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Abstract— Accurate estimation of stereo camera extrinsic
parameters is crucial to guarantee the performance of stereo
matching algorithms. In prior arts, the online self-calibration of
stereo cameras has commonly been formulated as a specialized
visual odometry problem, without taking into account the
principles of stereo rectification. In this paper, we first delve
deeply into the concept of rectifying homography, which serves
as the cornerstone for the development of our novel stereo
camera online self-calibration algorithm, for cases where only
a single pair of images is available. Furthermore, we introduce
a simple yet effective solution for global optimum extrinsic
parameter estimation in the presence of stereo video sequences.
Additionally, we emphasize the impracticality of using three
Euler angles and three components in the translation vectors
for performance quantification. Instead, we introduce four new
evaluation metrics to quantify the robustness and accuracy of
extrinsic parameter estimation, applicable to both single-pair
and multi-pair cases. Extensive experiments conducted across
indoor and outdoor environments using various experimental
setups validate the effectiveness of our proposed algorithm.
The comprehensive evaluation results demonstrate its superior
performance in comparison to the baseline algorithm. Our
source code, demo video, and supplement are publicly available
at mias.group/StereoCalibrator.

I. INTRODUCTION

Stereo vision is a fundamental robot perception technique,
widely used to acquire dense depth information from a
pair of synchronized images [1]–[5]. Stereo camera calibra-
tion is typically carried out in an offline fashion using a
checkerboard pattern, producing the intrinsic matrices Kl

and Kr for the left and right cameras, respectively, as well
as the extrinsic matrix P , defining the relative transformation
between the two cameras as follows:

p̃C
r = P p̃C

l =

[
R t
0⊤ 1

]
p̃C
l , (1)

where R ∈ SO(3) represents the rotation matrix, t denotes
the translation vector, 0 represents a vector of zeros, and
p̃C
l and p̃C

r denote the homogeneous coordinates of pC
l =

[xl, yl, zl]
⊤ and pC

r = [xr, yr, zr]
⊤ in the left and right

camera coordinate systems, respectively. By estimating the

This research was supported by the National Key R&D Program of China
under Grant 2020AAA0108100, the National Natural Science Foundation of
China under Grant 62233013, the Science and Technology Commission of
Shanghai Municipal under Grant 22511104500, the Fundamental Research
Funds for the Central Universities, and Xiaomi Young Talents Program (B
Corresponding author: Rui Fan).

All authors are with the College of Electronics & Information En-
gineering, Shanghai Research Institute for Intelligent Autonomous Sys-
tems, the State Key Laboratory of Intelligent Autonomous Systems, and
Frontiers Science Center for Intelligent Autonomous Systems, Tongji
University, Shanghai 201804, China (e-mails: {hongbozhao, yikangzhang,
qjchen}@tongji.edu.cn, rui.fan@ieee.org).

rectifying homography based on R and t, and pre-processing
the raw stereo image pairs, stereo matching is simplified as
a 1-D dense correspondence search problem [6].

Research conducted with various types of stereo cameras
has shown that Kl and Kr remain relatively stable even
in challenging conditions, e.g., crashes or prolonged me-
chanical vibrations [7]. In contrast, R and t can undergo
significant changes even with moderate shocks or during
extended operations in environments with vibrations, such
as those experienced by aerial robots [8]. A minor error in
the extrinsic calibration of the stereo camera can lead to
a non-negligible disparity error [9]. This could have seri-
ous consequences, particularly in safety-critical applications,
such as autonomous driving and mobile robot navigation,
where miscalculating the distance to a nearby obstacle could
lead to a collision [10]. Therefore, stereo camera online self-
calibration is essential to ensure the accuracy and reliability
of the depth information obtained through stereo matching,
making it a cornerstone technology for any robotics system
that relies on precise 3-D environmental understanding.

In this paper, we introduce a novel stereo camera online
self-calibration algorithm for extrinsic parameter estimation.
Our algorithm is developed based on the principles of stereo
rectification. Rather than treating stereo camera online self-
calibration as a specialized visual odometry problem, where
the left and right images are treated as successive video
frames and an energy function w.r.t. R and t is minimized,
we propose to rotate the left and right camera coordinate
systems using two independent rotation matrices Rl =
[rl,1, rl,2, rl,3]

⊤ and Rr = [rr,1, rr,2, rr,3]
⊤, respectively,

and accumulate the residuals only in the vertical direction.
This strategy effectively prevents the emergence of a positive
semidefinite coefficient matrix during the optimization pro-
cess for the translation vector, consequently improving the
algorithm’s ability to handle initial estimations.

Furthermore, instead of resorting to the computationally
intensive visual odometry back-end optimization algorithms
to estimate global optimum extrinsic parameters R∗ and t∗,
we propose a simple yet effective solution by introducing a
novel energy function that measures the cosine similarities
between a collection of given normalized vectors and the
optimum one. Its closed-form solution can be easily derived.
This energy function is employed to estimate the global
optimum rotation axis and the translation vector.

Moreover, in [7], the mean values and standard deviations
of three Euler angles (computed from the rotation matrix) as
well as the three components in the translation vectors are
used as the evaluation metrics. However, these evaluation
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metrics are impractical due to the interdependency among
the individual components with the other two. Therefore,
we propose four new evaluation metrics to comprehensively
quantify both the robustness and accuracy of extrinsic pa-
rameter estimation for both single-pair and multi-pair cases.

Through extensive experiments conducted on a large-
scale dataset containing over 6K pairs of real-world stereo
images collected from both indoor and outdoor environments
with respect to different extrinsic parameters, as well as
on two public datasets, KITTI 2015 [11] and Middlebury
2021 [12], perturbed in different directions, we demonstrate
the effectiveness of our proposed algorithm and its superior
performance compared to the baseline algorithm.

II. RELATED WORKS

Stereo camera online self-calibration is an important yet
under-investigated problem in the current body of literature.
This section reviews existing explicit programming-based ap-
proaches. Most prior arts treat this task as a specialized form
of visual odometry, in which R and t for each stereo pair
are obtained via the decomposition of the essential matrix
E = [t]×R. Subsequently, R∗ and t∗ are derived using
back-end optimization techniques, e.g., bundle adjustment
(BA) [13] and Kalman filter (KF) [14]. For example, Mueller
and Wuensche [15] presented an algorithm to estimate the
transformation from the vehicle coordinate system to the left
and right camera coordinate systems, respectively, as well
as the relative transformation between two cameras. Salient
correspondences observed by both cameras are continuously
tracked within a 3-D space. An unscented Kalman filter
(UKF) algorithm is subsequently applied to recursively refine
the extrinsic parameters of the stereo camera and update the
3-D coordinates of all observed points. In their follow-up
study [16], Mueller and Wuensche introduced a sequential,
block-wise filtering approach, where measurements corre-
sponding to the same 3-D point observed by both cameras
are jointly filtered. Additionally, they leveraged an extended
Kalman filter (EKF) to yield R∗ and t∗.

Rather than directly estimating R and t, Dang et al.
[17] proposed to separately rotate the left and right camera
coordinate systems using two independent rotation matri-
ces Rl and Rr. Additionally, they explored the impact
of calibration errors on 3-D reconstruction and designed a
continuous, recursive refinement technique based on iterative
EKF to simultaneously update both intrinsic and extrinsic
parameters of the stereo camera. Subsequently, Hansen et al.
[18] extended the work [17] by formulating and solving the
following optimization problem based on stereo rectification
for Rl and Rr estimation:

argmin
Rl,Rr

∑
i

∥∥∥∥∥r⊤l,2pC
l,i

r⊤l,3p
C
l,i

−
r⊤r,2p

C
r,i

r⊤r,3p
C
r,i

∥∥∥∥∥
2

2

, (2)

where pC
l,i and pC

r,i denote the i-th pair of corresponding
3-D points in the left and right camera coordinate systems,
respectively. R∗ and t∗ are also obtained via KF.

The aforementioned studies merely focus on estimating R
and t in single-pair cases and mainly seek global optimum

solutions R∗ and t∗ using Kalman filters. Ling and Shen [7]
proposed to solve the following optimization problem based
on the epipolar constraint:

argmin
R,t

∑
i

∥∥∥pC
l,i

⊤
[t]×RpC

r,i

∥∥∥2
2
. (3)

However, their study does not extend to the estimation of R∗

and t∗. Inspired by prior works [7], [17], [18], we introduce
a novel stereo camera online self-calibration algorithm for
both single-pair and multi-pair cases.

III. METHODOLOGY

A. Dive deeper into rectifying homography

In this subsection, we first provide readers with mathemat-
ical preliminaries of stereo rectification, which is typically
undertaken prior to performing stereo matching. A pair
of correspondences pl = [ul, vl]

⊤ and pr = [ur, vr]
⊤,

respectively in the left and right stereo images, can be
associated with their camera coordinates pC

l and pC
r using

their known intrinsic matrices Kl and Kr as follows:

zlp̃l = Klp
C
l , zrp̃r = Krp

C
r , (4)

where p̃l,r represents the homogeneous coordinates of pl,r.
The stereo rectification process that reprojects left and right
image planes onto a common plane parallel to the stereo rig
baseline can be expressed as follows:{

z′lp̃
′
l = KpC

l
′ = KRlp

C
l = zlKRlK

−1
l p̃l,

z′rp̃
′
r = KpC

r
′ = KRrp

C
r = zrKRrK

−1
r p̃r,

(5)

where pC
l
′ = [x′

l, y
′
l, z

′
l]
⊤ and pC

r
′ = [x′

r, y
′
r, z

′
r]

⊤ represent
the transformed coordinates of pC

l and pC
r in the new left and

right camera coordinate systems, respectively, p′
l = [u′

l, v
′
l]
⊤

and p′
r = [u′

r, v
′
r]

⊤ denote the projections of pC
l
′ and pC

r
′ in

the rectified left and right images, respectively, and K is the
newly defined camera intrinsic matrix. Due to the inherent
scale ambiguity in the uncalibrated stereo geometry [19],
we treat t in (1) as a unit vector and obtain the following
expression1:

pC
l
′ = pC

r
′ + i1. (6)

Combining (5), (6) and (1) results in:{
R = R−1

r Rl,

t = −rr,1.
(7)

Drawing upon the principles of stereo rectification [20], we
yield the expression of Rr as follows:

Rr =
[
− t, i3 × rr,1, rr,1 × rr,2

]⊤
. (8)

Therefore, the conventional stereo camera calibration prob-
lem, which involves the estimation of R and t, can be
redefined as a novel problem focused on estimating Rl and

1An identity matrix I = [i1, i2, i3].
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Rr. As a pair of well-rectified stereo images adhere to the
condition v′l = v′r, we can deduce the following constraint:

r⊤l,2p
C
l

r⊤l,3p
C
l

=
r⊤r,2p

C
r

r⊤r,3p
C
r

, (9)

which is used in our method to formulate the energy function.

B. Energy function and its solution for single-pair cases

Based on the stereo rectification constraint introduced in
(8) and (9), we define an (N + 1)-entry vector

e(θl,θr) = [e0, e1, . . . , eN ]⊤, (10)

where

e0(θl,θr) = i⊤3 rr,2 = i⊤2 exp([θr]×)i3,

ei(θl,θr) =
r⊤l,2p

C
l,i

r⊤l,3p
C
l,i

−
r⊤r,2p

C
r,i

r⊤r,3p
C
r,i

=
i⊤2 exp([θl]×)p

C
l,i

i⊤3 exp([θl]×)pC
l,i

−
i⊤2 exp([θr]×)p

C
r,i

i⊤3 exp([θr]×)pC
r,i

, i ∈ [1, N ] ∩ Z,

(11)
and θl and θr denote the rotation vectors corresponding to
Rl and Rr, respectively. e1 to eN represent the residuals
between v′l and v′r. Therefore, we can formulate the energy
function for stereo camera self-calibration as follows:

E = ∥e(θl,θr)∥22 =
∥∥∥i⊤2 exp([θl]×)i3

∥∥∥2
2

+

N∑
i=1

∥∥∥∥∥i
⊤
2 exp([θl]×)p

C
l,i

i⊤3 exp([θl]×)pC
l,i

−
i⊤2 exp([θr]×)p

C
r,i

i⊤3 exp([θr]×)pC
r,i

∥∥∥∥∥
2

2

.
(12)

The optimum Rl and Rr can be yielded by minimizing (12).
To this end, we formulate the first-order Taylor expansion of
ei(θl,θr) as follows:

ei(θ̂l + δθl, θ̂r + δθr) ≈ ei(θ̂l, θ̂r) + J i(θ̂l, θ̂r)
⊤δθ, (13)

where θ̂ = [θ̂
⊤
l , θ̂

⊤
r ]

⊤ is the current estimate, δθ =
[δθ⊤

l , δθ
⊤
r ]

⊤ is the increment,
J0(θl,θr) = [0⊤,

∂rr,23

∂θ⊤
r

]⊤ = [0, 0, 0, i⊤2 [Rri3]×]
⊤,

J i(θl,θr) = [
∂ei

∂θ⊤
l

,
∂ei

∂θ⊤
r

]⊤, i ∈ [1, N ] ∩ Z,

(14)
and

∂ei

∂θ⊤
l

=
−r⊤l,3pC

l,ii
⊤
2 [Rlp

C
l,i]× + r⊤l,2p

C
l,ii

⊤
3 [Rlp

C
l,i]×

(r⊤l,3p
C
l,i)

2
,

∂ei

∂θ⊤
r

=
r⊤r,3p

C
r,ii

⊤
2 [Rrp

C
r,i]× − r⊤r,2p

C
r,ii

⊤
3 [Rrp

C
r,i]×

(r⊤r,3p
C
r,i)

2
.

(15)
E

′
, the approximate E, can be yielded as follows:

E
′
= min

δθ

N∑
i=0

∥∥∥ei(θ̂l, θ̂r) + J i(θ̂l, θ̂r)
⊤δθ

∥∥∥2
2
. (16)

δθ can be solved using the Levenberg-Marquardt (LM)
algorithm [21] as follows:

(

N∑
i=0

wiJ iJ i
⊤ + λI)δθ = −

N∑
i=0

wiJ iei, (17)

where λ is the damping factor used in the LM algorithm,

wi =

{
1, |ei| ≤ ct

ct/|ei|, |ei| > ct
(18)

is the weight assigned to the i-th pair of correspondences [7],
and ct represents a pre-defined Huber norm [22] threshold.
We can then update θ̂l and θ̂l through:{

R̂l ← exp([δθl]×)R̂l, θ̂l ← log(R̂l),

R̂r ← exp([δθr]×)R̂r, θ̂r ← log(R̂r).
(19)

When ∥δθ∥2 is considered to be insufficiently small, the
update process for R̂l, R̂r, θ̂l, and θ̂r terminates. The
extrinsic parameters R and t of the stereo camera can,
therefore, be obtained by substituting R̂l and R̂r into (7).

C. Global optimization for multi-pair cases

Upon acquiring the extrinsic parameters Rk and tk for
each pair of stereo images, with the superscript k denoting
the k-th stereo image pair, it becomes feasible to deduce the
global optimum extrinsic parameters R∗ and t∗ for the stereo
camera. Given that tk are normalized, they can be projected
onto a sphere within a confined region. Similar distributions
are also witnessed for the rotation axes vk, which can be
computed using the Rodrigues’ rotation formula [23] as
follows: 

sk = arccos(
tr(Rk)− 1

2
),

[vk]× =
Rk −Rk⊤

2 sin sk
,

(20)

where sk is the rotation angle. The optimum translation
vector t∗ and rotation axis v∗ can, therefore, be determined
by finding the position on the sphere, where the projections
distribute most intensively [24]. This can be achieved through
the following global optimization process using M groups
of extrinsic parameters Rk and tk:

t∗ = argmax
t∗

M∑
k=1

tk
⊤
t∗ =

∑M
k=1 t

k∥∥∥∑M
k=1 t

k
∥∥∥
2

,

v∗ = argmax
v∗

M∑
k=1

vk⊤v∗ =

∑M
k=1 v

k∥∥∥∑M
k=1 v

k
∥∥∥
2

.

(21)

The optimum rotation matrix R∗ can, therefore, be obtained
as follows:

R∗ = exp([θ∗]×) = exp([s∗v∗]×), (22)

where s∗ is determined using the central tendency measure-
ment of all rotation angles sk, and θ∗ represents the global
optimum rotation vector.
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IV. EXPERIMENTAL RESULTS

A. Experiment setup and implementation details

In our experiments, we used two MV-SUA202GC global-
shutter CMOS cameras from MindVision to collect data
(around 6K stereo pairs with a resolution of 1,920×1,200
pixels) from both indoor and outdoor environments. We
achieved camera hardware synchronization by utilizing a
20Hz sync signal supplied by an FPGA, in conjunction with
an external power source delivering 24V. Rather than placing
the two cameras at relatively ideal positions similar to those
in [7], we mounted the left camera at five different viewpoints
(middle, top, bottom, left, and right views) to conduct a
comprehensive evaluation of our algorithm’s performance, as
illustrated in Fig. 1. The intrinsic parameters of each camera
are acquired through offline calibration with a checkerboard
using the algorithm proposed in [25] and are assumed to
remain consistent throughout the experiments.

Furthermore, we used two public stereo matching datasets,
KITTI 2015 [11] and Middlebury 2021 [12], to further
quantify the performance of our algorithm. Similarly, we
manually created four additional viewpoints (top, bottom,
left, and right views) with a rotation angle of 5◦.

B. Evaluation metrics

Ling and Shen [7] utilized the mean values and standard
deviations of three Euler angles (computed from the rotation
matrix) and the three components in the translation vectors
as the evaluation metrics for performance quantification.
Nevertheless, these evaluation metrics are impractical due
to the interdependency among the individual components
with the other two. Therefore, we propose the following four
new evaluation metrics to comprehensively quantify both the
robustness and accuracy of extrinsic parameter estimation for
both single-pair and multi-pair cases.

• et representing the angular error between the estimated
and ground-truth global optimum translation vectors:

et = arccos(t⊤t∗), (23)

• eθ representing the distance between the estimated and
ground-truth global optimum rotation vectors:

eθ = ∥θ∗ − θ∥2 , (24)

• σt representing the standard deviation of angular errors
between the estimated (using a single stereo pair) and
the ground-truth global optimum translation vectors:

σt =

√√√√ 1

M

M∑
k=1

(
arccos(t⊤tk)

)2

, (25)

• σθ representing the standard deviation of distances
between the estimated (using a single stereo pair) and
the ground-truth global optimum rotation vectors:

σθ =

√√√√ 1

M

M∑
k=1

∥∥∥θk − θ
∥∥∥2
2
, (26)

Right Camera

Left Camera

⑤ Right View

② Top View

③ Bottom View

④ Left View

①Middle View

Fig. 1: The experimental setup with the left camera mounted
at five different viewpoints.

where t and θ are obtained via stereo camera offline extrinsic
calibration with a checkerboard using the algorithm intro-
duced in [25]. et and eθ are used to quantify the accuracy
of the global optimum extrinsic parameters obtained using
all stereo image pairs, while σt and σθ are used to quantify
the robustness of single-pair online self-calibration.

C. Comprehensive performance evaluation

The quantitative experimental results on our created large-
scale dataset are presented in Table I and Fig. 2. These
results suggest that our algorithm not only achieves higher
accuracy in t∗ and θ∗ estimation for multi-pair cases, but
also demonstrates superior robustness when estimating tk

and θk for single-pair cases, across various viewpoints within
dynamic environments. Compared to the approach proposed
in [7], our algorithm decreases eθ and et by an average
of 47.63% and 72.90% in indoor scenarios. Additionally,
it lowers eθ and et by an average of 72.78% and 76.48%
in outdoor scenarios. In terms of σθ and σt, our algorithm
lowers them by an average of 52.27% and 77.36% in indoor
scenarios and by an average of 49.87% and 55.17% in
outdoor scenarios when compared to the approach proposed
in [7]. However, the unsatisfactory performance of both
algorithms in indoor environments has exceeded our initial
expectations. Upon analysis, we attribute these unexpected
results to the dynamic data collection process, in which we
moved the stereo camera to capture video sequences for
global optimum extrinsic parameter estimation. In indoor
environments, the 3-D coordinates of detected keypoints are
typically in close proximity to the stereo camera, leading
to relatively large positional differences between successive
video frames. Consequently, this can introduce notable mo-
tion blur in the images, resulting in less accurate matched
correspondences.

As can be seen from Table II and Fig. 3, the quantita-
tive experimental results on the KITTI 2015 dataset yield
conclusions consistent with those observed in the above-
mentioned outdoor experiments. We analyze that this might
be due to the fact that image quality in the KITTI 2015
dataset is slightly higher than in our dataset, with fewer
cases affected by motion blur, enabling both algorithms to
achieve relatively stable results. Furthermore, due to the
fact that moving vehicles generally have a negligible yaw
angle, except for when they are turning, the estimation of
the rotation vector is relatively stable and accurate. Through

14482
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TABLE I: A quantitative comparison of the global optimum extrinsic parameter estimation between our proposed algorithm
and [7] on our created large-scale dataset.

Senario Algorithm
Middle View Top View Bottom View Left View Right View

et (rad) eθ (rad) et (rad) eθ (rad) et (rad) eθ (rad) et (rad) eθ (rad) et (rad) eθ (rad)

Indoor 1
[7] 0.2897 0.0398 0.0274 0.0102 0.1088 0.0154 0.1206 0.0173 0.0468 0.0104

Ours 0.0562 0.0071 0.0053 0.0064 0.0571 0.0067 0.0198 0.0150 0.0061 0.0026

Indoor 2
[7] 0.2181 0.0165 0.1297 0.0121 0.1192 0.0139 0.1236 0.0163 0.1029 0.0194

Ours 0.0567 0.0048 0.0514 0.0039 0.0498 0.0091 0.0338 0.0161 0.0173 0.0121

Outdoor 1
[7] 0.1134 0.0225 0.1578 0.0366 0.1394 0.0184 0.0318 0.0074 0.1828 0.0112

Ours 0.0238 0.0014 0.0103 0.0031 0.0106 0.0053 0.0052 0.0038 0.0289 0.0029

Outdoor 2
[7] 0.1448 0.0087 0.2730 0.0114 0.1257 0.0247 0.1349 0.0142 0.2466 0.0521

Ours 0.0808 0.0016 0.0337 0.0037 0.0367 0.0023 0.0237 0.0074 0.1308 0.0198

Outdoor 1

Middle
view

Top
view

Bottom
view

Left
view

Right
view

Middle
view

Top
view

Bottom
view

Left
view

Right
view

Middle
view

Top
view

Bottom
view

Left
view

Right
view

Middle
view

Top
view

Bottom
view

Left
view

Right
view

Outdoor 2

0.0523
0.0251

0.1469

0.0623
0.1863

0.0167

0.0452

0.0770

0.1169 0.0276

0.0065

0.0339

0.0038
0.0022

0.0022

0.0051

0.0136

0.0087

0.0067

0.0034

0.2535

0.1541

0.0707
0.0814

0.0773

0.0683

0.1238 0.0759

0.0294

0.0807

0.012

0.0136
 

0.0170

7 0.0059

0.0052

0.0124

0.0206

0.0226

0.0012

0.0050

Indoor 1

Middle
view

Top
view

Bottom
view

Left
view

Right
view

Middle
view

Top
view

Bottom
view

Left
view

Right
view

Middle
view

Top
view

Bottom
view

Left
view

Right
view

Middle
view

Top
view

Bottom
view

Left
view

Right
view

Indoor 2

0.1671 0.0471
0.1731 0.0761

0.2369

0.0572

0.0310

0.1059

0.3011

0.0432

0.0490 0.0122

0.0088
0.0921

0.0116

0.0076

0.0100

0.0333 0.0038

0.0122

0.1450

0.1593 0.0405

0.1689 0.0339

0.0302

0.2825

0.3616

0.0323

0.0309

0.0167

0.0312 0.0155
0.0139 0.0057

0.0114

0.0156

0.0161

0.0147

0.0042

0.25

0

0.5

0.75
0.15

0.1

0.05

0

0.3

0.15

00

0.015

0.03

0.045

0

0.25

0.5

0

0.5

1

0.025

0

0.05

0.075

0

0.025

0.05

Fig. 2: Comparison between [7] and our proposed algorithm on our created large-scale datasets. presents the results
achieved by Ling and Shen [7], and presents the results achieved by our proposed method.

TABLE II: A quantitative comparison of the global optimum extrinsic parameter estimation between our proposed algorithm
and [7] on the KITTI 2015 [11] and Middlebury 2021 [12] datasets.

Dataset Algorithm
Middle View Top View Bottom View Left View Right View

et (rad) eθ (rad) et (rad) eθ (rad) et (rad) eθ (rad) et (rad) eθ (rad) et (rad) eθ (rad)

KITTI
[7] 0.0715 0.0030 0.1155 0.0027 0.0600 0.0037 0.1494 0.0053 0.0461 0.0036

Ours 0.0130 0.0014 0.0163 0.0024 0.0322 0.0027 0.0282 0.0027 0.0370 0.0018

Middleburry
[7] 0.0171 0.0007 0.0185 0.0006 0.0490 0.0086 0.0184 0.0010 0.0200 0.0006

Ours 0.0084 0.0005 0.0050 0.0004 0.0091 0.0009 0.0094 0.0004 0.0048 0.0008

0.0435
0.0869

0.0188
0.2349

0.0591
0.3304

0.0569
0.2482

0.3891

0.0654

0.0089
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0.0073
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0.0124
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Fig. 3: Comparison between [7] and our proposed algorithm on the KITTI 2015 [11] and Middlebury 2021 [12] datasets.
presents the results achieved by Ling and Shen [7], and presents the results achieved by our proposed method.

a comprehensive analysis of our algorithm’s performance on
both our created dataset and the KITTI 2015 dataset, we

believe that our algorithm is less sensitive to image quality. It
demonstrates the capability to provide feasible solutions even
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Fig. 4: Qualitative experimental results of disparity estimation: (a) left images; (b) disparity maps estimated using unrectified
stereo images; (c) disparity maps estimated using stereo images rectified based on the extrinsic parameters estimated using
Ling and Shen’s algorithm [7]; (d) disparity maps estimated using stereo images rectified based on the extrinsic parameters
estimated using our proposed algorithm.

when images have motion-induced blur. On the other hand,
the experimental results on the Middlebury 2021 dataset
provide additional support for our perspective on algorithm
performance in both static and dynamic environments. Our
algorithm decreases eθ and et by an average of 35.62%
and 66.04%, respectively. Our achieved σθ and σt are
comparable to those yielded by [7]. This is attributed to the
high quality and static nature of the images captured using
a high-definition camera in the Middlebury 2021 dataset.

Moreover, we conduct additional qualitative experiments
to provide a more comprehensive comparison of performance
between the baseline algorithm [7] and our proposed al-
gorithm. As illustrated in Fig. 4, the quality of disparity
maps estimated from unrectified stereo images is notably
low, while disparity maps estimated using rectified stereo
images have higher quality. Specifically, when employing our
proposed algorithm to self-calibrate the stereo camera and
rectify the stereo images, the resulting disparity maps demon-
strate improved accuracy with fewer erroneous regions, as
compared to those obtained using the baseline algorithm [7].

The most significant discovery in our experiments is the
observed instability in translation vector estimation when
using the algorithm presented in [7]. Their approach raises
concerns, as it produces a coefficient matrix that is nearly
positive semidefinite around the optimum point. This char-
acteristic can potentially lead to instability during the transla-
tion vector optimization process, particularly in cases where
the detected keypoints are not sufficiently accurate, resulting
in the failure of the iteration step size to converge to zero. In
contrast, our algorithm focuses on the optimization of Rl and
Rr rather than R and t. This approach enhances the overall
stability, even in scenarios where the quality of keypoints

is unsatisfactory. This phenomenon is also evident in the
Middlebury experiments, as illustrated in Fig. 3. Thanks to
the high-definition images in the Middlebury dataset, which
guarantee accurate correspondences between stereo images,
both algorithms exhibit stable performance.

To further evaluate the accuracy of our algorithm and
analyze the impact of correspondence matching on extrinsic
calibration, we compute the reprojection error w.r.t. different
numbers of correspondence pairs and the standard deviations
of matching error. The experimental results are detailed
in our supplement. We observe that when correspondence
matching is reliable, the reprojection error is less than 1 pixel,
demonstrating the high accuracy of our algorithm.

V. CONCLUSION

This paper presented two significant algorithmic contri-
butions: (1) a stereo camera online self-calibration algorithm
built upon the principles of stereo rectification for single-pair
cases, and (2) an efficient and effective algorithm for globally
optimizing extrinsic parameter estimation, when multiple
stereo image pairs are available. In addition, this paper intro-
duced four new, practical evaluation metrics to quantify the
robustness and accuracy of extrinsic parameter estimation,
applicable to both single-pair and multi-pair cases. Through
comprehensive experiments conducted on our newly created
indoor and outdoor datasets, as well as two public datasets,
KITTI 2015 and Middlebury 2021, we demonstrated that
the proposed algorithm significantly outperforms the state-
of-the-art algorithm. With further optimization in algorithm
efficiency, we are confident that the proposed algorithm
can be incorporated into practical stereo vision systems to
provide robust 3-D information for autonomous robots.
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