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Abstract
This article proposes two novel adaptive PID controllers for the trajectory track-
ing of robotic manipulators with known or unknown upper bound of the
uncertainties, respectively. The designed controllers are shown to be not only
robust with respect to the uncertainties but also adaptive with reference to
the unknown manipulator and load parameters. Lyapunov stability analysis
is included to prove eventual local asymptotic tracking. The salient features
of the two proposed adaptive PID controllers are as follows: (1) they guaran-
tee the eventual asymptotic convergence of the manipulator joint position and
velocity tracking errors to zero with no need of any equality/inequality con-
straints on the controller gains when compared with the classical PID controller
and the existing adaptive PID controllers; and (2) they offer better robustness
against uncertainties than the existing classical PID controller, the adaptive PD
controller, the linear active disturbance rejection controller, and the nonlin-
ear disturbance observer based adaptive PID controller. Simulation studies and
comprehensive comparisons demonstrate the superiorities of the two proposed
adaptive PID controllers.

K E Y W O R D S
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1 INTRODUCTION

Trajectory tracking control of robotic manipulators is a challenging task due to the inherent nonlinear system dynam-
ics, unknown manipulator and load parameters, and uncertainties.1–3 Such control problem has received great attention
of robot control theorists during the past decades. In the early stages, PID control is employed for tracking control of
robotic manipulators. Due to that the PID algorithm is simple in structure and easy to implement, it has still been widely
used in industrial applications in nowadays. Several important theoretical results in trajectory tracking control of robotic
manipulators adopting classical PID algorithm are given in References 4–6. In Reference 4, it is shown that there exist
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PID parameters which can guarantee the robotic manipulator to locally track a desired trajectory with arbitrary precision,
provided that initial position and velocity errors are sufficiently small. In Reference 5, suitable Lyapunov functions are
proposed to prove that there exist design parameters which can hold a locally asymptotically stable closed-loop system
and stable trajectory tracking. In Reference 6, a novel PID control configuration derived from modeling error compensa-
tion ideas is proposed for position control of robot manipulators in joint space. The semiglobal stability of the proposed
PID control law is proved, which depends only on the inertial parameters of the robot manipulators. However, it has
been shown in Reference 7 that there are two main problems using the above classical PID controllers: (1) the PID gains
should meet some inequality constraints to guarantee the local/semiglobal stability of the closed-loop system; and (2) the
unknown manipulator and load parameters and uncertainties cannot be compensated for.

Adaptive technique is able to deal with system model uncertainties. This motivates to combine PD/PID algorithm
with adaptive technique to address the trajectory tracking control problem of robotic manipulators with uncertain model
parameters. In Reference 8, an adaptive PD controller is proposed for tracking control of robotic manipulators. The
unknown manipulator and payload parameters can be estimated online and the global asymptotical stability with respect
to the joint positions and velocities is able to be guaranteed. However, this adaptive PD controller may exhibit poor robust-
ness to the other uncertainties such as friction, torque disturbance, and so on, since these uncertainties are not taken
into account in the manipulator dynamic model. Some extensions of the above adaptive PD controller in the tracking
control problem of robotic manipulators can refer to References 9–11. However, these controllers may also hold poor
uncertainties rejection capability because the uncertainties are also not considered in the manipulator dynamics. More-
over, although some improvements are made by these controllers compared with the adaptive PD controller presented in
Reference 8, additional inequality constraints on the controller gains are needed to ensure the global asymptotic stability
of the closed-loop system.

Adaptive algorithm plus PID control for the trajectory tracking of robotic manipulators has limited research. In Refer-
ence 12, an adaptive PID control scheme which consists of adaptation mechanism, sliding mode control and supervisory
control is proposed for robot manipulators. However, it only ensures the joint position and velocity tracking errors with
H∞ tracking performance instead of converging to zero. In Reference 13, two robust adaptive PID controllers are designed
for the trajectory tracking control of robotic manipulators with known or unknown upper bound of the external distur-
bances, respectively. The two proposed controllers are shown to be valid not only in the presence of unknown manipulator
and load parameters but also in the presence of time-varying external disturbances. Moreover, the asymptotic stable posi-
tions and velocities tracking are guaranteed. Nevertheless, to guarantee the locally asymptotic stability of the position and
velocity tracking errors, an equality constraint on the controller gains is required, that is, for each controller, the integral
gain must be equal to the differential gain.

Nowadays, adaptive technique combines with some advanced control methods have been proposed to solve the tra-
jectory tracking control of robotic manipulators, the readers can refer to adaptive neural network control,2,14–17 adaptive
backstepping control,18–20 adaptive iterative learning control,21,22 adaptive sliding mode control,3,23–25 adaptive fuzzy
control,26,27 and so forth. However, this study only devotes to investigate such a control structure consisting of only
adaptive technique and classical PID control for the trajectory tracking control of robotic manipulators.

In this article, two new adaptive PID controllers are proposed to address the problem of trajectory tracking control
of robotic manipulators in two cases that the upper bound of the uncertainties is known or unknown, respectively. The
main contributions of this work are twofold.

1. By introducing an exponential convergent factor into the controllers design, the two proposed adaptive PID controllers
can guarantee the eventual asymptotic convergence of the joint position and velocity tracking errors to zero meanwhile
do not require any equality/inequality constraints on the controller gains, when compared to the classical PID con-
troller, the adaptive PID controllers presented in Reference 12, and the adaptive PID controller presented in Reference
13.

2. With the effective compensation mechanism for the uncertainties existing in the manipulator dynamics, the two
proposed adaptive PID controllers can provide better robustness to the uncertainties in contrast to the classical
PID controller, the adaptive PD controller,8 the linear active disturbance rejection controller (LADRC),28,29 and the
nonlinear disturbance observer (NDOB)30 based adaptive PID controller.

The rest of this article is organized as follows. Section 2 formulates the robot manipulator dynamics and gives the
control objective. Section 3 presents the two novel adaptive PID controllers design, the corresponding stability analysis,
and some guidance to the controller parameters selection. Simulation verifications are performed in Section 4. Finally,
conclusions are summarized in Section 5.
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Notations. The following notations are used throughout this article. For a vector 𝝑 ∈ Rn, its norm is defined as the
Euclidean norm, that is, ||𝝑|| = √

𝝑T𝝑. For a matrix E ∈ Rn×n, 𝜆min(E) and 𝜆max(E) are denoted as the smallest and largest
eigenvalues of matrix E, respectively. The norm of matrix E is defined as the induced 2-norm, that is, ||E|| = √

𝜆max
(

ETE
)
.

2 PROBLEM FORMULATION

The dynamic model of an n-link, revolute, rigid robotic manipulator with uncertainties can be described by13,31

M(q)q̈ + C(q, q̇)q̇ + G(q) + u = 𝝉 , (1)

where q, q̇, q̈ ∈ Rn are the joint position, velocity, and acceleration vectors, respectively, M(q) ∈ Rn×n is the inertia matrix,
C(q, q̇) ∈ Rn×n is the Coriolis and centripetal forces matrix, G(q) ∈ Rn is the gravitational force vector, 𝝉 ∈ Rn is the
vector of applied joint inputs, and u ∈ Rn is the vector of uncertainties presenting friction, torque disturbance, and so
forth.

Some properties of the manipulator dynamic model (1) are summarized as follows:

Property 1 (31). The inertial matrix M(q) is symmetric and positive definite. There exist positive constants mm and mM
such that mm||𝝃||2 ≤ 𝝃TM(q)𝝃 ≤ mM||𝝃||2, ∀𝝃 ∈ Rn

.

Property 2 Given the definition of C(q, q̇) as in Reference 8, the matrix Ṁ(q) − 2C(q, q̇) is skew symmetric, which implies
that 𝝃T[Ṁ(q) − 2C(q, q̇)]𝝃 = 0 for ∀𝝃 ∈ Rn. Furthermore, Ṁ(q) = C(q, q̇) + CT(q, q̇).

Property 3 (8, 31, and 32). The matrices M(q), C(q, q̇), and G(q) are linear in terms of robot and load parameters such
that

M(q)𝜶 + C(q, q̇)𝜷 + G(q) = 𝚿(q, q̇,𝜶, 𝜷)P,

where 𝚿(q, q̇,𝜶, 𝜷) ∈ Rn×m is a known regression matrix and P ∈ Rm is a constant vector of the unknown manipulator
and load parameters.

Property 4 The Coriolis and centripetal forces matrix C(q, q̇) is bounded provided q̇ is bounded, that is, a positive
constant kc exists such that ||C(q, q̇)|| ≤ kc.

The control objective of this article is to design the adaptive PID controllers, such that the joint position and velocity
vectors can eventually asymptotically track the desired trajectories, when the robotic manipulator is subject to parameter
uncertainties and other uncertainties u, at the same time no equality/inequality constraints on the controller gains are
required.

3 ADAPTIVE PID CONTROLLERS DESIGN

To attain the aforementioned control objective, two novel adaptive PID controllers are developed with known or unknown
upper bound of the uncertainties, respectively. Before designing the controllers, we introduce two auxiliary vectors x and
qr as

x = ̇̃q + 𝛾q̃, (2)

q̇r = q̇d − 𝛾q̃, (3)

where qd, q̇d ∈ Rn are the desired joint position and velocity trajectories, respectively, q̃ = q − qd and ̇̃q = q̇ − q̇d are the
joint position and velocity tracking errors, respectively, and 𝛾 is a positive constant.

From (2) and (3), we have

q̇r = q̇ − x. (4)

For Property 3, let 𝜶 = q̈r, 𝜷 = q̇r we get
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M(q)q̈r + C(q, q̇)q̇r + G(q) = 𝚿
(

q, q̇, q̇r, q̈r
)

P. (5)

Substituting (4) into (5) yields

M(q)q̈ + C(q, q̇)q̇ + G(q) − M(q)ẋ − C(q, q̇)x = 𝚿
(

q, q̇, q̇r, q̈r
)

P. (6)

To develop the controllers, we make the following assumptions.

Assumption 1. The desired joint position, velocity, and acceleration trajectories qd, q̇d, and q̈d are available and bounded.

The uncertainties u are the collection of the friction, residual time-varying disturbances, and so on. As mentioned
in Reference 32, the viscous and Coulomb friction forces may be modeled as Fvq̇ + Fcsgn(q̇), so the uncertainties are
functions of the system states and may grow beyond any constant bound if the system becomes unstable. Therefore, the
bound of the uncertainties u is assumed the same as in References 32 and 33 such that:

Assumption 2 (32 and 33). The uncertainty effects u are bounded in the following manner:

||u|| ≤ b0 + b1||q̇|| + b2||q||,
where bi (i = 0, 1, 2) are all positive constants.

3.1 Controller design with known upper bound of the uncertainties

For the robotic manipulator systems (1), assume that the upper bound of the uncertainties u is known, then consider the
following controller:

𝝉 = −KPq̃ − KD
̇̃q − KI∫

t

0
q̃dl +𝚿

(
q, q̇, q̇r, q̈r

)
P̂ + 𝚲, (7)

where KP,KD,KI ∈ Rn×n are symmetric positive definite constant matrices, P̂ is the estimation of P and it is updated by
the following adaptation law: { ̇̂P = −𝚽𝚿T (

q, q̇, q̇r, q̈r
)
(x + 𝜀q̃),

𝜀 = 𝜆e−𝛾t with 𝛾, 𝜆 = const > 0,
(8)

in which 𝚽 ∈ Rm×m is a symmetric positive definite constant matrix that determines the rate of adaptation, and 𝚲 is the
compensation term which is given by

𝚲 = −

[
b0 + b1||q̇|| + b2||q|| + ‖KI‖ ‖‖‖‖‖∫

t

0
q̃dl

‖‖‖‖‖
]

sgn(x + 𝜀q̃), (9)

in which the vector sgn(x + 𝜀q̃) is obtained by applying the signum function to all elements of x + 𝜀q̃.

Theorem 1. Given the robotic manipulator dynamics (1) with known upper bound of the uncertainties u controlled by
the controller (7)–(9), the position and velocity tracking errors q̃ and ̇̃q eventually asymptotically converge to zero locally,
and the parameter estimation error P̃ = P̂ − P is eventually bounded.

Proof. Consider the following Lyapunov candidate function:

V = 1
2
𝜼TH𝜼 + 1

2
P̃

T𝚽−1P̃, (10)

where

𝜼 =

[
x
q̃

]
,H =

[
M(q) 𝜀M(q)
𝜀M(q) KF

]
with KF = (𝛾 + 𝜀)KD + KP.
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It has been shown in Reference 9 that, if 𝜀 (𝜀 > 0) is small enough such that 𝜆min (KF) ∕mM > 𝜀2, the matrix H is
symmetric positive definite and consequently V > 0.

Then, the time derivative of V can be written as

V̇ = xTM(q)ẋ + 1
2

xTṀ(q)x + �̇�xTM(q)q̃ + 𝜀ẋTM(q)q̃

+ 𝜀xTṀ(q)q̃ + 𝜀xTM(q) ̇̃q + q̃TKP
̇̃q + 𝛾q̃TKD

̇̃q

+ 𝜀q̃TKD
̇̃q + 1

2
�̇�q̃TKDq̃ + P̃

T𝚽−1 ̇̃P. (11)

Substituting (1) and (6) into (11) yields

V̇ = 1
2

xTṀ(q)x + �̇�xTM(q)q̃ + 𝜀xTṀ(q)q̃

+ 𝜀xTM(q) ̇̃q + q̃TKP
̇̃q + 𝛾q̃TKD

̇̃q

+ 𝜀q̃TKD
̇̃q + 1

2
�̇�q̃TKDq̃ + P̃

T
𝚽−1 ̇̃P

+ xT [
𝝉 − u − C(q, q̇)x −𝚿

(
q, q̇, q̇r, q̈r

)
P
]

+ 𝜀q̃T [
𝝉 − u − C(q, q̇)x −𝚿

(
q, q̇, q̇r, q̈r

)
P
]
. (12)

From the control law (7), we have

xT [
𝝉 − u − C(q, q̇)x −𝚿

(
q, q̇, q̇r, q̈r

)
P
]

= − xTKPq̃ − xTKD
̇̃q − xTKI∫

t

0
q̃dl − xTC(q, q̇)x

+ xT𝚿
(

q, q̇, q̇r, q̈r
)

P̃ + xT𝚲 − xTu, (13a)

𝜀q̃T [
𝝉 − u − C(q, q̇)x −𝚿

(
q, q̇, q̇r, q̈r

)
P
]

= − 𝜀q̃TKPq̃ − 𝜀q̃TKD
̇̃q − 𝜀q̃TKI∫

t

0
q̃dl − 𝜀q̃TC(q, q̇)x

+ 𝜀q̃T𝚿
(

q, q̇, q̇r, q̈r
)

P̃ + 𝜀q̃T𝚲 − 𝜀q̃Tu, (13b)

here P̃ = P̂ − P has been used.
By applying Property 2 and adaptation law (8), we get

1
2

xTṀ(q)x = xTC(q, q̇)x, (14a)

𝜀xTṀ(q)q̃ = 𝜀xTC(q, q̇)q̃ + 𝜀xTCT(q, q̇)q̃, (14b)

P̃
T
𝚽−1 ̇̃P = P̃

T
𝚽−1 [−𝚽𝚿T (

q, q̇, q̇r, q̈r
)
(x + 𝜀q̃)

]
= −

(
xT + 𝜀q̃T

)
𝚿

(
q, q̇, q̇r, q̈r

)
P̃, (14c)

here ̇̃P = ̇̂P has been used.
Substituting (13) and (14) into (12) yields

V̇ = −xTKPq̃ − xTKD
̇̃q −

(
xT + 𝜀q̃T

)
KI∫

t

0
q̃dl +

(
xT + 𝜀q̃T

)
𝚲

−
(

xT + 𝜀q̃T
)

u − 𝜀q̃TKPq̃ + �̇�xTM(q)q̃ + 𝜀xTC(q, q̇)q̃

+ 𝜀xTM(q) ̇̃q + q̃TKP
̇̃q + 𝛾q̃TKD

̇̃q + 1
2
�̇�q̃TKDq̃. (15)



6 QIAO et al.

Because xT = ̇̃q
T
+ 𝛾q̃T and �̇� = −𝛾𝜀, we obtain

−xTKPq̃ = − ̇̃q
T

KPq̃ − 𝛾q̃TKPq̃, (16a)

−xTKD
̇̃q = − ̇̃q

T
KD

̇̃q − 𝛾q̃TKD
̇̃q, (16b)

�̇�xTM(q)q̃ = −𝛾𝜀 ̇̃q
T

M(q)q̃ − 𝛾2𝜀q̃TM(q)q̃, (16c)

𝜀xTC(q, q̇)q̃ = 𝜀 ̇̃q
T

C(q, q̇)q̃ + 𝜀𝛾q̃TC(q, q̇)q̃, (16d)

𝜀xTM(q) ̇̃q = 𝜀 ̇̃q
T

M(q) ̇̃q + 𝜀𝛾q̃TM(q) ̇̃q, (16e)

1
2
�̇�q̃TKDq̃ = −1

2
𝛾𝜀q̃TKDq̃. (16f)

Using (16) in (15) leads to

V̇ = −(𝛾 + 𝜀)q̃TKPq̃ − ̇̃q
T

KD
̇̃q − 1

2
𝛾𝜀q̃TKDq̃ − 𝛾2𝜀q̃TM(q)q̃

+ 𝜀 ̇̃q
T

M(q) ̇̃q + 𝜀 ̇̃q
T

C(q, q̇)q̃ + 𝛾𝜀q̃TC(q, q̇)q̃

+
(

xT + 𝜀q̃T
)(

𝚲 − u − KI∫
t

0
q̃dl

)
. (17)

Note that the following inequalities hold:

−(𝛾 + 𝜀)q̃TKPq̃ ≤ −(𝛾 + 𝜀)𝜆min (KP) ||q̃||2, (18a)

− ̇̃q
T

KD
̇̃q ≤ −𝜆min (KD) || ̇̃q||2, (18b)

−1
2
𝛾𝜀q̃TKDq̃ ≤ −1

2
𝛾𝜀𝜆min (KD) ||q̃||2, (18c)

−𝛾2𝜀q̃TM(q)q̃ ≤ −𝛾2𝜀mm||q̃||2, (18d)

𝜀 ̇̃q
T

M(q) ̇̃q ≤ 𝜀mM|| ̇̃q||2, (18e)

𝜀 ̇̃q
T

C(q, q̇)q̃ ≤ 𝜀kc|| ̇̃q||||q̃|| ≤ 1
2
𝜀kc

(|| ̇̃q||2 + ||q̃||2
)
, (18f)

𝛾𝜀q̃TC(q, q̇)q̃ ≤ 𝛾𝜀kc||q̃||2, (18g)

here Properties 1 and 4 have been used.
From (18), V̇ given in (17) can be bounded as

V̇ ≤ −
[
(𝛾 + 𝜀)𝜆min (KP) +

1
2
𝛾𝜀𝜆min (KD)

+ 𝛾2𝜀mm −
(1

2
+ 𝛾

)
𝜀kc

]||q̃||2

−
[
𝜆min (KD) − 𝜀mM − 1

2
𝜀kc

] || ̇̃q||2

+
(

xT + 𝜀q̃T
)
𝚲 + ‖‖‖xT + 𝜀q̃T‖‖‖

(||u|| + ‖KI‖ ‖‖‖‖‖∫
t

0
q̃dl

‖‖‖‖‖
)
. (19)
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From (9), we have

(
xT + 𝜀q̃T

)
𝚲 = −

[
b0 + b1||q̇|| + b2||q|| + ‖KI‖ ‖‖‖‖‖∫

t

0
q̃dl

‖‖‖‖‖
]
×

n∑
i=1

||xi + 𝜀q̃i||
≤ −

(||u|| + ‖KI‖ ‖‖‖‖‖∫
t

0
q̃dl

‖‖‖‖‖
) n∑

i=1

||xi + 𝜀q̃i||
≤ − ‖‖‖xT + 𝜀q̃T‖‖‖

(||u|| + ‖KI‖ ‖‖‖‖‖∫
t

0
q̃dl

‖‖‖‖‖
)
, (20)

here Assumption 2 has been used.
Thus, using (20) in (19), we obtain

V̇ ≤ −
[
(𝛾 + 𝜀)𝜆min (KP) +

1
2
𝛾𝜀𝜆min (KD)

+ 𝛾2𝜀mm −
(1

2
+ 𝛾

)
𝜀kc

]||q̃||2

−
[
𝜆min (KD) − 𝜀mM − 1

2
𝜀kc

] || ̇̃q||2. (21)

From above, we know that V̇ is nonpositive if the following conditions are satisfied:

⎧⎪⎨⎪⎩
𝜆min (KF) ∕mM > 𝜀2, KF = (𝛾 + 𝜀)KD + KP,

(𝛾 + 𝜀)𝜆min (KP) + 1
2
𝛾𝜀𝜆min (KD) + 𝛾2𝜀mm −

(
1
2
+ 𝛾

)
𝜀kc > 0,

𝜆min (KD) − 𝜀mM − 1
2
𝜀kc > 0.

(22)

In fact, from the definition of 𝜀 given in (8) we can see that, with suitable choice of 𝛾 (e.g., 𝛾 ≥ 1), 𝜀 will quickly
exponentially converge to zero, which leads to that the terms containing 𝜀 in (22) fast approach to zero. Therefore, as time
increase, the conditions (22) can always be satisfied. Thus V is eventually bounded, which in turn implies that q̃, ̇̃q, and
P̃ are eventually bounded vectors. Moreover, V̇ is negative semidefinite and vanishes if and only if q̃ = 0 and ̇̃q = 0. By
invoking Lyapunov stability theory, we can conclude that q̃ and ̇̃q eventually asymptotically converge to zero. On the other
hand, due to that Property 4 is established on the premise that q̇ is bounded, q̃ and ̇̃q are locally stable. This completes
the proof. ▪

Remark 1. Theorem 1 implies that, for the robotic manipulator systems (1), when the upper bound of the uncertain-
ties is known, the controller given in (7)–(9) guarantees the eventual local stability of the closed-loop system and zero
steady-state errors for joint positions and velocities without the requirement of any equality/inequality constraints on the
controller gains.

3.2 Controller design with unknown upper bound of the uncertainties

For the robotic manipulator systems (1), when the upper bound of the uncertainties u is unknown, then consider the
controller (7) with parameter adaptation law (8) and the following compensation terms:

𝚲 = − (b̂𝜃)2

b̂𝜃||x + 𝜀q̃|| + 𝜔2
(x + 𝜀q̃), (23)

̇̂b = 𝜆1𝜃||x + 𝜀q̃||, b̂(0) = 0, (24)

�̇� = −𝜆2𝜔, 𝜔(0) ≠ 0, (25)
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where b̂ is the estimate of b and b is defined as b = b0 + b1 + b2 + ‖KI‖, 𝜃 is defined as 𝜃 = max
(

1, ||q̇||, ||q||, ‖‖‖∫ t
0 q̃dl‖‖‖),

and 𝜆1, 𝜆2 are positive constants.

Theorem 2. Given the robotic manipulator dynamics (1) with unknown upper bound of the uncertainties u con-
trolled by the controller (7), (8), and (23)–(25), the position and velocity tracking errors q̃ and ̇̃q eventually asymp-
totically converge to zero locally, and the parameter estimation error P̃ as defined in Section 3.1 is eventually
bounded.

Proof. Consider the Lyapunov candidate function as follows:

V = 1
2
𝜼TH𝜼 + 1

2
P̃

T𝚽−1P̃ + 1
2
𝜆−1

1 b̃2 + 1
2
𝜆−1

2 𝜔2, (26)

where 𝜼, H are defined in Section 3.1, and b̃ = b − b̂.
As mentioned in Section 3.1, if the first inequality condition in (22) is satisfied, then the matrix H is symmetric positive

definite and consequently V > 0.
Differentiating V with respect to time and from (17), we get

V̇ = −(𝛾 + 𝜀)q̃TKPq̃ − ̇̃q
T

KD
̇̃q − 1

2
𝛾𝜀q̃TKDq̃ − 𝛾2𝜀q̃TM(q)q̃

+ 𝜀 ̇̃q
T

M(q) ̇̃q + 𝜀 ̇̃q
T

C(q, q̇)q̃ + 𝛾𝜀q̃TC(q, q̇)q̃

+
(

xT + 𝜀q̃T
)(

𝚲 − u − KI∫
t

0
q̃dl

)
+ 𝜆−1

1 b̃ ̇̃b + 𝜆−1
2 𝜔�̇�. (27)

Note that

−
(

xT + 𝜀q̃T
)(

u + KI∫
t

0
q̃dl

)
≤ ‖‖‖xT + 𝜀q̃T‖‖‖

(||u|| + ‖KI‖ ‖‖‖‖‖∫
t

0
q̃dl

‖‖‖‖‖
)

≤ ‖‖‖xT + 𝜀q̃T‖‖‖
[

b0 + b1||q̇|| + b2||q|| + ‖KI‖ ‖‖‖‖‖∫
t

0
q̃dl

‖‖‖‖‖
]

≤ ||x + 𝜀q̃||b𝜃, (28)

here Assumption 2 and the definitions of b and 𝜃 have been used.
With ̇̃b = − ̇̂b, (23)–(25) and (28), we have

(
xT + 𝜀q̃T

)(
𝚲 − u − KI∫

t

0
q̃dl

)
+ 𝜆−1

1 b̃ ̇̃b + 𝜆−1
2 𝜔�̇�

≤ − (b̂𝜃)2

b̂𝜃||x + 𝜀q̃|| + 𝜔2
||x + 𝜀q̃||2 + b𝜃||x + 𝜀q̃|| − b̃𝜃||x + 𝜀q̃|| − 𝜔2

= − 𝜔4

b̂𝜃||x + 𝜀q̃|| + 𝜔2
≤ 0. (29)

Then, from (29) and (18), V̇ given in (27) can be bounded as (21). Now, the stability conditions of Theorem 2 are the
same as that of Theorem 1. Thus, the same stability results on q̃, ̇̃q, and P̃ are obtained as in Theorem 1. Then Theorem 2
is proved. ▪

Remark 2. Theorem 2 implies that, for the robotic manipulator systems (1), when the upper bound of the uncertain-
ties is unknown, the controller given in (7), (8), and (23)–(25) guarantees the eventual local stability of the closed-loop
system and zero steady-state errors for joint positions and velocities without the requirement of any equality/inequality
constraints on the controller gains.
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Remark 3. Although the eventual local stability of the closed-loop system and zero steady-state errors for joint positions
and velocities are guaranteed under the two proposed controllers with no dependent on the conditions (22), big system
overshoots may occur in the transient process if the conditions (22) are seriously unsatisfied in the initial stage. Such
undesired big system overshoots can be avoided by making the conditions (22) satisfied at the initial time t = 0 s, that is,
making the following conditions satisfied:

⎧⎪⎪⎨⎪⎪⎩
𝜆min (KF0) ∕mM > 𝜆2, KF0 = (𝛾 + 𝜆)KD + KP,

(𝛾 + 𝜆)𝜆min (KP) + 𝛾𝜆

2
𝜆min (KD) + 𝛾2𝜆mm −

(
1
2
+ 𝛾

)
𝜆kc > 0,

𝜆min (KD) − 𝜆
(

mM + 1
2

kc

)
> 0.

(30)

Remark 4. Equation (30) implies that the parameter 𝜆 will considerably influence the system overshoots at the initial
stage. If 𝜆 is chosen a large value such that the conditions (30) are not satisfied, big system overshoots may occur at the
initial stage. Moreover, the larger the value of 𝜆, the bigger the system overshoots.

Remark 5. Compared with the classical PID controller and the adaptive PID controllers presented in Reference 13, the
two proposed adaptive PID controllers guarantee the eventual stability of the closed-loop system without the need of any
equality/inequality constraints on the controller gains. Moreover, in contrast to the adaptive PID controller presented
in Reference 12, the two proposed adaptive PID controllers guarantee the convergence of the joint position and velocity
tracking errors to zero instead of H∞ tracking performance.

Remark 6. Note that the two adaptive PID controllers proposed in this study require the information of the dynamic
model parameters. Some recent work on adaptive neural and adaptive fuzzy control of robot manipulators can avoid the
requirement of such information. Interested readers can refer to References 34 and 35.

3.3 Some guidance for controller parameters selection

The tracking performance largely depends on the parameters of the two designed controllers. Here are some guidance of
selecting these parameters and the effects of them in the system.

1. The PID parameters, that is, KP, KD, and KI can be selected by trial and error. The basic principle is as follows: The
proportional gain KP should be chosen appropriately large to improve the response speed and the steady-state accuracy
of the system, and suppress the influence of the uncertainties on the steady state of the system, but it cannot be chosen
too large since excessive proportional gain can easily lead to system overshoot and oscillation, and may make the
system unstable; The integral gain KI is used to eliminate the steady-state errors, it is not advisable to be chosen too
large since if the integral action is too strong and the integral output changes too fast, it will cause the phenomenon of
over-integration, resulting in integral overshoot and oscillation; The differential gain KD mainly affects the dynamic
quality of the control system. Appropriate differential action can speed up the system response, effectively reduce
overshoot, improve the dynamic characteristics of the system, and increase the stability of the system. It is suggested
that the differential gain should be chosen relatively small since too strong differential action will also cause the system
to be unstable and cause oscillation.

2. The gain 𝚽 determines the estimated speed of the unknown manipulator and load parameter P, the elements in 𝚽 are
suggested to be chosen greater or equal to 1 so as to guarantee a fast estimated speed. But they cannot be chosen too
large to avoid over-estimation.

3. The parameter 𝛾 in the exponential convergent factor 𝜀 should be chosen such that 𝛾 ≥ 1 to make 𝜀 quickly converge
so as to make the conditions (22) quickly be satisfied, and consequently the stability of the closed-loop system can be
quickly guaranteed. The parameter 𝜆 is suggested to be chosen small to make the conditions (30) be satisfied so as to
avoid big system overshoots at the initial stage, the details about how the parameter 𝜆 influences the system overshoots
at the initial stage can refer to Remark 4.

4. The parameter𝜆1 in the adaptation law (24) should be chosen large to ensure a fast estimation of the bound information
of the uncertainties so as to provide an effective compensation for the uncertainties. But the parameter 𝜆2 should be
chosen small since large 𝜆2 will lead to fast decrease of the parameter𝜔, and consequently results in the control inputs
chattering according to the control law (23).
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4 SIMULATION RESULTS AND DISCUSSION

In this section, simulation studies are performed to demonstrate the two proposed adaptive PID controllers. A two-link
planar rigid manipulator (see Figure 1) taken from Reference 32 with masses m1, m2 (including unknown load), lengths
l1, l2, angles q1, q2, and torques 𝜏1, 𝜏2 are used for simulations. The dynamic model of the manipulator is described by (1)
with

M(q) =

[
(m1 + m2) l2

1 + m2l2
2 + 2m2l1l2c2 m2l2

2 + m2l1l2c2

m2l2
2 + m2l1l2c2 m2l2

2

]
, (31)

C(q, q̇) =

[
−m2l1l2q̇2s2 −m2l1l2

(
q̇1 + q̇2

)
s2

m2l1l2q̇1s2 0

]
, (32)

G(q) =

[
(m1 + m2) l1gc2 + m2l2gc12

m2l2gc12

]
, (33)

in which c2 = cos (q2), s2 = sin (q2), c12 = cos (q1 + q2), and g is the gravitational acceleration. The parameter values are
taken from Reference 32 and are given by m1 = m2 = 0.5 kg, l1 = 1m, l2 = 0.8m. Thus we can take mM in Property 1 as
mM = 2.37. Provided the upper bound of the joint velocities as ||q̇i

|| ≤ 3 rad∕s (i = 1, 2), then we can take kc in Property 4 as
kc = 2.75. Let the unknown manipulator and load parameters vector P =

[
p1, p2, p3

]T be p1 = (m1 + m2) l2
1, p2 = m2l2

2,
p3 = m2l1l2 such as in Reference 32, then the regression matrix 𝚿

(
q, q̇, q̇r, q̈r

)
=

(
𝜓ij

)
2×3 defined in (5) can be obtained as

𝜓11 = q̈r1 + e1c2, 𝜓12 = q̈r1 + q̈r2, 𝜓13 = 2q̈r1c2 + q̈r2c2 − q̇2q̇r1s2 −
(

q̇1 + q̇2
)

q̇r2s2 + e1c12, 𝜓21 = 0, 𝜓22 = 𝜓12, 𝜓23 = q̈r1c2 +
q̇1q̇r1s2 + e1c12 where e1 = g∕l1.

The uncertainties are chosen as

u = [3 4]T + 3q̇ + 5q Nm. (34)

The desired joint trajectory is selected as

qd1 = qd2 = 𝜋∕2 + 0.3𝜋[1 − cos(1.26t)] rad. (35)

The initial values of the joint positions and velocities are chosen as q1(0) = 4𝜋∕9 rad, q2(0) = 7𝜋∕18 rad, q̇1(0) =
q̇2(0) = 0 rad∕s. The initial values of the adaptive parameters p̂i (i = 1, 2, 3) in parameter adaptation law (8) are chosen
as p̂1(0) = 4.1, p̂2(0) = 0.1, p̂3(0) = 1.7.

Here two simulation studies are carried out. The purpose of the first simulation study is to compare the two pro-
posed adaptive PID controllers with the classical PID controller, the adaptive PD controller,8 the LADRC,28,29 and the
NDOB30 based adaptive PID controller in terms of control performances when the conditions (30) are satisfied. The pur-
pose of the second simulation study is threefold: (1) to verify the property that the two proposed adaptive PID controllers
guarantee the eventual local stability of the closed-loop system and zero steady-state errors for joint positions and veloc-
ities without the requirement of any equality/inequality constraints on the controller gains, namely, with no dependent

F I G U R E 1 Two-link planar rigid robotic manipulator
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on the conditions (22); (2) to investigate the influence of the parameter 𝜆 on the performances of the two proposed adap-
tive PID controllers; and (3) to compare the two proposed adaptive PID controllers with the classical PID controller, the
adaptive PD controller,8 the LADRC,28,29 and the NDOB30 based adaptive PID controller in terms of control performances
when the conditions (30) are not satisfied.

4.1 The first simulation study

The task is to force the robotic manipulator to track the desired trajectory described in (35). Two cases are considered:
Case 1 with the known upper bound of the uncertainties and Case 2 with the unknown upper bound of the uncertainties.
For each case, five controllers are implemented, namely, the classical PID controller, the adaptive PD controller,8 the
LADRC,28,29 the NDOB30 based adaptive PID controller, and the corresponding adaptive PID controller proposed in this
work. The classical PID controller is described as

𝝉 = −KPq̃ − KD
̇̃q − KI∫

t

0
q̃dl. (36)

The adaptive PD controller presented in Reference 8 is given by

𝝉 = 𝚿
(

q, q̇, q̇r, q̈r
)

P̂ − KDx,
̇̂P = −𝚽𝚿T (

q, q̇, q̇r, q̈r
)

x. (37)

The LADRC is designed based on References 28 and 29, that is:
According to References 28 and 29, the linear extended state observer (LESO) of the robot system (1) is

⎧⎪⎨⎪⎩
̇̂q = ̂̇q + W1(q − q̂),
̇̇̂q = F̂ + B𝝉 + W2(q − q̂)
̇̂F = W3(q − q̂),

with q̂(0) = 0, ̂̇q(0) = 0, F̂(0) = 0, (38)

where q̂ and ̂̇q are the estimations of q and q̇, F̂ is the estimation of the total uncertainties F, F = −M−1(q)(C(q, q̇)q̇ +
G(q) + u − 𝝉) − B𝝉 , B is defined as the control coefficient matrix, W1, W2, and W3 are the designed parameter matrices
of the LESO, W1 = diag (3𝜔01, 3𝜔02), W2 = diag

(
3𝜔2

01, 3𝜔2
02
)
, and W3 = diag

(
𝜔3

01, 𝜔
3
02
)
, 𝜔01 and 𝜔02 are the control

bandwidths of the observer.
Then the control law is designed as

𝝉 = B−1
(
−F̂ − KPq̃ − KD

̇̃q
)
. (39)

The NDOB based adaptive PID controller is designed based on the NDOB presented in Reference 30, that is:
According to Reference 30, the NDOB of the robot system (1) is designed as

⎧⎪⎨⎪⎩
û = z + d,
ż = LM−1(q)(z + C(q, q̇)q̇ + G(q) + d − 𝝉)
d = ∫ t

0 Lq̈dl,

with z(0) = 0, (40)

in which û is the estimation of the uncertainties u, z is an auxiliary variable vector, d is a designed function vector, and L
is a designed parameter matrix of the NDOB.

Based on the above NDOB, the NDOB based adaptive PID controller can be described as

𝝉 = −KPq̃ − KD
̇̃q − KI∫

t

0
q̃dl +𝚿

(
q, q̇, q̇r, q̈r

)
P̂ + û. (41)
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T A B L E 1 Controller parameters for the five controllers for both cases

PID KP = diag(90, 90), KD = diag(15, 15), KI = diag(50, 50)

Adaptive PD KP = diag(90, 90), KD = diag(15, 15), 𝚽 = diag(3, 1, 3), 𝛾 = 6

Adaptive PID KP = diag(90, 90), KD = diag(15, 15), KI = diag(50, 50),
𝚽 = diag(3, 1, 3), 𝛾 = 6, 𝜆 = 0.1

LADRC KP = diag(90, 90), KD = diag(15, 15),

𝜔01 = 𝜔02 = 15, B =
⎡⎢⎢⎣

1.4 −0.1

−0.1 1.4

⎤⎥⎥⎦
NDOB based adaptive PID (called DOB PID for short
in simulation results)

KP = diag(90, 90), KD = diag(15, 15), L = diag(−150,−150)
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F I G U R E 2 Position and velocity tracking errors of joint 1 for the five controllers in Case 1

In Case 1, for the proposed adaptive PID controller (7)–(9), the upper bound parameters of the uncertainties u can be
selected as b0 = 5, b1 = 3, b2 = 5. To eliminate the undesirable chattering due to the discontinuous sign function in (9), the
saturation function sat[(x + 𝜀q̃)∕0.05] =

(
sat

[(
xi + 𝜀q̃i

)
∕0.05

])
2×1 is adopted to replace the sign function in (9), where

sat
(

xi + 𝜀q̃i

0.05

)
=

⎧⎪⎨⎪⎩
sgn

(
xi + 𝜀q̃i

)
, if |||(xi + 𝜀q̃i

)
∕0.05||| ≥ 1,(

xi + 𝜀q̃i
)
∕0.05, if |||(xi + 𝜀q̃i

)
∕0.05||| < 1.

(42)

In Case 2, for the proposed adaptive PID controller (7), (8), and (23)–(25), 𝜃 is determined by 𝜃 =
max

(
1, ||q̇||, ||q||, ‖‖‖∫ t

0 q̃dl‖‖‖), 𝜆1, 𝜆2 are chosen as 𝜆1 = 8, 𝜆2 = 0.4, and the initial value of 𝜔 is selected as 𝜔(0) = 100.
To make the comparison fair and persuasive, for each case, the corresponding controller parameters for the five con-

trollers are chosen exactly the same values as exhibited in Table 1. Note that the selected controller parameters can produce
joint torques that are reasonable in practical engineering for each controller. Simulation results are shown in Figures 2–4
for Case 1 and in Figures 5–7 for Case 2.

The joint position and velocity tracking errors for the five controllers are illustrated in Figures 2 and 3 for Case 1 and are
illustrated in Figures 5 and 6 for Case 2. It can be observed from these figures that for each case, all the five controllers can
ensure the manipulator to track the desired joint trajectory. However, for each case, the proposed adaptive PID controllers
perform the best in terms of tracking precision among the five controllers, showing better robustness against uncertainties
than the other four controllers. The NDOB based adaptive PID controller (DOB PID) slightly outperforms the LADRC,
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F I G U R E 3 Position and velocity tracking errors of joint 2 for the five controllers in Case 1
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F I G U R E 4 Control inputs for the five controllers in Case 1

this may because that the former only needs to estimate the uncertainties, but the later needs to estimate the whole robot
dynamics, that is, the robot dynamic model plus the uncertainties. The adaptive PD and PID controllers perform the
worst, since they do not contain the effective compensation term for the unmodeled dynamics and external disturbances.
In addition, by comparing Figures 2 and 3 in Case 1 with Figures 5 and 6 in Case 2, it can be clearly seen that the proposed
adaptive PID controller in Case 1 outperforms the proposed adaptive PID controller in Case 2, due to that in Case 1,
the upper bound of the uncertainties is exactly known such that the proposed adaptive PID controller in this case can
directly provide precise compensation for the uncertainties, but in Case 2, the upper bound of the uncertainties is not
known, so the proposed adaptive PID controller in this case has to estimate the bound information of the uncertainties
and the estimated errors exist, which effect the control performance. Apart from that, it can be observed that in Case 2, the
performance of the DOB PID is closed to the proposed adaptive PID controllers, this is because that the two controllers
have the same structure, only the way to estimate the uncertainties is different.
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F I G U R E 5 Position and velocity tracking errors of joint 1 for the five controllers in Case 2
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F I G U R E 6 Position and velocity tracking errors of joint 2 for the five controllers in Case 2

The control inputs (i.e., the joint torques) for the five controllers are shown in Figure 4 for Case 1 and are shown in
Figure 7 for Case 2. By observing the two figures, the control inputs for the five controllers during the steady state are
almost the same, but the initial joint torques for the LADRC are a little bigger than for the other four controllers. As can
be seen in Figure 4, the control input chattering is effectively weakened for the proposed adaptive PID controller in Case
1 due to using the saturation function. However, it is observed in Figure 7 that the control inputs have slight chattering
after 9.5 s for the proposed adaptive PID controller in Case 2, this is because from the adaptation law of 𝜔 given in (25), 𝜔
will approach to zero as time increase, which leads to that 𝚲 given in (23) tends to discontinuity near (q̃, ̇̃q) = (0, 0), as a
result, the control law 𝝉 tends to discontinuity near (q̃, ̇̃q) = (0, 0).

4.2 The second simulation study

In this simulation study, the tracking task in the first simulation study is repeated. Also, two cases are considered: Case 1
with the known upper bound of the uncertainties and Case 2 with the unknown upper bound of the uncertainties. The
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F I G U R E 7 Control inputs for the five controllers in Case 2
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F I G U R E 8 Position and velocity tracking errors of joint 1 for the proposed adaptive PID controller in Case 1 with three different values
of 𝜆

two proposed adaptive PID controllers are simulated with three different values of 𝜆, namely, 𝜆 = 0.1, 5, and 20 where
𝜆 = 0.1 makes the conditions (30) satisfied while 𝜆 = 5 and 20 make the conditions (30) unsatisfied. Other controller
parameters are the same as those in Table 1. Simulation results are shown in Figures 8 and 9 for Case 1 and are shown in
Figures 10 and 11 for Case 2. Note that to keep the article reasonably concise, we only give out the position and velocity
tracking results of the first joint for instance.

Figure 8 illustrates the position and velocity tracking errors of the first joint for the proposed adaptive PID controller
in Case 1 with three different values of 𝜆 and Figure 9 illustrates those errors for the proposed adaptive PID controller in
Case 2 with three different values of 𝜆. It can be seen from the two figures that, even though the conditions (30) are not
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F I G U R E 9 The parameter estimation error P̃ for the proposed adaptive PID controller in Case 1 with three different values of 𝜆
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F I G U R E 10 Position and velocity tracking errors of joint 1 for the proposed adaptive PID controller in Case 2 with three different
values of 𝜆

satisfied with 𝜆 = 5 and 20, the two proposed adaptive PID controllers still guarantee eventual asymptotical converge of
the joint position and velocity tracking errors and the eventual boundedness of the parameter estimation error, which
implies that the two proposed adaptive PID controllers ensure the eventual stability of the closed-loop system and zero
steady-state errors for joint positions and velocities without the requirement of any equality/inequality constraints on the
controller gains. However, the system overshoots are bigger for 𝜆 = 5 and 20 than for 𝜆 = 0.1. Moreover, the larger the
value of 𝜆, the bigger the system overshoots.

Figure 10 plots the estimation errors of the unknown manipulator and load parameters for the proposed adaptive
PID controller in Case 1 with three different values of 𝜆 and Figure 11 plots those errors for the proposed adaptive PID
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F I G U R E 11 The parameter estimation error P̃ for the proposed adaptive PID controller in Case 2 with three different values of 𝜆

controller in Case 2 with three different values of 𝜆. Clearly, 𝜆 = 0.1 outperforms 𝜆 = 5 and 20 in terms of system
overshoots and estimation precision and 𝜆 = 20 performs the worst.

In addition, by comparing Figures 8 and 10 with Figures 2 and 5, it can be observed that, even when the conditions
(30) are not satisfied with 𝜆 = 5 and 20, the two proposed adaptive PID controllers can still provide smaller steady-state
joint position and velocity tracking errors, namely, better robustness against uncertainties than the other four controllers.
But the two proposed adaptive PID controllers obviously result in bigger system overshoots than the other four controllers
when the conditions (30) are seriously unsatisfied with 𝜆 = 20. Therefore, it is concluded that, if the value of 𝜆 is not
chosen too large such that the conditions (30) are not seriously unsatisfied, the two proposed adaptive PID controllers
can still provide better overall control performances than the other four controllers.

5 CONCLUSIONS

In this article, two novel adaptive PID controllers are proposed to solve the trajectory tracking control problem of robotic
manipulators with known or unknown upper bound of the uncertainties, respectively. The two proposed adaptive PID
controllers ensure the eventual local stability of the closed-loop system and zero steady-state errors for joint positions
and velocities without the requirement of any equality/inequality constraints on the controller gains compared with the
classical PID controller, the adaptive PID controllers presented in Reference 12, and the adaptive PID controller presented
in Reference 13. Numerical simulations verify such feature of the two proposed adaptive PID controllers, and clarify
the influence of the parameter 𝜆 on the performances of the two proposed adaptive PID controllers. In addition, the
comparisons of the control performance between the two proposed adaptive PID controllers and the other four controllers,
namely, the classical PID controller, the adaptive PD controller,8 the LADRC,28,29 and the NDOB30 based adaptive PID
controller have also been carried out through numerical simulations. The simulation results show that the two proposed
adaptive PID controllers provide better robustness to uncertainties than the other four controllers.
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