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Abstract— Collision-free space detection is of utmost impor-
tance for autonomous robot perception and navigation. State-of-
the-art (SoTA) approaches generally extract features from RGB
images and an additional source or modality of 3-D information,
such as depth or disparity images, using a pair of independent
encoders. The extracted features are subsequently fused and
decoded to yield semantic predictions of collision-free spaces.
Such feature-fusion approaches become infeasible in scenarios,
where the sensor for 3-D information acquisition is unavailable,
or just when multi-sensor calibration falls short of the necessary
precision. To overcome these limitations, this paper introduces
a novel end-to-end collision-free space detection network, re-
ferred to as SG-RoadSeg, built upon our previous work SNE-
RoadSeg. A key contribution of this paper is a strategy for
sharing encoder representations that are co-learned through
both semantic segmentation and unsupervised stereo matching
tasks, enabling the features extracted from RGB images to
contain both semantic and spatial geometric information. The
unsupervised deep stereo serves as an auxiliary functionality,
capable of generating accurate disparity maps that can be
used by other perception tasks that require depth-related data.
Comprehensive experimental results on the KITTI road and
semantics datasets validate the effectiveness of our proposed
architecture and encoder representation sharing strategy. SG-
RoadSeg also demonstrates superior performance than other
SoTA collision-free space detection approaches. Our source
code, demo video, and supplement are publicly available at
mias.group/SG-RoadSeg.

I. INTRODUCTION

Today, the dream of summoning an autonomous car to
your doorstep is not just possible, but increasingly common-
place [1]. The primary bottleneck hindering the advancement
of autonomous driving technology lies in the domain of
environmental perception [2]. Collision-free space detection
is essential for autonomous robot perception and navigation,
as it ensures the safety of passengers, pedestrians, and other
drivers by allowing the vehicle to navigate reliably and effi-
ciently through complicated and dynamic environments [3].
Regardless of whether the method is explicit programming-
based or data-driven, 3-D information, particularly in the
form of disparity or depth maps, is gaining prominence in
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the field of collision-free space detection due to the valuable
spatial geometric information it provides [4].

Early collision-free space detection approaches were gen-
erally developed based on explicit programming, where the
region of interest (Rol) was often assumed to be a planar
surface represented by an explicit mathematical model [5]-
[7]. Nonetheless, recent years have witnessed a significant
transformation in this field, driven by state-of-the-art (SoTA)
deep learning techniques [3]. This shift has led to significant
advancements in the accuracy and robustness of collision-
free space detection [1]. Among these algorithms, feature-
fusion networks with a pair of independent encoders [1], [8]—
[11], have demonstrated superior performance compared to
single-modal networks [12]-[19]. These improvements can
be attributed to the incorporation of additional sources or
modalities of 3-D information, from which extracted features
contain informative spatial geometric characteristics [3].

However, the demand for accurate 3-D information, e.g.,
depth and surface normal maps, remains a significant limi-
tation in feature-fusion methods. Fulfilling this requirement
necessitates high-precision LiDAR-camera calibration [20].
When LiDAR is unavailable or LiDAR-camera calibration
falls short of the necessary precision, obtaining accurate 3-D
information for feature fusion becomes notably challenging.
In our previous study [21], we moved away from using Li-
DAR and turned to stereo cameras to enhance data augmen-
tation, resulting in improved performance in collision-free
space detection. Nevertheless, our fusion approach remains
constrained to the data level and does not extend to the more
promising feature level. The latter requires accurate disparity
maps, typically estimated using SoTA deep stereo networks.

Deep stereo networks [22]-[24] are generally trained via
fully supervised learning with disparity ground truth obtained
from LiDAR point clouds. While there have been extensive
explorations into unsupervised learning strategies [25]-[27],
introducing an additional network to independently learn
stereo matching can result in substantial computational re-
source demands and deployment costs [28]. Moreover, the
features extracted for stereo matching may differ greatly
from those employed for collision-free space detection [29].
Therefore, the limitations of current methods are noteworthy
when it comes to practical autonomous robot systems, under-
scoring the critical need for research focused on integrating
stereo matching and collision-free space detection at the
feature-sharing level.

To address the aforementioned challenges, this paper in-
troduces Stereo-Guided RoadSeg (SG-RoadSeg), an end-
to-end collision-free space detection network that shares
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encoder representations jointly learned by an unsupervised
deep stereo network. SG-RoadSeg utilizes a weight-sharing
hourglass network to extract feature maps, which are sub-
sequently fused with the features extracted from disparity
maps estimated by the unsupervised deep stereo network.
The fused features are then decoded using densely-connected
skip connections to perform collision-free space detection.
Notably, stereo matching serves as an auxiliary functionality,
and its output can be leveraged for other tasks that demand
3-D information. Specifically, the strategy to share encoder
representations allows the feature maps extracted from RGB
images to contain both semantic and spatial geometric in-
formation, greatly enhancing the network’s ability to com-
prehend complex scenarios. To validate the effectiveness of
our proposed SG-RoadSeg and the encoder representation
sharing strategy, we conduct extensive experiments on the
KITTI road [30] and semantics [31] datasets. Our qualita-
tive and quantitative experimental results demonstrate that
SG-RoadSeg outperforms all other SOTA single-modal and
feature-fusion networks for collision-free space detection.
In summary, our novel contributions are as follows:

e SG-RoadSeg, a novel end-to-end collision-free space
detection network guided by an auxiliary unsupervised
deep stereo matching task.

¢ An encoder representation sharing strategy, enabling the
features extracted from RGB images to contain both
semantic and spatial geometric information.

« Extensive experiments on two public datasets to validate
the feasibility of sharing encoder representations and to
evaluate the performance of SG-RoadSeg.

II. RELATED WORK

Collision-free space detection approaches can be divided
into two groups: 1) conventional explicit programming-based
[6] and 2) data-driven methods [1]. The former are generally
based on the “flat road” assumption [32], which is, however,
often violated in real-world scenarios [3]. Although previous
studies [5]-[7] have made efforts to fit road disparity maps
to minimize the impact of deviation from the “flat road”
assumption, the achieved results are still far from satisfactory.

Recently, with the ongoing advancement of deep learn-
ing techniques, particularly convolutional neural networks
(CNN:ss), the spotlight has shifted towards data-driven meth-
ods in the field of collision-free space detection [1].
Data-driven methods typically fall into two categories:
single-modal and feature-fusion. Fully convolutional network
(FCN) [12] marked a significant milestone in semantic
segmentation. Building upon FCN, SegNet [13] introduces
the encoder-decoder architecture and a pixel-wise classifica-
tion layer, while U-Net improves upon it by adding skip
connections to better preserve the spatial information of
objects. Pyramid scene parsing network (PSPNet) [15], on
the other hand, leverages a pyramid pooling module to gather
contextual information for improved semantic segmentation
performance. Moreover, DeepLabv3+ [16] employs atrous
convolution and depth-wise separable convolution in both its
atrous spatial pyramid pooling (ASPP) and decoder modules.

This design choice enables the network to effectively cap-
ture multi-scale contextual information while simultaneously
reducing computational complexity. As a result, it leads to
significant enhancements in both the efficiency and accuracy
of semantic segmentation.

While single-modal networks mentioned above have made
great progress in semantic segmentation, their performance in
collision-free space detection remains below expectations. To
address this limitation, researchers have explored introducing
another source or modality of vision data, such as disparity
or depth images, to enhance scene understanding. FuseNet
[8] was the pioneering work that introduced feature-fusion
techniques into semantic segmentation. It utilizes two inde-
pendent encoders to extract RGB and depth features, which
are subsequently fused through element-wise summation.
Building upon FuseNet, MFNet [9] extends the fusion strat-
egy to include dilated convolutions. It introduces a “mini-
inception” block for efficient feature concatenation, and a
decoder with shortcuts to extract lower-level information.
RTFNet [10] extends the use of RGB-thermal data for
driving scene parsing. It introduces an “upception” block
in its decoder, which transfers input through shortcuts to
preserve more detailed information. In our previous work,
SNE-RoadSeg [1], we designed a lightweight module to
translate disparity or depth maps into surface normal maps,
and fuse the features extracted from both RGB images
and surface normal maps. Inspired by DenseNet [33], we
introduced densely-connected skip connections for more
flexible feature-fusion. These contributions collectively result
in improved performance in collision-free space detection.

Although significant advancements in feature-fusion meth-
ods have brought collision-free space detection to a new
level, there remains a notable drawback: the reliance on dis-
parity or depth information. For example, in SNE-RoadSeg
[1], the availability of depth maps for estimating surface nor-
mals is essential. In such circumstances, to obtain satisfactory
collision-free detection results, we are compelled to derive
disparity or depth information from LiDAR point clouds,
which requires precise LiDAR-camera calibration. However,
any deviation in the calibration process can indeed present
challenges in obtaining optimal results for feature fusion
[34]. Therefore, there is a pressing need to explore an end-
to-end collision-free space detection method that does not
rely on precise disparity or depth information. This forms
the core focus of our proposed SG-RoadSeg, which not only
resolves this challenge but also has the capability to generate
additional disparity or depth information that can be used by
other perception tasks requiring depth-related data.

III. METHODOLOGY
A. Architecture Overview

This section details SG-RoadSeg, an end-to-end collision-
free space detection network sharing encoder representations
jointly learned via an unsupervised deep stereo matching
task. As depicted in Fig. 1, our proposed SG-RoadSeg
1) utilizes a weight-sharing hourglass network to extract
features from RGB images, 2) fuses them with the features
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extracted from disparity maps estimated using a deep stereo
network (auxiliary functionality) trained via unsupervised
learning, and 3) employs densely-connected skip connection
to detect collision-free space.

B. Weight-Sharing Hourglass Cascaded Stereo Matching

Given a pair of stereo images I'”, I'® € RE*W>3 where
H and W represent the height and width of the input images,
we first apply a weight-sharing hourglass network for feature
extraction. The hourglass feature extraction network uses
ResNet-152 [35] as its encoders, consisting of a series of
residual blocks.

The extracted left and right feature maps are then fed into
a cascaded parallax-attention (CPA) module [36] to regress
matching costs, followed by a disparity regression (DR)
module to generate initial disparities. Our CPA module is
developed based on PASMNet [36], where the feature maps
extracted from both left and right images are processed to up-
date matching costs in a coarse-to-fine manner, from an ini-
tial cost volume C° € R76 %16 X 16 whose elements are set to
0. The matching cost computation process in the m-th (m >
0) parallax-attention block C™ € Rz5-m X35-m X 35=m can
be formulated as follows:

m m m iqiy | _m ¥ ¥
ct =u(c )+Zi2j(UQ+la F}) ool FI,

)]
where U refers to an upsampling layer, F';, F',. € R~ %W xC
represent the left and right feature maps, og, 0K € REXC

refer to 1 x 1 convolution kernels for query and key feature
maps, and o represents two layers of 3 x 3 convolution
kernels. In the DR module, the initial disparity map D &
RTXT s regressed from the last matching cost volume of
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An overview of our proposed SG-RoadSeg architecture.

the CPA module, which can be formulated as:

w_1
4
D*ZkM(aak)a (2)
k=0
where M € RT*T*¥ denotes the softmax parallax-

attention map produced by the CPA module.

Subsequently, we utilize another hourglass network as the
disparity refinement module, with ResNet-152 [35] as its
encoder. As shown in Fig. 1, the second feature map in the
hourglass network is concatenated with the initial disparity
map D, and then fed into the DR module, followed by a
series of residual blocks to produce a residual disparity map
D, € REXW and a confidence map M, € R¥*W_ The
refined disparity map D is calculated as follows:

D=(1-M)UD)+ M_.D,. (3)
This unsupervised stereo matching process not only elim-
inates the dependence on disparity or depth data but also
has the potential to produce additional disparity or depth
information, which can be advantageous for other perception
tasks that require depth-related data.

C. RoadSeg Sharing Encoder Representations

After obtaining a refined disparity map, we process an en-
coder representation sharing strategy, followed by a feature-
fusion operation, formulated as:

L= A(F) @ E(FiY, )

i H oy W ot
where F'; € R27"2 represents fused feature maps,

fi € Rzt %57 X" represents disparity feature maps, and £
refers to deep stereo encoder, inspired by [37]. Specifically,
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the first block of the deep stereo encoder consists of a
convolutional layer, a batch normalization layer, and a ReLU
activation layer. Then, a max pooling layer and four residual
layers (based on ResNet-152 [35]) are sequentially employed
to gradually increase the number of feature map channels.
Correspondingly, C* represents the channels of the i-th
feature map, and C'-C® are 64, 256, 512, 1024, and 2048,
respectively. F} represents the left RGB feature maps in the
encoding layers of the hourglass feature extraction network,
A refers to a feature alignment operation to remap RGB
feature maps into semantic feature space, and @ refers to
a feature-fusion operation. Specifically in this paper, we
employ a 1 x 1 convolution layer, a batch normalization
layer, and a ReLU activation layer for feature alignment,
and addition for feature-fusion.

The encoder representation sharing strategy and feature-
fusion operation enhance the capability of our feature en-
coders. The RGB feature maps contain not only semantic
features but also spatial geometric information since they
are used for both stereo matching and collision-free space
detection tasks. Moreover, the fusion with the disparity fea-
ture maps F; further enriches our network’s understanding
of spatial information.

Based on our previous work SNE-RoadSeg [1], we then
utilize a densely-connected skip connection decoder, which
consists of feature extractors and upsampling layers, to obtain
the final semantic prediction of the collision-free space.
Feature extractors are utilized to extract feature maps from
the fused feature maps, and upsampling layers are utilized
to increase the resolution while decreasing the feature map
channels. We employ three convolutional layers in the feature
extractor and upsampling layer, each with a 3 x 3 kernel size,
a stride of 1, and a padding of 1.

D. Loss Function

SG-RoadSeg is trained by minimizing a pixel-wise cross-
entropy loss £4. Concurrently, we train the auxiliary stereo
matching network in an unsupervised way, by minimizing
the loss function £,,. The total loss is defined as follows:

L=Li+ Ly, (&)

where
L, = (Ep + AL + /\pam[’pam)- 6)

As and Ay, are empirically set to 0.5 and 1, respectively.
L, represents the photometric loss function. Inspired by

SG-RoadSeg (Ours)

Fig. 3. Comparison between SNE-RoadSeg and our proposed SG-RoadSeg
in terms of model decision-making explainability with respect to different
CNN backbones. (a)-(¢): ResNet-18, ResNet-34, ResNet-50, ResNet-101,
and ResNet-152, respectively.

[38], [39], it consists of a mean absolute error (MAE) loss
and a structural similarity index (SSIM) loss, which can be
formulated as follows:

1 o I AL
Ly=5 > 5 =8(1"@). 1 ()]
I3 (N
oL
+ (1= a)|[I*(p) -1 (p)],,
where p represents a valid pixel, N represents the number of
valid pixels, S represents an SSIM function, and « refers to
a photometric parameter, which is set to 0.85. I L represents
oL
the left RGB image, and I represents the warped left image,
which can be obtained using:
~L ~
I =w(I*, D), ®)
where W refers to a warping operator. £, represents the
smoothness loss function, which is defined as follows:

1 . _ L
£, =+ (w0 Iv @l

P )
v, D), v @),

where V, and V, represent the gradients in the x and y
directions, respectively. Lp.n, refers to the PAM loss corre-
sponding to the parallax-attention map in the CPA module, as
introduced in [36] to achieve accurate and consistent stereo
correspondences.
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IV. EXPERIMENTS
A. Datasets and Experimental Setup

We carry out the experiments on the following two datasets
to evaluate the performance of our proposed SG-RoadSeg for
collision-free space detection:

o the KITTI road [40] dataset, containing 289 pairs of
stereo images captured in real-world driving scenarios,
as well as their pixel-level collision-free space detection
ground-truth annotations.

o the KITTI semantics [41] dataset, containing 200 pairs
of stereo images captured in real-world driving sce-
narios, as well as their semantic ground-truth annota-
tions. To evaluate the performance of our proposed SG-
RoadSeg, we extract pixels belonging to the ‘road’ class
and consider them as the ground-truth annotations of the
collision-free spaces.

Our experiments are conducted on an NVIDIA RTX 3090
GPU. For each dataset, we allocate 70% of images for

Qualitative experimental results on the KITTI semantics [41] dataset.

training purposes, while the remaining data are used as the
test set. The batch size is set to 2. We utilize the Adam [42]
optimizer for modeling training. The initial learning rate is
set to 1x 10~3. Training lasts for 200 epochs on each dataset.
We utilize disparity maps generated by our SG-RoadSeg as
inputs for other feature-fusion networks.

Five common metrics are used for the performance eval-
uation of collision-free space detection: (1) accuracy (Acc),
(2) precision (Pre), (3) recall (Rec), (4) F-score (Fsc), and
(5) intersection over union (IoU) [1].

B. Ablation Study

In this subsection, we conduct an ablation study to validate
the superiority of our architecture that shares encoder repre-
sentations. We compare our proposed structure to the base-
line SNE-RoadSeg [1], using five different CNN backbones:
ResNet-18, ResNet-34, ResNet-50, ResNet-101, and ResNet-
152. The corresponding quantitative comparisons are given
in Fig. 2, where SG-RoadSeg outperforms SNE-RoadSeg [1]
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TABLE I
COMPARISONS OF SOTA COLLISION-FREE SPACE DETECTION
NETWORKS ON THE KITTI ROAD [30] DATASET. THE BEST RESULTS
ARE SHOWN IN BOLD FONT.

TABLE 11
COMPARISONS OF SOTA COLLISION-FREE SPACE DETECTION
NETWORKS ON THE KITTI SEMANTICS [31] DATASET. THE BEST
RESULTS ARE SHOWN IN BOLD FONT.

Networks Acc (%) 1+ Pre (%)t Rec (%)t Fsc(%)t IoU (%) 1 Networks Acc (%) 1+ Pre (%)t Rec (%)t Fsc(%)t IoU (%) 1
FCN [12] 94.73 91.33 89.88 89.95 83.47 FCN [12] 87.35 88.11 72.71 75.87 65.18
SegNet [13] 91.33 88.30 78.73 81.64 72.04 SegNet [13] 87.14 85.09 74.00 77.04 65.80
U-Net [14] 94.89 92.52 87.73 88.95 82.67 U-Net [14] 91.05 89.33 83.52 85.41 76.31
PSPNet [15] 94.31 88.09 94.79 90.48 83.80 PSPNet [15] 94.55 92.37 91.36 91.48 85.35
DeepLabv3+ [16] 95.22 91.52 91.00 90.59 84.68 DeepLabv3+ [16] 88.36 88.32 73.49 75.24 66.43
HRNet [17] 89.99 81.97 92.53 84.87 75.61 HRNet [17] 90.36 85.07 90.62 86.47 77.81
BiSeNet V2 [18] 84.28 77.26 90.08 79.04 67.84 BiSeNet V2 [18] 89.99 84.83 87.44 85.47 76.21
DDRNet [19] 88.99 80.71 91.61 83.57 73.78 DDRNet [19] 89.11 83.20 91.25 85.35 75.88
FuseNet [8] 94.06 87.13 96.08 90.49 83.36 FuseNet [8] 54.82 65.48 69.92 53.31 37.05
MFNet [9] 98.04 96.79 96.06 96.13 93.23 MFNet [9] 96.44 94.36 95.06 94.57 90.22
RTFNet [10] 98.56 97.65 97.25 97.40 95.07 RTFNet [10] 94.17 93.51 89.28 90.91 84.08
SNE-RoadSeg [1] 98.61 97.59 97.49 97.41 95.22 SNE-RoadSeg [1] 97.50 96.58 95.89 96.13 92.88
OFF-Net [11] 96.58 93.33 94.75 93.74 89.40 OFF-Net [11] 95.57 93.37 93.76 93.30 88.33
SG-RoadSeg (Ours) 98.76 97.52 98.09 97.77 95.74 SG-RoadSeg (Ours) 97.88 97.01 96.72 96.75 93.93

for all five ResNet architectures (except in precision). Specif-
ically, we observe an increase in IoU by 0.14-0.87% and an
increase in F-score by 0.11-0.54%. Among the different CNN
backbones, ResNet-152 achieves the best performance, con-
sistent with its superior performance in image classification
among the five ResNet architectures [35]. We also compare
our proposed SG-RoadSeg with SNE-RoadSeg [1] in terms
of model decision-making explainability. This is achieved
by extracting feature maps before the final upsampling layer
and computing the average over all channels to generate heat
maps for visualization, as depicted in Fig. 3. These heat maps
indicate that SG-RoadSeg pays more attention to the road
areas, as they contain more spatial geometric information.
This is attributed to the fact that RGB features before fea-
ture alignment operation are utilized not only for collision-
free space detection but also for stereo matching, thereby
providing both semantic and spatial geometric information,
which enhances scenario understanding. Both Figs. 2 and
3 demonstrate that our proposed architecture significantly
improves the distinguishability of road areas, and therefore,
it improves the effectiveness of feature-fusion networks for
collision-free space detection.

C. Performance Evaluation of Our Proposed SG-RoadSeg

In this subsection, we evaluate the effectiveness of our
proposed SG-RoadSeg for collision-free space detection both
qualitatively and quantitatively. We compare our model with
SoTA networks on the KITTI road [30] and the KITTI
semantics [31] datasets. The quantitative comparisons are
given in Tables I and II, where our SG-RoadSeg achieves
the best results on both datasets.

As shown in Figs. 4 and 5, feature-fusion networks achieve
superior performance compared to single-modal networks.
This improvement is attributed to the ability to obtain more
features with the aid of disparity information, enabling them
to leverage disparity maps to enhance scene understanding,
especially in scenarios where RGB features alone are less
informative. However, it is worth noting that feature-fusion
methods may struggle with handling fine details in challeng-

ing scenarios, such as distinguishing roads from lanes, as
indicated by the false-positive pixels in Fig. 4. This limitation
may arise due to inaccuracies in the disparity information.
On the other hand, SG-RoadSeg performs better in handling
fine details even in the absence of disparity information. This
is due to its capability to extract semantic features from RGB
inputs based on spatial features and fuse them with disparity
features through our encoder representation sharing strategy.
In comparison to the baseline SNE-RoadSeg, SG-RoadSeg
achieves an improvement of 0.36% in F-score and 0.52% in
IoU on the KITTI road dataset and 0.62% in F-score and
1.05% in IoU on the KITTI semantics dataset. Furthermore,
during the same training process, SG-RoadSeg also performs
stereo matching as an auxiliary function, and its disparity
outputs can be utilized in other feature-fusion networks, such
as MFNet [9] and RTFNet [10]. This versatility enhances its
potential applicability across various perception tasks.

V. CONCLUSION

In this paper, we presented two key technical contribu-
tions: (1) SG-RoadSeg, a novel end-to-end collision-free
space detection network built upon our prior work SNE-
RoadSeg, and (2) an innovative encoder representation shar-
ing strategy to enrich the features extracted from RGB
images. The stereo matching component embedded within
SG-RoadSeg serves as an auxiliary functionality, capable
of delivering accurate depth information without the need
for disparity ground truth during unsupervised model train-
ing. Additionally, we also presented our contributions in
the experimental evaluation aspect. Extensive experiments
conducted on two widely used KITTI datasets demonstrate
the feasibility of our proposed encoder representation sharing
strategy and the superior performance of SG-RoadSeg in
comparison to all other semantic segmentation networks. Our
proposed architecture not only eliminates the requirement for
other sensors to acquire 3-D information but also reduces the
computational complexity of the overall architecture. This
reduction in computational complexity makes it suitable for
deployment on resource-limited autonomous robot systems.
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