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Abstract— Stereo matching is a common technique used in
3D perception, but transparent objects such as reflective and
penetrable glass pose a challenge as their disparities are often
estimated inaccurately. In this paper, we propose transparency-
aware stereo (TA-Stereo), an effective solution to tackle this
issue. TA-Stereo first utilizes a semantic segmentation or salient
object detection network to identify transparent objects, and
then homogenizes them to enable stereo matching algorithms
to handle them as non-transparent objects. To validate the
effectiveness of our proposed TA-Stereo strategy, we collect 260
images containing transparent objects from the KITTI Stereo
2012 and 2015 datasets and manually label pixel-level ground
truth. We evaluate our strategy with six deep stereo networks
and two types of transparent object detection methods. Our
experiments demonstrate that TA-Stereo significantly improves
the disparity accuracy of transparent objects. Our project
webpage can be accessed at mias.group/TA-Stereo.

I. INTRODUCTION

3D perception is a critical and foundational aspect of
autonomous driving [1], [2], and stereo matching plays a vital
role in this process [3]–[5]. Recent research has achieved
impressive stereo matching results by leveraging state-of-the-
art (SoTA) deep convolutional neural networks (DCNNs) [6],
[7]. The task of estimating disparities on transparent objects
is a corner case that has not been given much attention. As
shown in Fig. 1, when stereo matching is formulated as a
dense correspondence matching problem in SoTA DCNNs,
it can incorrectly estimate disparities on transparent object
pixels. Such inaccuracies can significantly impact the perfor-
mance of 3D perception functionality, underscoring the need
for more robust and accurate stereo matching algorithms that
can handle transparent objects.

Therefore, this paper presents a transparency-aware stereo
matching (TA-Stereo) strategy that significantly improves the
accuracy of disparities on transparent objects. To achieve
this, we first detect transparent objects using either a se-
mantic segmentation or salient object detection network, and
then adaptively homogenize the detected regions to facilitate
stereo matching performance. To evaluate our approach, we
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Fig. 1. Stereo matching without and with transparency awareness ability.
The disparities are estimated using RAFT-Stereo [8] pre-trained on the
SceneFlow [9] dataset, where the disparities of transparent objects are
determined based on the light transmission, which can differ from the
disparities of the surrounding objects as observed from the camera.

create a transparent object detection dataset including 260
RGB images and their pixel-level ground truth based on the
KITTI Stereo 2012 and 2015 [10], [11] datasets, and conduct
extensive experiments with six SoTA deep stereo networks,
five semantic segmentation networks, and two salient object
detection networks. Our results validate the effectiveness
of the TA-Stereo strategy and demonstrate its potential for
improving 3D perception in intelligent vehicles. Furthermore,
we discuss the limitations of our method and suggest possible
solutions for further improvement.

II. RELATED WORK

A. Stereo Matching

Explicit programming-based stereo matching algorithms
have four phases: cost computation, cost aggregation, dis-
parity optimization, and disparity refinement [12]. Local
algorithms select a group of image blocks from the target
image and match them with an image block selected from the
reference image [13], [14]. On the other hand, global algo-
rithms treat stereo matching as an energy minimization prob-
lem, which can be tackled by Markov random field (MRF)-
based optimization approaches [15]. Semi-global matching
(SGM) [16] balances stereo matching accuracy and efficiency
by performing cost aggregation along all directions in the
image [17]. However, explicit programming-based methods
are either inaccurate (local algorithms) or computationally
intensive (global algorithms) [18].

With the advancements in DCNNs, the accuracy of dispar-
ity estimation has been greatly improved. Researchers have
turned their focus towards developing end-to-end approaches
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to learn dense stereo matching. Chang et al. [19] introduced
PSMNet, a pyramid stereo matching network that leverages
both spatial pyramid pooling and 3D convolutional layers.
GwcNet [20] constructs the cost volume using group-wise
correlation to further improve the 3D stacked hourglass net-
work. GA-Net [21] employs a two-layer guided aggregation
block to capture local and global cost dependencies. As
3D convolutions are computationally expensive, researchers
have focused on enhancing both the efficiency and accu-
racy of stereo matching. Cheng et al. [22] applied neural
architecture search (NAS) to stereo matching and presented
the first hierarchical NAS framework for end-to-end deep
stereo matching. RAFT-Stereo [8] presents a rectified stereo
matching method that builds upon the optical flow estimation
network RAFT [23] and demonstrates real-time performance.
In an effort to increase the DCNN inference speed, re-
searchers have also adopted coarse-to-fine paradigms, replac-
ing 3D convolutions. Li et al. [24] proposed CRE-Stereo, a
hierarchical network with recurrent refinement that produces
more accurate disparity results. However, when these deep
stereo networks are trained on datasets with incorrect labels
for transparent object disparities, they often perform poorly.
Regarding transparent object disparity estimation, Tsin et al.
[25] proposed a nested-plane-sweeping method and graph
cut optimization to estimate the depths of two layers, which
provides valuable insights for further research.

B. Semantic Segmentation and Salient Object Detection

Semantic segmentation algorithms can be broadly cat-
egorized into two groups: single-modal and data-fusion.
Single-modal algorithms, such as SegNet [26], U-Net [27],
PSPNet [28], and DeepLab series [29], [30], employ end-to-
end approaches to perform pixel-wise classification. SegNet
introduces the encoder-decoder architecture and a pixel-
wise classification layer, while U-Net improves upon it
by adding skip connections to better preserve the spatial
information of small objects. PSPNet, on the other hand,
leverages a pyramid pooling module to gather contextual
information for improved semantic segmentation perfor-
mance. DeepLabv3 leverages atrous convolution and depth-
wise separable convolution in both its atrous spatial pyramid
pooling (ASPP) and decoder modules to achieve improved
efficiency and accuracy in semantic segmentation. The use
of atrous convolution allows the network to capture multi-
scale contextual information while reducing computational
complexity, leading to improved efficiency and accuracy in
semantic image segmentation. Data-fusion algorithms have
outperformed single-modal networks by incorporating mul-
tiple types of visual information. Fan et al. [31] proposed
SNE-RoadSeg, a data-fusion DCNN that combines features
from both RGB images and surface normal maps to achieve
improved driving scene segmentation. Our paper provides
additional experimental results to show the efficacy of SNE-
RoadSeg when only one encoder of the network is utilized
for semantic segmentation. Specifically, Mei et al. introduced
GDNet [32] as a solution for glass segmentation, utilizing
a large convolutional feature interpolation (LCFI) module to

acquire abundant contextual cues. However, our experimental
results showed that it falls short in detecting transparent
objects in driving scenarios.

Salient object detection methods aim to identify the most
prominent object(s) in an image. Deep learning-based salient
object detection approaches consider both bottom-up and
top-down saliency inferences, and attention mechanisms have
recently been incorporated. For instance, PiCANet [33] is a
representative prior work that employs attention mechanisms
to learn both global and local contexts. Additionally, RAS
[34] uses foreground and background attention maps to assist
in detecting salient objects and removing non-salient ones.
This paper compares the performance of semantic segmen-
tation and salient object detection in terms of transparent
object detection.

III. TRANSPARENCY-AWARE STEREO MATCHING

This section introduces our proposed TA-Stereo strategy,
which greatly enhances the accuracy of disparity estima-
tion for transparent objects. TA-Stereo aims to eliminate
the disparity inconsistencies caused by transparent objects
(which can be detected using either semantic segmentation
or salient object detection networks) and ensure that a well-
developed stereo matching algorithm can treat them as non-
transparent objects. The primary objective of TA-Stereo is
to homogenize the transparent objects, allowing the stereo
matching algorithm to produce more accurate and consistent
disparity results.

Transparent objects can be modeled as a combination of
transmission and reflection scenarios. Both these scenarios
can be regarded as a linear superposition at a fixed position
behind the transparent object, which we call a mapping
scenario. Humans can accurately identify transparent objects
without the need to observe every pixel of them, because
we regard them as usual opaque objects according to their
geometric priors [35], [36]. Drawing inspiration from this,
we homogenize the transparent objects according to the sur-
rounding opaque objects, enabling stereo matching networks
to make use of surrounding features for disparity estimation,
resulting in more accurate disparity estimation results.

To achieve greater homogenization of transparent objects,
we utilize their planar characteristics and transform them
into uniform regions with similar features to the surrounding
areas. While a direct homogenization can be accomplished
by simply masking transparent objects with a single color,
we explore a more effective strategy, referred to as Adaptive
Homogenization. This strategy involves adapting the ho-
mogenization process to the characteristics of the connected
domain of a single transparent object, which can be achieved
through the use of conventional image processing algorithms.
The adaptive transparent object homogenization process can
be expressed as follows:

I(p) =
1

k

∑
q∈Qp

I(q), (1)

where I is the RGB image, p is a pixel within the detected
transparent object, and Qp ∈ (q1; q2; · · · , qk) is a set storing
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Fig. 2. Experiment results of transparency-aware stereo matching: (a) left images; (b), (d), (f), (h), (j), (l) disparity maps respectively estimated using
pre-trained PSMNet [19], GwcNet [20], GA-Net [21], LEA-Stereo [22], RAFT-Stereo [8], and CRE-Stereo [24] without TA-Stereo; (c), (e), (g), (i), (k),
(m) disparity maps respectively estimated using pre-trained PSMNet [19], GwcNet [20], GA-Net [21], LEA-Stereo [22], RAFT-Stereo [8], and CRE-Stereo
[24] with TA-Stereo. The deep stereo networks are pre-trained on the SceneFlow [9] dataset, where the disparity estimation for transparent objects is
incorrectly learned. The regions that exhibit significant improvements are marked with red dashed boxes.

the pixels on the boundary of the detected transparent object.
Through adaptive homogenization, the interference caused
by mapping scenarios can be eliminated. This enables the
stereo matching algorithms to treat transparent objects as if
they were non-transparent.

IV. EXPERIMENTS

A. Datasets and Evaluation Metrics

In synthetic datasets, such as SceneFlow [9], the disparities
of transparent objects (e.g., car windows) are determined
based on the light transmission, which can differ from the
disparities of the surrounding objects as observed from the
camera. This disparity discrepancy can lead to errors in depth
estimation and can affect the performance of deep stereo
networks trained on such datasets, which rely on accurate
disparity calculation for 3D geometry reconstruction. In con-
trast, real-world datasets, such as the KITTI Stereo 2015 [11]

dataset, provide more realistic ground-truth disparities for
transparent objects, as they are manually labeled based on the
projections of 3D LiDAR points. Training deep stereo net-
works on these datasets can enable them to more accurately
estimate the disparities of transparent objects. Therefore, to
validate the effectiveness of our proposed TA-Stereo strategy,
we created a transparent object detection dataset based on
the KITTI Stereo 2012 and 2015 [10], [11] datasets. Our
dataset contains a training set of 160 RGB images (selected
from the KITTI Stereo 2012 [10] dataset) with our manually
labeled pixel-level transparent object ground truth, and a test
set of 50 pairs of stereo images (selected from the KITTI
Stereo 2015 [11] dataset) and our manually labeled pixel-
level transparent object ground truth. Our dataset is publicly
available at mias.group/TA-Stereo.

In our experiments, we first evaluate the performance of
six SoTA deep stereo networks: PSMNet [19], GwcNet [20],
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TABLE I
COMPARISON OF SOTA DEEP STEREO NETWORKS, PRE-TRAINED ON

THE SCENEFLOW [9] DATASET AND EVALUATED WITH GROUND-TRUTH

TRANSPARENT OBJECT LABELS. THE BEST RESULTS ARE SHOWN IN

BOLD TYPE.

Networks
EPE ↓ (pixels) PEP 1.0 ↓ (%) PEP 3.0 ↓ (%)

A T N A T N A T N

PSMNet [19] 3.60 4.42 3.52 62.81 71.59 62.12 28.76 35.72 28.07

PSMNet-TA 3.54 2.48 3.58 62.40 61.75 62.20 28.30 22.68 28.35

GwcNet [20] 2.04 4.89 1.85 48.01 77.72 46.33 13.60 37.77 11.96

GwcNet-TA 1.99 4.66 1.87 46.88 60.90 45.98 13.01 29.56 12.01

GA-Net [21] 2.01 5.90 1.76 44.78 74.93 43.09 12.56 41.04 10.76

GA-Net-TA 2.04 7.09 1.78 44.18 69.76 42.74 12.27 41.89 10.62

LEA-Stereo [22] 1.83 4.12 1.66 44.31 71.81 42.69 11.32 33.74 9.81

LEA-Stereo-TA 1.70 2.39 1.66 43.04 56.29 42.19 10.50 21.44 9.69

RAFT-Stereo [8] 1.34 4.91 1.11 27.57 72.35 25.18 6.81 39.01 4.82

RAFT-Stereo-TA 1.25 3.16 1.09 26.03 42.29 24.86 5.36 16.21 4.62

CRE-Stereo [24] 1.19 3.97 1.01 24.45 59.40 22.44 5.36 27.60 3.98

CRE-Stereo-TA 1.08 1.94 1.02 23.99 46.87 22.49 4.76 14.71 4.05

GA-Net [21], LEA-Stereo [22], RAFT-Stereo [8], and CRE-
Stereo [24], pre-trained respectively on the SceneFlow [9]
and the KITTI Stereo 2012 [10] datasets on our created
transparent object detection dataset. We evaluated their per-
formance on three regions of the dataset: all pixels (A),
transparent object pixels only (T), and non-transparent object
pixels only (N). We used two evaluation metrics: (1) the
average endpoint error (EPE), and (2) the percentage of error
pixels (PEP), with the threshold set to 1.0 and 3.0 pixels
(hereafter referred to as PEP 1.0 and PEP 3.0), respectively.

We further evaluate the performance of five SoTA semantic
segmentation networks: SegNet [26], U-Net [27], PSPNet
[28], DeepLabv3+ [30], and SNE-RoadSeg [31] (with only
one encoder), as well as two salient object detection net-
works: PiCANet [33] and RAS [34] for transparent object
detection on the same dataset. To avoid any duplication
between the test and training datasets, we select images
that are not used in the previous experiments to train these
networks. We utilize five widely used evaluation metrics:
accuracy, precision, recall, F-score, and intersection over
union (IoU), to quantify the performance of these networks.

B. Evaluation of Deep Stereo Networks with Transparency
Awareness

Table I and Fig. 2 demonstrate the effectiveness of our TA-
Stereo strategy in improving the performance of deep stereo
networks for disparity estimation of transparent object pixels.
With the exception of GA-Net, our approach significantly
reduces the PEP and EPE for all pixels and transparent object
pixels. We have also observed that applying our proposed
TA-Stereo strategy to deep stereo matching results in more
accurate disparities for non-transparent object pixels in most
cases. Notably, our TA-Stereo strategy brings remarkable
improvement in CRE-Stereo and RAFT-Stereo. When com-
pared to their respective conventional pre-trained models,
the CRE-Stereo-TA model reduces the EPE by 51.1% for

TABLE II
COMPARISON OF SEMANTIC SEGMENTATION AND SALIENT OBJECT

DETECTION NETWORKS FOR TRANSPARENT OBJECT DETECTION, WHERE

ONLY THE ENCODER TO EXTRACT FEATURES FROM RGB IMAGES IS

USED IN SNE-ROADSEG. THE BEST RESULTS ARE SHOWN IN BOLD

TYPE.

Networks Accuracy (%) Precision (%) Recall (%) F-score (%) IoU (%)

SegNet [26] 98.5 61.2 63.7 58.5 43.9

U-Net [27] 95.4 43.2 30.2 28.4 17.8

PSPNet [28] 98.7 52.0 72.6 57.4 42.1

DeepLabv3+ [30] 98.2 28.5 74.4 35.5 23.5

SNE-RoadSeg [31] 99.0 71.9 76.2 71.6 56.9

PiCANet [33] 99.3 69.9 90.3 78.0 65.0

RAS [34] 99.5 84.2 86.6 85.0 74.2

transparent object pixels and 9.2% for all pixels. The PEP is
also reduced by 1.9% and 11.2% (for thresholds of 1 and 3
pixels, respectively) for all pixels, and by 21.1% and 46.7%
(for thresholds of 1 and 3 pixels, respectively) for transparent
object pixels. Similarly, the RAFT-Stereo-TA model reduces
the EPE by 45.3% for transparent object pixels and by 7.2%
for all pixels compared to its conventional pre-trained model.
Additionally, it reduces the PEP by 1.5% (for both thresholds
of 1 and 3 pixels) for all pixels and by 30.1% and 22.8%
(for thresholds of 1 and 3 pixels, respectively) for transparent
object pixels. These results suggest that the RAFT-Stereo-
TA and CRE-Stereo-TA models are more effective than
the conventional pre-trained models for transparency-aware
stereo matching.

Our analysis indicates that transparent objects, such as car
windows, tend to exhibit a uniform texture after homogeniza-
tion. This can make it difficult for stereo matching algorithms
to accurately estimate disparities. However, the SoTA deep
stereo networks are generally trained with large receptive
fields, which enables them to accurately estimate disparities
in such areas despite the lack of texture information. It
is important to note that the performance of GA-Net is
negatively affected when using the TA-Stereo strategy. This
may be due to the fact that GA-Net incorporates a so-
called local guided aggregation layer to capture local cost
dependencies, which prioritizes local visual features and
leads to inadequate disparity estimation in areas with low
texture.

C. Evaluation of Semantic Segmentation and Salient Object
Detection Networks for Transparent Object Detection

To evaluate the performance of different networks in de-
tecting transparent objects, we trained five semantic segmen-
tation networks and two salient object detection networks for
200 epochs using their official configurations on an NVIDIA
RTX 3090 GPU. As shown in Table II and Fig. 3, the single-
modal semantic segmentation networks performed poorly,
achieving a maximum IoU of less than 44%. The results
also suggest that our previously proposed data-fusion net-
work SNE-RoadSeg exhibits greater robustness and achieves
higher F-scores and IoUs, which increase by 13.0-43.2% and
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Fig. 3. Comparison of semantic segmentation and salient object detection networks for transparent object detection: (a)-(e) transparent object detection
results achieved by SegNet [26], U-Net [27], PSPNet [28], DeepLabv3+ [30], and SNE-RoadSeg (only one encoder is used), respectively; (f)-(g) transparent
object detection results achieved by PiCANet [33] and RAS [34]. The true-positive, false-negative, and false-positive pixels are shown in green, red, and blue,
respectively. These results demonstrate the superior performance of salient object detection networks over semantic segmentation networks for transparent
object detection.

13.0-39.1%, respectively, even though only a single encoder
is used. The improved performance of SNE-RoadSeg is
possibly attributed to the densely-connected skip connections
employed in its decoder.

In addition, our findings suggest that salient object detec-
tion networks outperform semantic segmentation networks
for transparent object detection. Specifically, RAS achieved
the highest accuracy, precision, F-score, and IoU, while
PiCANet achieved the highest recall. This is presumably due
to salient object detection networks focusing on identifying
one prominent object class in an image, often incorporating
(bottom-up and top-down) attention mechanisms. In contrast,
semantic segmentation networks apply convolutional opera-
tions to the entire image without any explicit attention mech-
anism, which may not be optimal for identifying transparent
objects. When a transparent object is difficult to distinguish
from its background, semantic segmentation networks tend
to perform poorly.

D. Evaluation of Deep Stereo Networks Assisted with Salient
Object Detection Network

We also utilize RAS [34], the best-performing transparent
object detection method, in combination with pre-trained
deep stereo networks to further evaluate the efficacy of our
proposed TA-Stereo strategy. Table III presents our findings,
which indicate that almost all the evaluated networks achieve
higher EPEs for transparent object pixels when the TA-
Stereo strategy is employed. However, only GwcNet, LEA-
Stereo, and RAFT-Stereo exhibit significant improvement.

TABLE III
COMPARISON OF SOTA DEEP STEREO NETWORKS, PRE-TRAINED ON

THE SCENEFLOW [9] DATASET AND EVALUATED WITH THE

TRANSPARENT OBJECT DETECTION RESULTS ACHIEVED USING RAS
[34]. THE BEST RESULTS ARE SHOWN IN BOLD TYPE.

Networks
EPE ↓ (pixels) PEP 1.0 ↓ (%) PEP 3.0 ↓ (%)

A T N A T N A T N

PSMNet [19] 3.60 4.42 3.52 62.81 71.59 62.12 28.76 35.72 28.07

PSMNet-TA 3.59 3.41 3.60 63.09 73.10 62.50 29.10 36.13 28.62

GwcNet [20] 2.04 4.89 1.85 48.01 77.72 46.33 13.60 37.77 11.96

GwcNet-TA 2.02 4.13 1.89 47.26 65.47 46.13 13.52 32.31 12.29

GA-Net [21] 2.01 5.90 1.76 44.78 74.93 43.09 12.56 41.04 10.76

GA-Net-TA 2.16 6.84 1.86 44.80 71.75 43.23 12.88 43.63 11.17

LEA-Stereo [22] 1.83 4.12 1.66 44.31 71.81 42.69 11.32 33.74 9.81

LEA-Stereo-TA 1.75 2.82 1.69 43.92 63.78 42.69 11.10 26.53 10.15

RAFT-Stereo [8] 1.34 4.91 1.11 27.57 72.35 25.18 6.81 39.01 4.82

RAFT-Stereo-TA 1.28 3.29 1.12 26.54 52.31 25.06 5.79 20.49 4.91

CRE-Stereo [24] 1.19 3.97 1.01 24.45 59.40 22.44 5.36 27.60 3.98

CRE-Stereo-TA 1.19 3.31 1.05 24.71 57.38 22.74 5.79 29.59 4.31

For RAFT-Stereo, the EPE is reduced by 33.0% for trans-
parent object pixels and 4.5% for all pixels, and the PEP
is reduced by 18.5%-20.0% for transparent object pixels
and approximately 1.0% for all pixels. We speculate that
transparent objects tend to be relatively small in size, and
any inaccuracies in their detection can have a considerable
impact on the overall effectiveness of the TA-Stereo strategy.
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TABLE IV
COMPARISON OF SOTA DEEP STEREO NETWORKS, PRE-TRAINED ON

THE KITTI STEREO 2012 [10] DATASET AND EVALUATED WITH THE

TRANSPARENT OBJECT GROUND TRUTH. THE BEST RESULTS ARE

SHOWN IN BOLD TYPE.

Networks
EPE ↓ (pixels) PEP 1.0 ↓ (%) PEP 3.0 ↓ (%)

A T N A T N A T N

PSMNet [19] 1.35 1.18 1.35 55.99 42.83 56.45 3.66 4.72 3.52

PSMNet-TA 1.39 1.61 1.38 57.17 59.78 57.15 4.17 10.11 3.80

GwcNet [20] 0.86 0.94 0.86 22.36 28.45 21.64 2.56 3.34 2.47

GwcNet-TA 0.89 1.08 0.87 22.73 33.95 21.77 2.94 6.62 2.59

GA-Net [21] 0.54 0.48 0.54 10.95 8.75 10.90 1.13 0.66 1.15

GA-Net-TA 0.61 0.89 0.59 13.28 26.37 12.22 1.72 4.27 1.47

LEA-Stereo [22] 0.80 0.84 0.80 21.06 28.79 20.48 2.13 1.33 2.17

LEA-Stereo-TA 0.82 0.99 0.81 21.88 32.93 20.91 2.49 4.56 2.30

TABLE V
EVALUATION OF TA-STEREO WITH SGM [6]. THE BEST RESULTS ARE

SHOWN IN BOLD TYPE.

Methods
EPE ↓ (pixels) PEP 1.0 ↓ (%) PEP 3.0 ↓ (%)

A T N A T N A T N

SGM 7.26 13.28 6.75 37.26 65.07 35.53 19.66 37.64 18.45

SGM-TA 7.49 15.88 6.84 36.95 59.02 35.49 19.78 37.61 18.62

E. Additional Evaluation of Our TA-Stereo Strategy

As discussed in Sec. IV-A, real-world datasets, including
the KITTI Stereo 2012 and 2015 [10], [11] datasets, provide
more realistic ground truth for transparent objects. Therefore,
training deep stereo networks on these datasets can improve
their ability to estimate the disparities of transparent object
pixels. Table IV demonstrates that the performance of TA-
Stereo is compromised when deep stereo networks are pre-
trained on the KITTI Stereo 2012 dataset and subsequently
tested on the KITTI Stereo 2015 dataset. This outcome can
be attributed to the fact that the training dataset provides
accurate ground-truth disparities for transparent objects,
thereby allowing the networks to acquire transparency-aware
capabilities.

Furthermore, we employ SGM to evaluate the effective-
ness of our proposed TA-Stereo strategy. The results pre-
sented in Table V demonstrate that SGM outperforms SGM-
TA in terms of achieving higher EPEs for all pixels, transpar-
ent object pixels, and non-transparent object pixels. Although
there is a slight improvement in the PEP 1.0 achieved by
SGM-TA, its overall performance is worse than SGM. Our
analysis indicates that the reason for this is probably due
to the fact that conventional stereo matching algorithms rely
on explicit programming to determine disparities, wherein
matching costs are calculated using a mathematical equation,
such as the sum of absolute differences or the normalized
cross-correlation. As a result, these algorithms fail to handle
homogenized transparent objects (texture-less regions).

V. DISCUSSION

Estimating disparities for transparent objects in stereo
matching remains a difficult task due to the multiple reflec-
tions and transmissions that can occur within the object [25].
When light interacts with a transparent object, it is not only
reflected but also transmitted through the surface [37]. Con-
ventional stereo matching algorithms lack the transparency
awareness ability, and as a result, they may estimate the
disparities of transparent objects based on light transmission,
which may differ from the disparities of surrounding objects
as observed from the camera. This discrepancy may have
safety implications for autonomous vehicles. Therefore, it
is crucial to develop transparency-aware stereo matching
algorithms to ensure safe and reliable autonomous driving.

However, our proposed TA-Stereo strategy has some limi-
tations that should be addressed. First, it seems to be effective
only for stereo matching approaches with a strong global
context inference ability. Local context-based approaches
may struggle to handle homogenized transparent objects. As
a result, alternative strategies to process transparent object
pixels can potentially enhance the performance of stereo
matching algorithms that focus on local context. Second,
the efficacy of our TA-Stereo strategy heavily relies on the
accuracy of transparent object detection. It is worth noting
that salient object detection networks tend to perform better
than semantic segmentation networks in terms of transparent
object detection, as these objects are typically small in
size. Therefore, it is crucial to explore and incorporate
small salient object detection algorithms for improved stereo
matching performance. This aspect deserves more attention
in future research. Third, this work treats transparent object
detection and stereo matching as separate tasks. However, we
believe that a multi-task learning framework that combines
these two tasks can lead to even more promising results.
By jointly optimizing both tasks, the model can leverage
the inter-dependencies between them to achieve improved
performance in both transparent object detection and stereo
matching. Such a framework represents an interesting avenue
for future research.

VI. CONCLUSION

This paper discussed the issue of transparent objects in
stereo matching, which poses unique challenges due to the
presence of multiple reflections and transmissions inside the
object. To address this issue, we proposed the TA-Stereo
strategy, which leverages a semantic segmentation or salient
object detection network to detect transparent objects and
then homogenizes them to facilitate stereo matching. Our
experimental results demonstrate that the incorporation of the
TA-Stereo strategy significantly enhances the performance of
global context-based stereo matching algorithms. Finally, we
also discussed the limitations of our approach and suggested
possible solutions for further improvement.
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