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ABSTRACT

Optic nerve head (ONH) detection has been a crucial area of study in ophthalmology for years. However,
the significant discrepancy between fundus image datasets, each generated using a single type of fundus
camera, poses challenges to the generalizability of ONH detection approaches developed based on semantic
segmentation networks. Despite the numerous recent advancements in general-purpose semantic segmentation
methods using convolutional neural networks (CNNs) and Transformers, there is currently a lack of benchmarks
for these state-of-the-art (SoTA) networks specifically trained for ONH detection. Therefore, in this article, we
make contributions from three key aspects: network design, the publication of a dataset, and the establishment
of a comprehensive benchmark. Our newly developed ONH detection network, referred to as ODFormer, is
based upon the Swin Transformer architecture and incorporates two novel components: a multi-scale context
aggregator and a lightweight bidirectional feature recalibrator. Our published large-scale dataset, known as
TongjiU-DROD, provides multi-resolution fundus images for each participant, captured using two distinct types
of cameras. Qur established benchmark involves three datasets: DRIONS-DB, DRISHTI-GS1, and TongjiU-DROD,
created by researchers from different countries and containing fundus images captured from participants of
diverse races and ages. Extensive experimental results demonstrate that our proposed ODFormer outperforms
other state-of-the-art (SoTA) networks in terms of performance and generalizability. Our dataset and source
code are publicly available at https://mias.group/ODFormer.

1. Introduction

1.1. Background

Fundus images, which are photographs of the back of the eyes, are

rim [4]. The ONH is critical in fundus image analysis as it serves as a
reference point for various diagnostic tasks, including fovea location
estimation [5] and cup-to-disc ratio calculation [6]. The detection
of the ONH is thus of considerable diagnostic importance [7-11]. It
is a fundamental step in computer-aided systems that assist ophthal-

crucial for diagnosing not only retinal and ophthalmic conditions but
also cerebrovascular and other systemic diseases [1]. Among the vari-
ous anatomical features visible in a fundus image, the optic nerve head
(ONH) is of particular significance [2]. The ONH generally presents
as a bright yellowish area, slightly oval in shape, with blood vessels
converging towards its center [3]. It consists of two distinct zones: (1)
the central zone, or the cup, and (2) the peripheral zone, or neuroretinal

* Corresponding Authors

E-mail addresses: biyanlong@tongji.edu.cn (Y. Bi), rui.fan@ieee.org (R. Fan).

https://doi.org/10.1016/j.inffus.2024.102533

mologists in diagnosing conditions such as diabetic retinopathy [12].
Moreover, accurate ONH detection can provide valuable diagnostic
insights. For instance, the size of the ONH, derived from its detection,
is commonly used to diagnose glaucoma by assessing the cup-to-disc
ratio [13]. Achieving precise ONH detection is, therefore, crucial in
ophthalmology, significantly impacting both diagnosis and treatment.
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1.2. Motivation

The rapid progress in deep learning technologies has spurred the
development of numerous semantic segmentation approaches based on
neural networks, which are powerful tools for accurate ONH detec-
tion. Compared to traditional Convolutional Neural Networks (CNNs),
the advantage of Transformers equipped with self-attention mecha-
nisms lies in providing a more effective strategy for global context
modeling [14]. They have proven superior, especially in terms of
generalizability on new, unseen datasets, compared to CNNs in various
foundational computer vision tasks [11]. Several endeavors have been
made to integrate the strengths of Transformer and CNN. For exam-
ple, Polarformer [15] introduces a hybrid CNN-Transformer and polar
transformation network, leveraging the Transformer’s large receptive
fields to incorporate global contextual information. Similarly, based on
U-Net, UT-Net [16] employs a Transformer to retain learned spatial
gradient information and utilizes this knowledge in subsequent stages,
enabling improved identification of local minor gradient changes near
the boundary region. Nevertheless, despite the impressive capabilities
Transformers have demonstrated in vision tasks, their performance still
has weaknesses due to the following three factors:

1. The architecture often overlooks local spatial priors within each
patch when dividing images into sequences of non-overlapping
patches.

2. Transformers struggle to explicitly extract structural information
due to the use of absolute positional encodings.

3. The frequent use of upsampling to leverage the multi-scale fea-
tures generated by the Transformer can lead to the loss of
low-resolution details, posing significant challenges for dense
prediction tasks such as detection and segmentation.

Variations in fundus imaging technology lead to diverse morpho-
logical characteristics across different fundus image datasets, which
poses a significant challenge for many ONH detection methods in
achieving robust generalizability. For instance, portable fundus cam-
eras provide adaptability and convenience in various settings but often
yield images of varying quality compared to professional desktop cam-
eras. While advanced cameras deliver high-quality images that are
crucial for accurate disease diagnosis, their higher costs and larger
sizes may limit accessibility and pose practical challenges in certain
environments. Additionally, there is a scarcity of comprehensive fundus
image datasets specifically designed to overcome this limitation. Most
existing datasets are captured using only one type of fundus camera,
which restricts the evaluation of performance and generalizability of
segmentation algorithms. Furthermore, there is a notable absence of a
dedicated benchmark for ONH detection using state-of-the-art (SoTA)
semantic segmentation networks. Given these challenges, there is a
compelling need to conduct a comprehensive comparison of SoTA
networks, trained and validated across various datasets, to accurately
assess the performance and generalizability of segmentation networks
in ONH detection.

1.3. Novel contributions

To address the above-mentioned limitations, we introduce
ONH Detection Transformer (ODFormer), a novel semantic segmen-
tation network, developed specifically for ONH detection. We first
present a Multi-Scale Context Aggregator (MSCA), which partitions the
input image into patches while simultaneously enlarging the receptive
field using a series of atrous convolutions with increasing atrous rates.
Additionally, building upon the Swin Transformer [17] architecture, we
design an encoder that improves the position encoding in self-attention
calculations. This is achieved by integrating a relative position bias map
extracted through an additional convolutional layer, obtaining more
comprehensive relative and absolute position information. Regarding
our ODFormer decoder, which is developed based on UPerNet [18],

a significant contribution lies in the Lightweight Bidirectional Feature
Recalibrator (LBFR). It alleviates the loss of high-frequency spatial
information resulting from both the upsampling operation and the
fusion of feature maps within the pyramid structure. Moreover, we pub-
lish a large-scale, comprehensive fundus image dataset, referred to as
Tongji University Dual-Resolution ONH Detection (TongjiU-DROD)
dataset. For each participant, fundus images were captured using two
distinct cameras, and the semantic segmentation ground-truth anno-
tations for these images were manually annotated. We establish an
ONH detection benchmark using our published TongjiU-DROD dataset,
in conjunction with two publicly available datasets: DRIONS-DB [19]
and DRISHTI-GS1 [20]. This benchmark enables both qualitative and
quantitative comparisons of SoTA CNNs and Transformers for ONH
detection. Extensive experimental results demonstrate (1) the effec-
tiveness of our designed modules within ODFormer, (2) its superior
performance and generalizability across various datasets, and (3) the
suitability of our curated dataset for training and evaluating ONH
detection networks.
In summary, the contributions of this article are as follows:

1. A novel ONH detection network, referred to as ODFormer;

2. A new dataset for ONH detection, captured using two different
types of fundus cameras;

3. A benchmark of SoTA semantic segmentation CNNs and Trans-
formers trained on the three aforementioned datasets for ONH
detection.

1.4. Article structure

The remainder of this article is structured as follows: Section 2
reviews the SoTA CNNs-based and Transformer-based semantic seg-
mentation networks. Section 3 introduces our proposed ODFormer. Sec-
tion 4 details our proposed TongjiU-DROD dataset. Section 5 presents
the experimental results and compares our network with other SoTA
networks. Finally, we conclude this article in the last section.

2. Literature review
2.1. Semantic segmentation CNNs

Fully Convolutional Network (FCN) [21] is a pioneering work for
end-to-end semantic segmentation. Unlike traditional CNNs, which of-
ten employ multiple fully connected layers after the final convolutional
layer to transform a feature map into a fixed-length feature vector,
FCNs can process input images of any size. It upsamples the feature
map of the final layer using a deconvolution layer, allowing the output
to revert to the original image size and generate pixel-level predictions
while maintaining the spatial information of the original input. How-
ever, FCNs are somewhat limited in leveraging global scene category
cues. The Pyramid Scene Parsing Network (PSPNet) [22] addresses
this limitation by performing spatial pooling at various grid scales,
which has demonstrated outstanding performance on several semantic
segmentation benchmarks. PSPNet combines a global pyramid pooling
structure to expand pixel-level features with the extended FCN architec-
ture [23] for semantic segmentation, without significantly increasing
the computational expense in terms of the number of parameters.
The Feature Pyramid Network (FPN) [24], a general-purpose feature
extractor, capitalizes on multi-level feature representations organized
in a natural, pyramidal hierarchy. It introduces a minor computational
overhead through a top-down architecture and lateral connections that
fuse high-level semantic information with intermediate and low-level
details. Furthermore, the Unified Perceptual Parsing Network (UPer-
Net) [18] integrates the architecture and the Pyramid Pooling Module
(PPM) from PSPNet [22], addressing the issue of a relatively small
empirical receptive field in deep CNNs.

Unlike PSPNet, DeepLabv3 [25] employs multiple parallel atrous
convolutions, known as Atrous Spatial Pyramid Pooling (ASPP), with
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varying rates to capture contextual information across different scales.
While this approach enables the final feature map to hold rich semantic
information, it often lacks accurate object boundary details due to
the use of pooling and striding operations in the network’s backbone.
To address this shortfall, DeepLabv3+ [26] introduces a concise yet
efficient decoder to the existing DeepLabv3 architecture. This modi-
fication significantly enhances segmentation results, especially along
object boundaries, by refining segmentation details and aligning more
closely with object contours. Both ASPP [25] and PPM [22] utilize
predefined convolutions with different dilation rates and multi-scale
pooling operations. These methods are sensitive to the size of input
images and the scale differences between images during the training
and inference phases. The fixed weights, predefined dilation rates, and
pooling grids often struggle to adapt to internal scale variations present
in input images of arbitrary sizes and scales, which can lead to less
optimal performance under varied imaging conditions.

The self-attention module enhances an individual element by ag-
gregating features from a set of elements, with aggregation weights
typically based on the embedded feature similarities between these ele-
ments. This mechanism is effective at capturing contexts and long-range
dependencies. With the widespread integration of attention mecha-
nisms into neural networks, the Non-local neural network (NonLo-
cal) [27] computes the attention mask by deriving a correlation ma-
trix between every spatial point in the feature map. However, the
computational demands and substantial GPU memory consumption
of NonLocal limit its practical deployment in many real-world ap-
plications. To improve efficiency and reduce memory usage without
sacrificing the overall performance, the Asymmetric Non-local Neural
Network (ANN) [28] selectively samples representative points from
feature maps. Meanwhile, the Global Context Network (GCNet) [29]
simplifies the non-local block by computing a global attention map
and sharing it across all locations, significantly reducing computa-
tional load. The Dual Attention Network (DANet) [30] encodes global
context through a carefully designed self-attention mechanism that
incorporates both spatial and channel attention. While DANet adapts
weights to compute pair-wise similarity or learn pixel-wise attention
maps, it tends to overlook the role of global guidance from the global
information extractor. In contrast, APCNet considers global-guided lo-
cal affinity to estimate the contribution degree of subregions from
both local and global representations, leveraging multi-scale repre-
sentation using a feature pyramid. The Dynamic Multi-scale Network
(DMNet) [31] learns variable-scale features with dynamic multi-scale
filters that adaptively select important areas, enabling the model to
better extract contextual information. This approach provides greater
adaptability and flexibility, as each branch can capture distinct scale
features relevant to the input image, offering enhanced capability in
handling diverse scenarios.

2.2, Semantic segmentation transformers

Self-attention is increasingly recognized as a crucial component in
CNN architectures, particularly due to its ability to effectively scale
with large receptive fields [32]. This building block is commonly
applied atop networks to capture long-range interactions and enhance
high-level semantic features essential for vision tasks [33]. Several
networks have refined the self-attention mechanism to maximize its
benefits, achieving impressive results. For instance, DeFusionNET [34]
introduces a newly designed channel attention module that selectively
emphasizes discriminative features, significantly enhancing the feature
refinement process.

Self-attention also plays a pivotal role in Transformers [35], which
utilize this mechanism to capture long-range dependencies among to-
kens within a sentence. Moreover, Transformers are highly adept at
parallelization, facilitating efficient training on large datasets [36,37].
The success of Transformers in Natural Language Processing (NLP)

has spurred the adoption of similar models in computer vision, par-
ticularly for semantic segmentation problems [38]. Inspired by these
successes, researchers have explored the potential of Transformers to
learn useful representations from images. In the domain of semantic
segmentation, the Object-Contextual Representation (OCR) [39] uti-
lizes Transformers to enhance pixel representations by associating each
pixel with the representation of its corresponding object class. This
technique significantly improves the accuracy of pixel classification.
Further demonstrating the capabilities of Transformers in computer
vision, networks such as SegFormer and Twins have made notable
contributions. SegFormer [40] combines the efficiency of Transformers
with lightweight multilayer perceptron (MLP) decoders, creating a
simple yet powerful semantic segmentation framework. Twins [41]
introduces two innovative vision Transformer (ViT) backbones, Twins-
PCPVT and Twins-SVT, showing that a combination of local and global
attention can yield impressive results, albeit with increased computa-
tional demands. Additionally, the Swin Transformer [17] introduces a
variant of ViT [42] which has a hierarchical architecture. This model
utilizes shifted windows to compute representations, providing the
flexibility to operate at multiple scales with a computational complexity
that scales linearly with image size. This adaptability makes the Swin
Transformer particularly well-suited for tasks that require detailed
spatial resolution at various scales.

3. Methodology

The architecture of our developed ODFormer is illustrated in Fig. 1.
It consists of three main components:

+ A multi-scale context aggregator for feature initialization.

* An ODFormer encoder for the extraction of hierarchical feature
maps from RGB images.

* An ODFormer decoder that recursively refines and fuses the multi-
scale feature maps to generate the final semantic predictions.

3.1. Multi-scale context aggregator

To transform the given fundus image I € R"*">3 into a sequence
of patches suitable for processing with the Transformer, with H and
W representing the height and width of the image, respectively, the
conventional ViT model directly splits the fundus image into non-
overlapping patches using linear projection [42]. Nevertheless, the ViT
architecture poses a significant challenge concerning the absence of
long-range dependencies, primarily due to its limited receptive fields.
This limitation holds paramount importance in semantic segmentation
tasks. To overcome this limitation, we design an MSCA, which first
utilizes a series of m atrous convolutions w, (d € [1,m]NZ representing
the atrous rate) to extract multi-scale feature maps, which are then
aggregated for feature initialization. As the network’s depth increases,
the atrous rates progressively become larger, leading to an expanded
receptive field. This process can be formulated as follows:

F!' =LN (Conv’ld(ConCa[(wd(f)))) e RT¥TxC" (6D
5%5  \ d€[Lm]

where Conv2d denotes a 2D convolution layer, ConCat(-) represents
a concatenation operation performed in the channel dimension, F'
denotes the initialized feature maps, which are subsequently fed into
our ODFormer encoder, and C' represents the channel number of
F!. Section 5.2 details the experiments conducted to demonstrate the
effectiveness of our proposed MSCA.
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3.2. ODFormer encoder

Our ODFormer encoder is designed based on the Swin Transformer
to generate hierarchical feature maps. Our ODFormer encoder contains
k stages. In each stage, 2n; ODFormer blocks are stacked sequentially
for feature transformation. The input feature maps Ffj_l are first
processed through a novel multi-head self-attention (MHSA) block
that incorporates relative position bias to produce the intermediate
feature maps F ?j, which are subsequently processed by a multi-layer
perceptron (MLP) to generate the encoded feature maps Ff}., where

FS_.FM.FS e RFTFETCTN G iz e (1,211 N Z).

ViT performs self-attention calculations on the input features in a
parallel and uniform manner, which results in the neglect of order and
position information within the sequence [42]. In contrast, the Swin
Transformer incorporates absolute positional encoding to account for
the order of tokens [17]. However, this approach introduces unique
positional encoding for each patch, compromising invariance and ne-
glecting local relationships and structural information within patches.
To address this issue, we introduce an additional convolutional layer
to extract a relative position bias map and incorporate a residual
connection to ensure stable model training. When performing self-
attention calculations, let X' = LN(F:.‘:‘J._]) € RM™xd and X0 ¢ pM*xd
be the input and output matrices, respectively, where LN(-) denotes
layer normalization, M denotes the side length of each patch, and
d represents the query/key dimension. We first construct the relative
position bias map for each head, as follows:

B, = Sigmoid(Conv2d(X")) € RM*M® 1 e [1,N,], )

where N, denotes the number of heads. Subsequently, the query matrix
0 = X!W? € RM™ key matrix K = X/WK e RM™d and
value matrix V = X'WY € RM*xd are learned for each head,
where WKV g pd*d are linear projection matrices. Then Q, K. V are
evenly divided into N, equal parts along the dimension direction, and
2y d
each partis Q. K .V, € RM *Na . A multi-head self-attention is then
performed as follows:
H, = Sof oK, V,+B
= Softmax(——=)x ¥V, + B,.
r x( T )XV, +B, 3
Np

X© can therefore be obtained through:

X9 = ConCat(H )+ X'.
reu,w( ) (4)
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Fig. 2. The architecture of multi-scale context aggregator.
s : .
The output feature maps F;; can then be yielded through:
s M M
Fy, =MLP(LN(FM)) + FM. (5)

To produce hierarchical features, our ODFormer block reduces the
spatial resolution of the input features through downsampling:

Fjo=IN(Conv2d(F,,, D), (i #1). (6)

The hierarchical encoder feature maps 7£ = {FF, . Ff}, where
FE=F :."‘Zﬂ_, can therefore be extracted (see Fig. 2).

3.3. ODFormer decoder

We design our ODFormer decoder based on UPerNet [18] to re-
cursively recalibrate and fuse the hierarchical feature maps extracted
by our ODFormer encoder. However, the use of simplistic upsam-
pling operations, such as bilinear interpolation, can lead to the loss
of local information, resulting in unsatisfactory boundary details in
semantic segmentation. To overcome this limitation, we aim to in-
corporate more relevant local information into the features before
performing upsampling. To achieve this, we design an LBFR (see Fig. 3)
to capture additional local information while simultaneously reducing
computational complexity and the number of network parameters. This
approach allows us to enhance the representation of local details in the
fundus segmentation process. P

Our LBFR first extracts an attention map F/' € R grom
the encoder feature maps F !"‘ In this process, the conventional 2D
convolution with a large kernel size is replaced with two 1D spatial
separable convolutions, as follows:

Fl=k,®k,® Ff), )

where @ denotes the convolution operation, and k, and k, represent
1D convolutions that operate in the horizontal and vertical directions,
respectively. The performance comparison of different convolutional
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Fig. 4. Examples of fundus images from a single participant caplured using two
different cameras: (a){(d) are the fundus images captured using a Zeiss CLARUS 500
fundus camera and their ground-truth annotations; (e}-(h) are the fundus images
caplured using an NES-1000P handheld mydriasis-free portable fundus camera and their
ground-truth annotations.

strategies that possess receptive fields of the same size are presented in
Section 5.2. The original encoder feature maps F f are then recalibrated
and fused through:

FR= Cc;]m{m(RcLU(BN(Colm;Zd(F;‘)))) +FE. ®)
x x

Our ODFormer decoder recursively generates a collection of k£ decoder

feature maps 70 = (FP, ..., FP}, where

F] = Ff +Resize(F})), (i € [1,k]nZ), 9)

where Resize(-) denotes the resizing operation via bilinear interpolation.
The output feature maps from the ODFormer decoder are obtained
through:
o : D Hx®k
FO = Cony2d( ConCat (Resize(F[)) ) € R+ K, 0)
3x3 i€|1.k] f
where K represents the total number of classes. Finally, F© is passed

through a bilinear layer to match the size of the input fundus image I
for segmentation.

4. Datasets

We first summarize the existing datasets created for ONH detection
in Section 4.1. Then we present a detailed description of our published
TongjiU-DROD dataset in Section 4.2.

4.1. Existing datasets

« DRIONS-DB [19] contains 110 pairs of fundus images (resolution:
600 x 400 pixels), each with two manually-labeled ground-truth
annotations. 90 pairs are used for model training, while the re-
maining 20 pairs are used for model validation. Within these im-
ages, 50 instances exhibit various defects, including illumination
artifacts, rim blurredness, and papillary atrophy. These defects
could potentially pose challenges to the accurate segmentation of
fundus images [3].

DRISHTI-GS1 [20] contains 101 pairs of high-resolution fundus
images (resolution: 2470 x 1760 pixels) including samples from
both healthy and glaucomatous eyes. 81 pairs of images are used
for model training, while the remaining 20 pairs of images are
used for model validation. For each image in the DRISHTI-GS1
dataset, ground-truth annotations are collected for both ONH and
cup regions. These annotations are obtained through the input of
four different human experts with varying levels of clinical experi-
ence. The average boundaries for both the ONH and cup regions
are derived from the manually marked boundaries provided by

these experts.

Nonetheless, it is important to note that both these datasets were
generated exclusively using a single type of fundus camera. Conse-
quently, semantic segmentation models trained solely on either of these
datasets may demonstrate limited generalizability, primarily because of
the limited diversity in the data sources. Therefore, one of our primary
objectives is to create a diverse fundus image dataset, comprising
images captured using various types of fundus cameras. This dataset
will facilitate the evaluation of the generalizability of ONH detection
networks across different imaging devices.

4.2. TongjiU-DROD Dataset

4.2.1. Data collection

The data collection process involves 147 participants, aged between
18 and 30 years, with an equal distribution of males and females. All
images were collected with the explicit consent of the participants.
Data from both eyes were contributed by 53 participants, while 94
participants provided data from only one eye. Each fundus image was
captured by two experts using different cameras, yielding two fundus
images per eye.

Considering that early indications of disease are often subtle and
challenging to discern through direct observation or low-resolution
fundus imaging, we first employed a Zeiss CLARUS 500 fundus camera
to acquire high-resolution images (resolution: 3912 x 3912 pixels), with
the macula at the center, providing a field of view of approximately
133°. The Zeiss CLARUS 500 fundus camera is renowned for its true
color imaging, high-definition capabilities, and ultra-wide-angle field
of view, enabling the capture of high-resolution fundus images with
exceptional clarity, achieving resolutions as fine as 7 pm across a range
from the macula to the far periphery.

Moreover, fundus images (resolution: 1920x 1088 pixels), with a field
of view of approximately 40°, were also captured using an NES-1000P
handheld mydriasis-free portable fundus camera provided by Shanghai
New Eyes Medical Co., Ltd. Its lightweight and portable design makes
it an ideal tool for clinicians who need the flexibility to perform remote
examinations or who do not have access to a desktop fundus camera.
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Fig. 5. Qualitative experimental results achieved by ONH detection networks trained on the TongjiU-DROD dataseL
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Table 1
The segmentation results with respect to different atrous convolutions in MSCA. The
best results are shown in bold type.

Table 3
Ablation study to demonstrate the effectiveness of our proposed MSCA and LBFR. The
best results are shown in bold type.

Method ToU (%) Ace (%) Fsc (%)
Swin-T 87.27 93.20 90.54
+ MSCA (m=1) 87.27 93.20 90.54
+ MSCA (m=2) 87.53 93.35 95.45
+ MSCA (m = 3) 87.81 93.51 94.06
TongjiU-DROD + MSCA (m=4) 88.05 93.64 92.53
+ MSCA (m=35) 88.09 93.67 91.42
+ MSCA (m=6) 88.21 93.74 93.06
+ MSCA (m=17) 88.27 93.77 92.85
+ MSCA (m = §) #8.44 93.87 93.19
Swin-T 91.12 95.36 96.83
+ MSCA (m=1) 01.14 95.36 97.39
+ MSCA (m=2) 01.14 95.36 97.39
+ MSCA (m = 3) 01.37 95.49 97.98
DRIONS-DB + MSCA (m=4) 01.43 95.52 96.83
+ MSCA (m=35) 01.45 95.54 96.58
+ MSCA (m=6) 01.26 95.43 97.93
+ MSCA (m=17) 91.51 95.57 97.69
+ MSCA (m = §) 91.30 95.45 97.96
Swin-T 86.28 54.81 77.15
+ MSCA (m=1) 91.99 95.83 97.32
+ MSCA (m=2) 92.03 95.85 97.72
+ MSCA (m = 3) 92.70 96.21 98.29
DRISHTI-GS + MSCA (m=4) 93.08 96.41 92.45
+ MSCA (m=35) 93.08 96.42 95.35
+ MSCA (m=6) 93.13 96.44 96.97
+ MSCA (m=17) 93.60 96.96 96.69
+ MSCA (m = §) 93.79 96.79 97.13
Table 2

Ablation study to demonstrate the effectiveness of our proposed LBFR. The best results
are shown in bold type.

Method Tongjill-DROD DRIONS-DB DRISHTI-GS1
ToU (%)
a Swin-T 87.45 68.27 86.01
= + strategy (A) 86.75 7348 90.62
= + strategy (B) 87.61 68.54 86.92
® + strategy (C) 86.60 72.61 88.29
S + LBFR 88.22 70.57 86.03
@ Swin-T 53.51 90.07 83.76
a b strategy (A) 34.57 90.83 86.85
5 + strategy (B) 54.66 90.13 86.21
= + strategy (C) 59.70 90.35 79.98
2 + LBFR 75.48 90.49 86.91
= Swin-T 40.27 83.46 92.05
E + strategy (A) 51.69 80.97 92.86
£ + strategy (B) 47.87 83.21 93.28
5 + strategy (C) 50.24 83.55 92.88
A + LBFR 59.92 80.79 93.68

4.2.2. Ground truth annotation

Our TongjiU-DROD dataset was developed in collaboration with
three ophthalmologists who were responsible for participant selec-
tion, image selection, and diagnosis assignment. Furthermore, two
experts independently provided manual ONH ground-truth annota-
tions, which were subsequently reviewed and refined by a senior
expert. Fig. 4 illustrates an example of four fundus images obtained
from two eyes belonging to the same participant, along with their
respective ground-truth annotations.

4.2.3. Dataset preparation

The data collection process described above yielded a total of 400
pairs of fundus images, among which 360 pairs are used for model
training, while the remaining 40 pairs are used for model validation. To
avoid potential bias introduced by the similarity of fundus images taken
from the same participant, we determined the training and validation
sets based on individual participants. This strategy guarantees that

msca  ippr  TongiiUDROD  DRIONSDB  DRISHTLGSI
IoU (%)

a X x 87.45 68.27 86.01
5 Vv x 87.81 7427 87.37
2 x v 88.22 70.57 86.03
s Vv v 8835 74.18 8839
@ x x 53.51 90.47 83.76
2 Vv x 59.66 91.37 86.05
g x v 75.48 90.49 86.21
e v 68.52 90.53 86.43
o x x 40.27 83.46 92.05
2 Vv x 45.05 81.69 92.70
5 x v 50.78 81.89 92.41
& Vv v 63.69 83.93 93.91

fundus images from a given participant do not appear in both the
training and validation sets simultaneously.

5. Experimental results
5.1. Experimental setup

We employ two publicly available fundus image datasets, DRISHTI-
GS1 and DRIONS-DB, along with our created TongjiU-DROD dataset,
in our experiments to evaluate the performance of 16 existing SoTA
semantic segmentation networks, as well as our proposed ODFormer.

A square region was first automatically cropped from the input
fundus image with a crop size of 512 x 512 pixels and then resized
to 2048 x 512 pixels for model training. During the training process,
several data augmentation strategies, including random horizontal flip-
ping and photometric distortion with a ratio of 0.5, were applied to
increase the amount and type of variation of the training set. It should
be noted here that although there are various augmentation methods,
they should be chosen according to image characteristics and applied
carefully with appropriate parameters to increase the reliability and
robustness of the methods [45-47]. For fair comparisons across all
experiments, we adopt the same training and augmentation strategy
in all experiments. All networks are trained for an identical number of
iterations, and the best model is selected based on its performance on
the validation set. We consistently use the Stochastic Gradient Descent
(SGD) optimizer to optimize all models. Three common evaluation
metrics are employed to quantify the model performance: accuracy
(Acc), F-score (Fsc), and the Intersection over Union (IoU).

Fig. 5 shows the visualization of ONH detection results achieved
by models trained on the TongjiU-DROD dataset. Next, we conduct
ablation studies in Section 5.2 to demonstrate the effectiveness of
our novelties. Then, an ONH detection benchmark that provides a
detailed performance comparison between the 16 SoTA networks and
our ODFormer is presented in Section 5.3.

5.2. Ablation study

We adopt Swin Transformer as the baseline network due to its supe-
rior performance across three datasets. To validate the effectiveness of
the MSCA structure, we test MSCA with m € [1, 8] artous convolutions.
As shown in Table 1, the detection performance gradually improves
with the increase in the number of atrous convolutions and finally sta-
bilizes when m = 3. Therefore, in subsequent experiments, we employ
MSCA with three atrous convolutions. The results demonstrate that
integrating our MSCA with the Swin Transformer leads to significant
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Table 4

The ONH detection benchmark, showing quantitative comparisons among 11 SoTA CNNs, five SoTA Transformers, and our proposed ODFormer across three datasets. The best

results are shown in bold type.

Method Tongjiu-DROD DRIONS-DB DRISHTI-GS1
IoU (%) Fsc (%) Acc (%) ToU (%) Fsc (%) Acc (%) ToU (%) Fsc (%) Ace (%)
FCN [21] 86.16 92.56 91.91 8.83 16.23 99.69 33.26 49.92 92.87
PSPNet [22] 86.07 92.51 90.06 31.76 48.21 33.09 66.29 79.72 67.61
FPNNet [24] 84.11 91.37 89.93 28.92 44.86 83.30 79.58 88.63 90.64
UPerNet [18] 85.67 92.28 94.26 38.82 55.93 40.42 57.45 72.97 59.53
Deeplabv3 [43] 86.65 92.85 92.33 40.35 57.50 42.56 67.38 80.51 70.63
NonLocal [27] 87.84 93.52 93.67 29.02 44.99 29.97 62.64 77.03 63.76
ANN [28] 86.88 92.98 94.33 12.59 22.36 98.94 75.02 85.73 92.27
GCNet [29] 87.67 93.43 92.03 9.33 17.07 98.68 79.82 88.78 87.92
TongjiU-DROD DANet [30] 87.41 93.28 90.28 10.84 19.56 95.82 81.43 89.77 84.40
APCNet [44] 85.77 92.34 91.60 37.12 54.15 38.92 69.73 82.16 72.20
DMNet [31] 80.34 89.10 90.09 15.58 26.96 15.66 35.73 52.65 36.16
OCRNet [39] 87.18 93.15 91.40 20.74 34.35 86.69 80.09 89.44 82.93
ViT-UPerNet [42] 84.13 91.38 90.70 62.12 76.64 65.24 74.61 85.46 77.05
SegFormer [40] 85.35 92.10 92.59 63.00 77.30 74.18 78.16 87.74 80.14
Twins [41] 87.03 93.07 91.40 60.00 75.00 63.78 92.16 95.92 94.46
Swin-T [17] 87.45 93.31 95.93 68.27 81.14 73.63 86.01 92.48 89.23
ODFormer (Ours) 88.35 93.82 94.37 7418 85.18 89.63 88.39 93.83 97.85
FCN [21] 49.28 66.50 68.08 68.48 81.29 70.34 53.77 69.93 53.90
PSPNet [22] 60.04 75.03 81.13 90.22 94.86 96.05 85.78 92.35 89.98
FPNNet [24] 32.35 48.89 85.98 87.92 93.57 95.08 84.39 91.53 86.33
UPerNet [18] 30.4 46.63 69.26 89.95 94.71 94.89 78.79 88.14 80.22
Deeplabv3 [43] 44.93 62.00 81.17 87.01 93.05 96.37 83.76 81.16 87.97
NonLocal [27] 65.97 79.50 76.92 89.90 94.68 96.90 84.23 91.44 86.94
ANN [28] 34.62 51.43 83.07 89.82 94.64 96.52 82.26 90.26 87.61
GCNet [29] 55.09 71.04 89.10 88.57 93.94 98.51 81.53 89.83 86.78
DRIONS-DB DANet [30] 57.01 72.62 73.10 89.96 94.71 95.7 82.74 90.55 86.60
APCNet [44] 40.79 57.94 89.20 82.51 90.42 98.81 74.70 85.52 77.95
DMNet [31] 45.38 62.43 47.40 72.84 82.28 82.32 41.59 58.75 41.65
OCRNet [39] 35.86 52.79 91.09 87.13 93.13 97.95 75.06 85.76 79.18
ViT-UPerNet [42] 39.76 56.89 92.68 90.84 95.20 96.77 75.58 86.09 86.64
SegFormer [40] 16.96 29.01 88.98 90.10 94.79 96.55 84.04 91.33 90.20
Twins [41] 23.88 38.55 94.54 91.15 95.37 96.14 85.79 92.35 87.03
Swin-T [17] 53.51 69.71 64.23 90.07 94.00 93.91 83.76 91.16 88.27
ODFormer (Ours) 68.52 8132 80.22 90.53 95.03 96.64 86.43 92.72 96.80
FCN [21] 44.57 61.66 64.08 12.23 21.79 93.74 93.24 96.50 95.72
PSPNet [22] 63.14 77.41 84.42 63.64 77.78 70.62 92.16 95.92 95.09
FPNNet [24] 42.68 59.83 91.07 38.26 55.35 99.06 91.21 95.40 96.76
UPerNet [18] 43.73 60.85 87.81 62.75 77.11 70.03 92.12 95.90 96.11
Deeplabv3 [43] 57.35 72.90 80.07 57.02 72.63 71.29 91.90 95.78 95.25
NonLocal [27] 58.98 74.30 76.23 41.90 59.05 48.61 91.92 96.32 97.03
ANN [28] 62.71 76.33 83.64 79.64 45.72 66.72 91.76 95.7 97.18
GCNet [29] 58.52 73.83 80.30 65.89 79.44 76.94 92.90 96.32 95.36
DRISHTI-GS1 DANet [30] 61.48 76.14 79.58 31.86 48.33 99.23 92.91 96.32 97.03
APCNet [44] 51.85 68.29 67.40 62.78 77.13 66.98 91.93 95.80 96.20
DMNet [31] 38.06 55.16 38.11 52.80 68.11 74.62 87.91 93.57 91.52
OCRNet [39] 40.47 57.62 93.07 46.78 63.74 94.03 91.05 95.32 97.09
ViT-UPerNet [42] 43.14 60.27 90.92 82.58 90.46 98.61 85.30 92.07 92.64
SegFormer [40] 35.86 52.79 91.09 87.13 93.13 97.95 75.06 85.76 79.18
Twins [41] 21.65 35.59 80.89 82.85 90.62 95.24 92.25 95.97 97.53
Swin-T [17] 40.27 57.41 92.77 83.46 90.29 97.98 92.05 95.86 96.94
ODFormer (Ours) 63.69 T7.81 88.19 83.93 91.27 96.80 93.91 96.86 96.88

performance enhancements, achieving improvements of 0.39%-7.51%
in terms of IoU and 1.15%-21.14% in terms of Fsc.

Since the LBFR is specifically designed to reduce network parame-
ters while maintaining the same receptive field size, our investigation
focuses on various convolutional strategies that possess receptive fields
equivalent to the LBFR. As shown in Table 2, strategy (A) involves
replacing two 1D spatial separable convolutions in LBFR with three
3 x 3 convolutions, while strategy (B) replaces them with one 3 x 3
convolution followed by one 5 x 5 convolution, and strategy (C)
replaces them with one 7 x 7 convolution. The results indicate that
our LBFR exhibits superior detection performance and generalizability
compared to these strategies. It achieves an improvement of 0.42% to
1.63% in terms of IoU, as well as an enhancement in IoU on external
datasets ranging from 0.02% to 21.97%. These improvements under-
score the efficacy of our LBFR approach, which also boasts a minimized
parameter count, enhancing both efficiency and effectiveness.

Furthermore, we evaluate the individual effectiveness of MSCA and
LBFR, as well as their compatibility. The results shown in Table 3
indicate that (1) MSCA alone achieves an improvement of up to 0.36%
in IoU on the same dataset, and an IoU increase on external datasets of
up to 6.15%, (2) LBFR alone results in a maximum IoU improvement
of 0.77% compared to the baseline setup, and an IoU improvement on
external datasets of up to 21.97%, and (3) The combined utilization of
MSCA and LBFR modules yields better performance than using these
modules independently.

5.3. ONH detection benchmark

This subsection introduces an ONH detection benchmark, providing
both quantitative and qualitative comparisons among 16 SoTA net-
works and our newly developed ODFormer, all trained on the three
aforementioned datasets. Fig. 5 shows examples of the qualitative
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results, highlighting that ODFormer delivers more accurate and robust
results than all other SoTA networks tested on the TongjiU-DROD
dataset with the same input. Quantitative comparisons are detailed in
Table 4. These results clearly illustrate the superior performance and
improved generalizability of our ODFormer over all other networks in
ONH detection, emphasizing the effectiveness of Transformer-based ar-
chitectures. Specifically, compared to the Swin Transformer, ODFormer
demonstrates improvements in both Fsc and IoU by approximately
0.51-1.03% and 0.46-1.86%, respectively. Furthermore, it is evident
that the network’s generalizability is significantly improved, with the
Fsc seeing increases ranging from 0.98-20.40%, and IoU improvements
spanning 0.47-23.42%. This underscores ODFormer’s robust capability
to handle diverse imaging conditions and dataset variations, making it
a highly effective tool in ONH detection.

6. Discussion

We discuss several limitations in this study and propose potential
directions for future work.

We have not incorporated a denoising module into our ODFormer,
which could potentially lead to an overfitting problem, thus com-
promising its generalizability. This limitation might result in poor
performance when the model is confronted with new data. As a future
work, the performance of the proposed method can be assessed after
integrating an effective denoising method since it is known that images
can be noisy and denoising should be carefully employed to avoid a loss
of information [48].

Moreover, during the feature extraction process, ODFormer does not
sufficiently account for the positional relationship between high-level
and low-level features, as well as the relative spatial arrangement of
encoded features. This can potentially lead to the loss of crucial infor-
mation regarding relative positions and angles. As another future study,
the performance of the ODFormer structure can be compared with the
performance of a capsule network-based method because capsule net-
works can preserve spatial relationships of learned features, and thus,
they have been applied for several image classification works [49-51].

Additionally, ODFormer can be modified and applied to different
medical images, particularly to achieve precise segmentation and clas-
sification of nuclei, polyps, and skin lesions, which are essential for
accurate diagnosis of cancer types, and diagnosis of several diseases
in gynecologic oncology because efficient automated methods are still
needed in these fields although there are some methods based on
Transformers and several attention mechanisms [52-56].

7. Conclusion

In this article, we conducted a comprehensive study on semantic
segmentation, including establishing a benchmark, developing a novel
network based on Swin Transformer, and publishing a dataset specif-
ically for ONH detection. Our experiments validate that our proposed
ODFormer achieves SoTA performance for ONH detection compared to
all other existing networks. Additionally, our newly published TongjiU-
DROD dataset, containing fundus images captured by two distinct
cameras, helps alleviate the scarcity of multi-resolution fundus image
datasets. This makes it a valuable resource for both research and
clinical applications. We believe that the provided benchmark and
our proposed dataset will stimulate further research in this area. Fur-
thermore, the techniques we developed can also be applied to solve
other general semantic segmentation challenges. In the future, we
plan to continue exploring Transformer-based architectures that can
optimize feature representations more effectively and efficiently for
ONH detection.
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