, all simulated motion is tested.
The calibration results are shown in Table I. The proposed
algorithm can successfully initialize the rotation offset with
low error and outperform the Kabsch algorithm in most of
the cases. The translation error with σ2

2 is larger than 1m,
meaning that our initialization approach is not robust in noisy
data.

2) Real Sensor: We carry out a real sensor experiment
to validate the proposed method. Two trajectories (R.T 1-
R.T 2) are designed in an urban environment (shown in 8),
and we drive the vehicle to follow them. After estimating
the individual motion of each LiDAR, we use the results to
initialize the calibration. The estimated motion is depicted in
Fig. 9, where we can observe that the calculated trajectory
of l2 at R.T 2 drifts. The initialization results are presented
in Table III. Our method performs well in recovering the
rotation offset (< 0.15rad), but fail in calculating the trans-
lation offset (> 0.5m) in all cases. With the above results
in simulation and real-world environments, we can conclude
that the initialization phase can provide coarse estimates to
the extrinsic parameters. For precise results, an additional
refinement step is required.

C. Performance of Refinement

In our experiments, we select 10 transformations from
T a
b as the candidates for the optimal refinement results. We

19

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on December 06,2020 at 22:08:17 UTC from IEEE Xplore. Restrictions apply.

Calibration Error of Candidate Transformations

Fig. 10. The calibration errors in each case of the candidate. The means
of them are small at R.T 1, but large at R.T 2.

TABLE II
THE CALIBRATION GROUND TRUTH OF OUR MULTI-LIDAR SYSTEM.

Conf. Rotation [rad] Translation [m]
x y z x y z

l1 	 l2 0.01 0.08 0.03 0.42 0.00 -1.26
l1 	 l3 -0.02 0.01 -3.11 -2.11 0.06 -1.18

plot their calibration errors in each case in Fig. 10. The
detailed calibration results are shown in Table IV, where all
the rotation and translation errors are less than 0.04rad and
0.1m, respectively. Compared with the result in Table III, the
refinement phase can improve the estimated parameters.

D. Discussion

Since the proposed calibration method achieve accurate
results, it do not perform well in the below cases. Firstly,
the initialization highly relies on the accuracy of estimated
motion, especially when the translational offset is imprecise.
Secondly, We assume that LiDARs’ views should have
overlapping regions, Finally, the registration between point
clouds may fail in several feature-less environments.

VI. CONCLUSION AND FUTURE WORK

In this paper, we presented a novel system for auto-
matically calibrating of a multi-LiDAR system without any
extra sensors, calibration target, or prior knowledge about
surroundings. Our approach makes use of the complementary
strengths of motion-based and appearance-based calibration
methods. The individual motion of each LiDAR is estimated
by an odometry algorithm. These poses are then utilized
to initialize the extrinsic parameters. Finally, the results are
refined by exploiting appearance cues in sensors’ overlap.
The performance of our method is demonstrated through a
series of simulated and real-world experiments with reliable
and accurate calibration results. There are several possible
extensions to this work: (1) online, active multi-LiDAR cal-
ibration, (2) releasing the overlapping requirement, and (2)
applications including localization and 3D object detection
based on a multi-LiDAR system.

REFERENCES

[1] L. Heng, B. Li, and M. Pollefeys, “Camodocal: Automatic intrinsic
and extrinsic calibration of a rig with multiple generic cameras and
odometry,” in Intelligent Robots and Systems (IROS), 2013 IEEE/RSJ
International Conference on. IEEE, 2013, pp. 1793–1800.

TABLE III
THE INITIALIZATION RESULTS.

Conf. Traj. Rotation Error [rad] Translation Error [m]
Kabsch Proposed Kabsch Proposed

l1 	 l2
R.T 1 0.94 0.06 1.60 0.47
R.T 2 0.73 0.03 4.42 1.95

l1 	 l3
R.T 1 1.29 0.14 1.23 1.26
R.T 2 0.60 0.08 1.36 2.04

TABLE IV
THE REFINEMENT RESULTS.

Conf. l1 	 l2 l1 	 l2 l1 	 l3 l1 	 l3

Traj. R.T 1 R.T 2 R.T 1 R.T 2

Rotation [rad]

x 0.01 0.01 -0.02 -0.02
y 0.08 0.07 0.02 0.00
z 0.04 0.04 -3.14 -3.13

error 0.01 0.03 0.01 0.02

Translation [m]

x 0.43 0.46 -2.13 -2.07
y 0.00 -0.01 0.09 0.08
z -1.26 -1.27 -1.18 -1.20

error 0.01 0.08 0.03 0.04

[2] Z. Taylor and J. Nieto, “Motion-based calibration of multimodal
sensor extrinsics and timing offset estimation,” IEEE Transactions on
Robotics, vol. 32, no. 5, pp. 1215–1229, 2016.

[3] L. Zhou, Z. Li, and M. Kaess, “Automatic extrinsic calibration of
a camera and a 3d lidar using line and plane correspondences,” in
Intelligent Robots and Systems (IROS), 2018 IEEE/RSJ International
Conference on. IEEE, 2018.

[4] J. Behley and C. Stachniss, “Efficient surfel-based slam using 3d laser
range data in urban environments,” in Robotics: Science and Systems
(RSS), 2018.

[5] P. Yun, L. Tai, Y. Wang, C. Liu, and M. Liu, “Focal loss in 3d object
detection,” IEEE Robotics and Automation Letters, vol. 4, no. 2, pp.
1263–1270, 2019.

[6] J. Jiao, Q. Liao, Y. Zhu, T. Liu, Y. Yu, R. Fan, L. Wang, and M. Liu,
“A novel dual-lidar calibration algorithm using planar surfaces,” arXiv
preprint arXiv:1904.12116, 2019.

[7] M. He, H. Zhao, F. Davoine, J. Cui, and H. Zha, “Pairwise lidar
calibration using multi-type 3d geometric features in natural scene,” in
Intelligent Robots and Systems (IROS), 2013 IEEE/RSJ International
Conference on. IEEE, 2013, pp. 1828–1835.

[8] J. Levinson and S. Thrun, “Automatic online calibration of cameras
and lasers.” in Robotics: Science and Systems, vol. 2, 2013.

[9] Q. Liao, Z. Chen, Y. Liu, Z. Wang, and M. Liu, “Extrinsic calibration
of lidar and camera with polygon,” in IEEE International Conference
on Robotics and Biomimetics (ROBIO). IEEE, 2019.

[10] M. He, H. Zhao, J. Cui, and H. Zha, “Calibration method for multiple
2d lidars system,” in Robotics and Automation (ICRA), 2014 IEEE
International Conference on. IEEE, 2014, pp. 3034–3041.

[11] R. Horaud and F. Dornaika, “Hand-eye calibration,” The international
journal of robotics research, vol. 14, no. 3, pp. 195–210, 1995.

[12] K. Daniilidis, “Hand-eye calibration using dual quaternions,” The
International Journal of Robotics Research, vol. 18, no. 3, pp. 286–
298, 1999.

[13] T. Qin and S. Shen, “Online temporal calibration for monocular
visual-inertial systems,” in 2018 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS). IEEE, 2018, pp. 3662–
3669.

[14] Z. Yang and S. Shen, “Monocular visual-inertial fusion with online
initialization and camera-imu calibration,” in 2015 IEEE International
Symposium on Safety, Security, and Rescue Robotics (SSRR). IEEE,
2015, pp. 1–8.

[15] T. Shan and B. Englot, “Lego-loam: Lightweight and ground-
optimized lidar odometry and mapping on variable terrain,” 2018.

[16] H. H. Chen, “A screw motion approach to uniqueness analysis of
head-eye geometry,” in Proceedings. 1991 IEEE Computer Society
Conference on Computer Vision and Pattern Recognition. IEEE,
1991, pp. 145–151.

[17] F. Pomerleau, F. Colas, R. Siegwart, and S. Magnenat, “Comparing icp
variants on real-world data sets,” Autonomous Robots, vol. 34, no. 3,
pp. 133–148, 2013.

20

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on December 06,2020 at 22:08:17 UTC from IEEE Xplore. Restrictions apply.

