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Abstract— Surface normal holds significant importance in
visual environmental perception, serving as a source of rich
geometric information. However, the state-of-the-art (SoTA)
surface normal estimators (SNEs) generally suffer from an
unsatisfactory trade-off between efficiency and accuracy. To
resolve this dilemma, this paper first presents a superfast depth-
to-normal translator (D2NT), which can directly translate depth
images into surface normal maps without calculating 3D coor-
dinates. We then propose a discontinuity-aware gradient (DAG)
filter, which adaptively generates gradient convolution kernels
to improve depth gradient estimation. Finally, we propose a
surface normal refinement module that can easily be integrated
into any depth-to-normal SNEs, substantially improving the
surface normal estimation accuracy. Our proposed algorithm
demonstrates the best accuracy among all other existing real-
time SNEs and achieves the SoTA trade-off between efficiency
and accuracy.

SOURCE CODE, DEMO VIDEO, & SUPPLEMENT

Our source code, demo video, and supplement are publicly
available at mias.group/D2NT.

I. INTRODUCTION

Surface normal is an informative visual feature that has
been widely used in a variety of robot environmental percep-
tion tasks, e.g., visual odometry [1], [2], scene parsing [3]–
[7], and depth estimation [8], [9]. Due to the requirement for
real-time execution in such tasks, surface normal estimators
(SNEs) should be both accurate and computationally efficient
[10].

Early geometry-based SNEs compute surface normals
via either plane fitting (solvable with energy minimization
techniques) or weighted neighboring normal aggregation.
However, these SNEs typically have an imbalance between
accuracy and speed (see Fig. 1). In 2015, Nakagawa et al.
[11] proposed an efficient SNE, which computes surface
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Fig. 1. Efficiency versus accuracy trade-off comparison among all SoTA
geometry-based SNEs (on the 3F2N Easy dataset). D2NT has the highest
computational efficiency, and D2NT V3 achieves the best trade-off between
speed and accuracy.

normals via the cross product of two orthogonal tangent
vectors (hereafter called CP2TV). However, its performance
on spatial discontinuities is unsatisfactory as a result of
inaccurate observed tangent vectors. Recently, Fan et al. [10]
introduced an efficient and accurate SNE, referred to as three-
filters-to-normal (3F2N). Although 3F2N achieves state-of-
the-art (SoTA) performance, the aggregation of neighboring
surface normals with a mean or median filter is still compu-
tationally intensive.

Therefore, there is a strong necessity to develop an SNE
that achieves a balance between rapid computation and high
accuracy. In this paper, we present a high-performing depth-
to-normal translator (D2NT), which significantly improves
the efficiency and accuracy trade-off, and significantly refines
the estimation results in and around discontinuities. The
contributions of our work are summarized as follows:

1) D2NT, a cutting-edge Depth-to-Normal Translator.
In comparison to other geometry-based SNEs, D2NT
computes surface normals directly from depth maps,
demonstrating remarkable computational efficiency.
Compared to existing SoTA SNEs, D2NT establishes
the most direct relationship between depth and surface
normal.

2) Discontinuity-Aware Gradient (DAG) filter, a depth
gradient filter that selectively identifies discontinuities
and eliminates outliers (non-coplanar points in relation
to the reference point). Compared to traditional finite
difference (FD) operators, our proposed DAG filter
provides a significant improvement in terms of depth
gradient estimation accuracy.
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3) Markov random field-based Normal Refinement
(MNR) module, which dramatically reduces surface
normal estimation errors. It can also be integrated
with any depth-to-normal SNEs to further enhance the
quality of their estimated surface normals.

II. RELATED WORK

This section provides an overview of geometry-based
surface normal estimators. As shown in Table I, the ex-
isting SNEs can be divided into three categories: energy
minimization-based, averaging-based, and depth-to-normal.

Let P = {p1,p2, ...,pn} be the given 3D point set.
For an arbitrary 3D point pi ∈ P , its surface normal is
represented as ni = [nix, niy, niz]

⊤. To find the optimal ni,
Qi = {qi1, qi2, ..., qik | qik ∈ P }, the neighboring points
of pi are typically considered.

A. Energy Minimization-Based Methods

This category of methods computes surface normals by
finding a best-fit plane from the augmented neighboring point
set Q+

i = {Qi,pi} as follows:

n̂i = argmin
ni

E(Q+
i ,ni), (1)

where n̂i is obtained by minimizing the energy function E.
PlaneSVD [12] fits a local planar surface to Q+

i by
minimizing the least squares of the distances from the points
to the surface using SVD. Similarly, PlanePCA [13] finds
the minimum variance of Q+

i with respect to the centroid
p̄i = 1

k+1 (pi + Σk
j=1qij). VectorSVD [14] fits the local

planar surface by minimizing the sum of the squared dot
products between the surface normal and tangent vectors.

Recently, Ming et al. [15] proposed SDA-SNE, a highly
accurate surface normal estimator based on multi-directional
dynamic programming and iterative polynomial interpola-
tion. Nevertheless, its demanding computational require-
ments and iterative nature result in subpar real-time per-
formance. The computation-intensive nature of energy min-
imization and the calculation of 3D coordinates make these
SNEs suffer from slow processing speed and noise.

B. Averaging-Based Methods

This category of methods estimates surface normals by
averaging the normal vectors of the surrounding triangles:

ni =
1

k

k∑
j=1

wj

rij × rij+1

∥rij × rij+1∥2
, (2)

where rij = qij − pi, rik+1 = ri1, and wj is the weight
calculated based on either the area (AreaWeighted [16]) or
the angle (AngleWeighted [17]) of the triangles. Nonetheless,
both of these methods necessitate an initial estimation of the
normals and can only be utilized as a back-end optimization
technique.

TABLE I
TAXONOMY OF THE SOTA GEOMETRY-BASED SNES.

Category Algorithm Expression

Energy

Minimization-

Based

PlaneSVD [12] min
∣∣∣∣∣∣[Q+

i , 1k

]
bi

∣∣∣∣∣∣
2

PlanePCA [13] min
∣∣∣∣∣∣[Q+

i − p̄
]
ni

∣∣∣∣∣∣
2

VectorSVD [14] min
∣∣∣∣∣∣[Qi − 1kp

⊤
i

]
ni

∣∣∣∣∣∣
2

SDA-SNE [15] min
{
T

(
E(k−1),S

)}
Averaging-

Based

AreaWeighted [16] wj = 1
2

∣∣∣∣∣∣rij × rij+1

∣∣∣∣∣∣
2

AngleWeighted [17] wj = cos−1
( ⟨rij ,rij+1⟩

∥rij∥2∥rij+1∥2

)

Depth-to-Normal
3F2N [10]

nx = fx
∂1/z
∂u , ny = fy

∂1/z
∂v

n̂z = −Φ

{
∆xijnx+∆yijny

∆zij

}
CP2TV [11] ni = tu × tv

C. Depth-to-Normal Methods

Fan et al. [10] proposed 3F2N, a fast and accurate sur-
face normal estimator, which directly converts the struc-
tured range sensor data, such as depth or disparity images,
into surface normal maps using two gradient filters and
a mean/median filter. This category of methods typically
assumes that the range sensor is a pinhole camera model
as follows:

z

uv
1

 = Kpi =

fx 0 uo
0 fy vo
0 0 1

xy
z

 , (3)

where K represents the camera intrinsic matrix, p0 =
[u0, v0]

⊤ is the principal point in pixels, and fx and fy
denote the camera’s focal lengths in the x and y directions,
respectively. This method achieves fast computational speed
and high accuracy, but it still involves the calculation of
3D coordinates, which is redundant and computationally
demanding.

Nakagawa et al. [11] presented CP2TV, an SNE that
utilizes the cross-products of tangent vectors of local planar
surfaces to directly estimate surface normals from depth
maps. However, the accuracy of this method is inadequate
in and around discontinuities, as it adopts a finite difference
operator to estimate depth gradients. Inaccurate tangent vec-
tors generated in these regions lead to substantial calculation
errors in the estimated surface normals.

III. METHODOLOGY

In this section, we first introduce a highly efficient method
for estimating surface normals from structured range sensor
data in an end-to-end manner. Then, we present a novel ap-
proach to improve the accuracy of depth gradient estimation.
Additionally, we propose an optimization strategy to refine
surface normal estimation in and around discontinuities,
which can be well embedded into any existing depth-to-
normal SNEs. The pipeline of our algorithm is illustrated
in Fig. 2.

12361

Authorized licensed use limited to: TONGJI UNIVERSITY. Downloaded on July 17,2023 at 07:15:27 UTC from IEEE Xplore.  Restrictions apply. 



DAG Filter D2NT MNR Module

Depth 
Smoothness 

Map Truncated Softmin

Depth Image Refined Surface  
Normal Map

Ground Truth

Refined Depth 
Gradient Maps

Surface Normal 
Distribution Update

Observed Vertex

Neighboring Vertices

Transfer Directions

Smoothness-Guided Direction Weights

Coarse Error Map Refined Error Map
Coarse Depth 

Gradient Maps

Coarse Surface 
Normal Map

Angular Error (Degrees)Surface Normal 
Reference

FD Filter
cos−1 cos−1

Smoothness-
Guided Direction

Weight Maps

Fig. 2. The illustration of our proposed D2NT, DAG filter, and MNR module. D2NT translates depth images into surface normal maps in an end-to-end
fashion; DAG filter adaptively generates smoothness-guided direction weights for improved depth gradient estimation in and around discontinuities; MNR
module further refines the estimated surface normals based on the smoothness of neighboring pixels.

A. Depth-to-Normal Translation

An observed 3D point p = [x, y, z]⊤ and its surface
normal n = [nx, ny, nz]

⊤ have the following relation:

nxx+ nyy + nzz + d = 0, (4)

where d is the distance between the origin and the tangent
plane. Combining (3) with (4) results in the following
expression:

z(u− u0)

fx
nx +

z(v − v0)

fy
ny + nzz + d = 0. (5)

(5) contains an implicit function z(u, v). We compute the
partial derivatives of z with respect to u and v, as follows:

zu(
u− u0
fx

nx +
v − v0
fy

ny + nz) +
z

fx
nx = 0,

zv(
u− u0
fx

nx +
v − v0
fy

ny + nz) +
z

fy
ny = 0,

(6)

where zu = ∂z
∂u and zv = ∂z

∂v . nx and ny can then be obtained
by plugging (5) into (6):

nx =
fxd

z2
zu, ny =

fyd

z2
zv. (7)

nz can therefore be computed by plugging (7) into (5):

nz = − d

z2
(z + (u− u0)zu + (v − v0)zv). (8)

Removing the common factor d
z2 results in a simplified

expression for surface normal:

n =

 −fx 0 0
0 −fy 0

u− u0 v − v0 z

zuzv
1

 . (9)

(9) describes an end-to-end translation from a given depth
image to its surface normal map. Compared with other SoTA
SNEs, such as 3F2N [10] and SNE-RoadSeg [3], D2NT
eliminates the need to calculate 3D coordinates by lever-
aging the explicit relationship between depth and normal,
demonstrating remarkable computational efficiency.

B. Discontinuity-Aware Gradient Filtering
As (9) demonstrates, surface normals can be directly

calculated from structured range sensor data when the camera
parameters are known. The accuracy of the partial derivatives
directly affects the accuracy of the surface normal estima-
tion. This subsection introduces an improved depth gradient
computation approach.

The existing depth-to-normal methods generally utilize
regular image gradient filters, such as FD1, to approximate
depth gradients. However, these filters tend to yield poor
results on discontinuities, such as ridges, ditches, and edges,
as outliers (non-coplanar adjacent points) are involved in
depth difference computation.

To address this issue, we define a horizontal gradient filter
Gh and a vertical gradient filter Gv as follows:

Gh = λl∆b + λr∆f , Gv = λu∆
⊤
b + λd∆

⊤
f , (10)

1Horizontal FD kernel: ∆ = [−1, 0, 1].
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where ∆b = [−1, 1, 0] and ∆f = [0,−1, 1] are the backward
and forward difference operators, respectively. λ denotes the
weight distribution along four different directions. Hereafter
the subscripts l, r, u, and d denote left, right, up, and down
directions, respectively.

To obtain more accurate Gu and Gv in areas with discon-
tinuities, we must distinguish between distinct continuous
surfaces and assign appropriate weights to ∆f and ∆b based
on the smoothness of the neighboring pixels’ surfaces. The
local surface smoothness sp can be reflected by:

sp = |∇2zp|, (11)

where ∇2 is a second-order Discrete Laplace Filter (DLF),
and zp is the depth at p. The weights of the difference
operator along four directions can then be assigned as
follows:

λl, λr = M (sl, sr), λu, λd = M (su, sd), (12)

where sl, sr, su, and sd represent the smoothness of four
neighboring points, respectively, and M is the softmin
function:

M (si) =
e−si/τ∑n
j=1 e

−sj/τ
, i = 1 or 2, (13)

where τ is the coefficient that regulates the “softness” of the
softmin function. Additionally, we observe that significant
estimation errors generally occur on the boundaries of sur-
faces which have small depth gradients (i.e., surfaces that are
nearly parallel to the XOY plane). This is due to the fact that
the adjacent plane typically exhibits a much larger difference
in depth gradient magnitude when compared to the reference
surface (i.e., the plane where the reference point is located).
As a result, the calculated depth gradient is bound to differ
from the depth gradient of the reference plane, even if the
weight assigned to the reference plane’s depth gradient is
high, according to (13). To tackle this problem, when the
smoothness of neighboring points differs greatly from each
other, the weights for the depth gradients of adjacent and
reference planes should be automatically assigned to 0 and
1, respectively. Therefore, we introduce truncated softmin

Mt(si) =

{
M (si) (|s2 − s1| ≤ 1)

1R+(si − 1) (|s2 − s1| > 1)
(14)

to further improve surface normal accuracy, where 1R+(·) is
the indicator function mapping weight to either 0 or 1 based
on the difference in adjacent pixel’s surface smoothness.
Our proposed DAG filter adaptively generates gradient filters
based on surface smoothness, resulting in more accurate
estimations of depth gradients, as outliers are effectively
filtered out. In summary, the gradient filter of a given point
pi can be represented by the following expression2:

Gi =

[
Gh

G⊤
v

]
i

= Mt(|∇2zi|)
[
∆b

∆f

]
, (15)

where zi = [ zl zr
zu zd ] is the neighborhood depth matrix of pi.

2Here ∇2(·), | · |, and Mt(·) are element-wise operators.

C. MRF-Based Surface Normal Refinement

Our observation reveals that the surface normals of pixels
near/on discontinuities are generally incorrect. This is due
to the fact that non-coplanar points are used for local planar
surface fitting, causing incorrect depth gradients (discussed in
the previous subsection). To resolve this issue, we propose a
fast and effective MRF-based optimization (post-processing)
method, which significantly improves surface normal accu-
racy while having minimal impact on the processing speed.

The depth image can be modeled as an undirected graph
G = (P, E), where each node represents a pixel in the
depth map, and each edge describes the connection between
adjacent pixels. Let N = {np |p ∈ P} be a random variable
set, where np represents the estimated surface normal of
point p. np is conditionally independent of all other variables
in N :

np ⊥⊥ nP\Q+
p
| nQp . (16)

Let P (N = n) be the joint probability distribution of N ,
representing the probability of a particular field configura-
tion n in surface normal field N . Specifically, we set the
size of the maximum clique to 2 to model our pairwise
MRF. According to the Hammersley-Clifford theorem [18],
P (N = n) is represented as follows:

P (N = n) =
1

Z

∏
p∈P

ϕ(p)
∏

(p,qi)∈E

ψ(p, qi), (17)

where Z is the partition function. (17) is mathematically
equivalent to the energy minimization problem as follows:

E =
∑
p∈P

Φ(p) +
∑

(p,qi)∈E

Ψ(p, qi), (18)

where the data term

Φ(p) = ||n̂p − np||2, (19)

enforces the consistency between the estimated surface nor-
mals n̂p and the observed surface normals np, and the
smoothness term

Ψ(p, q) = sp
∑
i

M (si)||n̂p − nqi ||2, (20)

smoothens the surface normal distribution between reference
point p and its neighboring point qi, where M (si) is the
weight of the neighboring point qi generated by the softmin
function (13), nqi

is the observed surface normal of qi, and
sp is the local surface smoothness that decides the weight
between data term and smoothness term.

(19) suggests that the difference between the observed and
estimated surface normals should be insignificant, while (20)
implies that adjacent points on the same local planar surface
should have consistent normal distributions.

IV. EXPERIMENTS

This section evaluates the performance of our proposed
surface normal estimator and compares it with SoTA
geometry-based SNEs. To simplify the presentation, we refer
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Fig. 3. Comparison of our proposed SNE with other SoTA geometry-based SNEs on the 3F2N [10] dataset: (a) depth maps and ground-truth surface
normal maps; (b) error maps obtained using 3F2N (median filter); (c) error maps obtained using CP2TV; (d) error maps obtained using our proposed
D2NT V3.

TABLE II
EVALUATION OF THE PROPOSED SNE USING FOUR DISCRETE

LAPLACIAN FILTERS ON THE 3F2N DATASETS.

Filter

Config

D2NT+DAG D2NT+MNR

Easy Medium Hard Easy Medium Hard

1D DLF 1.19 4.87 12.84 1.19 5.08 11.87

DLF-α 1.40 5.17 12.85 0.79 4.80 9.86

DLF-β 1.30 4.99 12.46 0.93 4.84 10.44

DLF-γ 1.36 5.05 13.03 1.36 5.05 13.03

to the basic depth-to-normal translator introduced in Sec. III-
A as D2NT, the version that includes the DAG filter only as
D2NT V2, and the version that includes both the DAG filter
and the MNR module as D2NT V3.

Accurately determining surface normals from real-world
range sensor data is infeasible due to the presence of noise.
Although public datasets, such as NYUv2 [19] and DIODE
[20], provide surface normal “ground truth”, it is often ob-
tained through the interpolation of point sets into local planar
surfaces, making the evaluation of SNEs with such “ground
truth” unreliable. As a result, we conduct experiments on our
previously published synthetic dataset [10].

A. Implementation Details and Evaluation Metrics

As discussed in Sec. III, local surface smoothness is
computed through the convolution of the depth map with
Laplacian kernels. To find the best convolution kernel,

four DLFs are used, including 1D DLF (horizontal kernel:
[1,−2, 1], and vertical kernel: [1,−2, 1]⊤), DLF-α, DLF-
β, and DLF-γ3 [21]. The execution time of the four DLFs
is comparable, as the optimization only occupies a minor
portion of the overall process. As demonstrated in Table II,
the best results on the 3F2N easy and medium datasets are
achieved when using the 1D DLF for D2NT+DAG. Addi-
tionally, D2NT+MNR shows the best performance across all
three 3F2N datasets when using the DLF-α for computing
local surface smoothness. Therefore, we use the 1D DLF for
the DAG filter and the DLF-β for the MNR module.

Moreover, to meet the real-time requirement, we simplified
the implementation of our proposed MNR module. Specif-
ically, when the level of discontinuity in the local surface
is assessed to be low according to (11), we exclude the
smoothness term in (18). Similarly, if a point is identified
to be in and around discontinuities, we omit the data term
and instead use the surface normal of the neighboring point
with the highest smoothness.

Following [10], we use the average angular error eA to
quantitatively evaluate the performance of SNEs:

eA =
1

N

N∑
k=1

cos−1

(
⟨nk, n̂k⟩

||nk||2||n̂k||2

)
, (21)

3DLF-α:

0 1 0
1 −4 1
0 1 0

, DLF-β:

1 1 1
1 −8 1
1 1 1

, DLF-γ:

1 2 1
2 −12 2
1 2 1


12364
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TABLE III
SPEED, ACCURACY, AND TRADE-OFF COMPARISONS AMONG SOTA GEOMETRY-BASED SNES ON THE 3F2N DATASET.

Real-Time Method t (ms) ↓
eA (degrees) ↓ π (degrees/kHz) ↓

Easy Medium Hard Easy Medium Hard

N

PlaneSVD [13] 393.69 2.07 6.07 17.59 813.87 2389.73 6923.18

PlanePCA [14] 631.88 2.07 6.07 17.59 1306.29 3835.59 11111.92

VectorSVD [16] 563.21 2.13 6.27 18.01 1199.63 3529.11 10142.34

AreaWeighted [16] 1092.24 2.20 6.27 17.03 2407.74 6843.56 18600.68

AngleWeighted [16] 1032.88 1.79 5.67 13.26 1850.00 5855.62 13693.24

SDA-SNE [15] 726.18 0.68 4.38 8.10 493.8 3180.67 5882.06

Y

SNE-RoadSeg [3] 7.92 2.04 6.28 16.37 16.16 49.74 129.65

3F2N [10] 10.97 1.66 5.69 15.31 18.18 62.38 168.03

CP2TV [11] 2.23 1.69 6.01 13.82 3.75 13.39 30.76

D2NT (ours) 1.82 1.54 5.64 15.32 3.05 10.25 27.84

D2NT V2 (ours) 7.80 1.19 4.87 12.84 8.44 34.67 91.33

D2NT V3 (ours) 7.99 0.89 4.78 9.86 7.09 38.28 78.91

TABLE IV
COMPARISON BETWEEN 3F2N AND CP2TV WITH AND WITHOUT OUR

PROPOSED MNR MODULE EMBEDDED.

Module

Config

3F2N CP2TV

Easy Medium Hard Easy Medium Hard

w/o MNR 1.66 5.69 15.32 1.69 6.02 13.82

w/ MNR 0.82 4.89 10.33 0.91 4.80 9.86

Improvement 50.7% 14.0% 32.5% 40.8% 15.0% 35.6%

Easy

Hard
Medium

SNE Robustness Evaluation w.r.t.

Different Levels of Noise

D2NT V3

D2NT V2

D2NT

18

16
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10
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2
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-6.5 -6.0 -5.5 -5.0 -4.5 -4.0

Fig. 4. Comparison among the three D2NT versions on the 3F2N datasets
with different levels of Gaussian noise added.

where N is the number of valid pixels, and nk and n̂k are
the ground truth and estimated surface normals, respectively.

In addition to accuracy evaluation, we adopt the metric

π = eAt (degrees/kHz) (22)

proposed in [10] to quantify the trade-off between efficiency
and accuracy of a given SNE. A high-performing (fast and
accurate) SNE achieves a low π score.

B. Performance Comparison

As shown in Table III, our proposed surface normal
estimators demonstrate superior performance compared to all
other SoTA SNEs. D2NT achieves the highest computational
efficiency and the optimum trade-off between speed and
accuracy, while D2NT V3 achieves the highest accuracy (the
eA scores achieved by D2NT are less than 1◦, 5◦, and 9◦

on the 3F2N easy, medium, and hard datasets, respectively).
Furthermore, as illustrated in Fig. 3, our D2NT outperforms
3F2N and CP2TV, particularly in and around discontinuities.

We also conducted supplementary experiments to demon-
strate the compatibility of our proposed MNR module with
other depth-to-normal SNEs, as shown in Table. IV. When
incorporating the MNR module with 3F2N and CP2TV,
the quality of their estimated surface normals is greatly
improved, with a drop in 3F2N’s eA scores by 51%, 14%, and
33% on the 3F2N easy, medium, and hard datasets respec-
tively and a decrease in CP2TV’s eA scores by 41%, 15%,
and 36% on the same datasets. These results suggest that
our proposed MNR module can be utilized in conjunction
with other depth-to-normal SNEs and serves as an effective
back-end optimization technique to enhance surface normal
estimation in and around discontinuities.

As the used synthetic datasets are clean, we further evalu-
ate the robustness of our methods in the presence of random
Gaussian noise on the same datasets. As shown in Fig. 4,
all three D2NT versions are stable with respect to different
levels of Gaussian noise, and D2NT V3 is the most robust
compared to the other two versions. In addition, it can be
observed that our methods exhibit greater stability on the
3F2N medium and hard datasets, as compared to the 3F2N
easy dataset. This is likely due to the added discontinuities
caused by the Gaussian noise on the 3F2N easy dataset.

V. CONCLUSION

This paper presented an end-to-end depth-to-normal trans-
lator, a discontinuity-aware gradient filter, and an MRF-based
surface normal refinement module. Extensive experimental
results demonstrate that 1) our proposed depth-to-normal
translator achieves the fastest execution speed and the best
balance between computational efficiency and accuracy, and
2) the discontinuity-aware gradient filter and MRF-based
surface normal refinement module can further improve its
performance in and around discontinuities. Furthermore, our
proposed MRF-based surface normal refinement module is
also compatible with other depth-to-normal SNEs.

12365

Authorized licensed use limited to: TONGJI UNIVERSITY. Downloaded on July 17,2023 at 07:15:27 UTC from IEEE Xplore.  Restrictions apply. 



REFERENCES

[1] Y. Li et al., “Structure-SLAM: Low-drift monocular SLAM in indoor
environments,” IEEE Robotics and Automation Letters, vol. 5, no. 4,
pp. 6583–6590, 2020.

[2] Z. Liu et al., “LPD-Net: 3D point cloud learning for large-scale
place recognition and environment analysis,” in Proceedings of the
IEEE/CVF International Conference on Computer Vision (ICCV),
2019, pp. 2831–2840.

[3] R. Fan et al., “SNE-RoadSeg: Incorporating surface normal informa-
tion into semantic segmentation for accurate freespace detection,” in
European Conference on Computer Vision (ECCV). Springer, 2020,
pp. 340–356.

[4] H. Wang et al., “Dynamic fusion module evolves drivable area
and road anomaly detection: A benchmark and algorithms,” IEEE
Transactions on Cybernetics, vol. 52, no. 10, pp. 10 750–10 760, 2022.

[5] H. Wang et al., “Applying surface normal information in drivable
area and road anomaly detection for ground mobile robots,” in 2020
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS). IEEE, 2020, pp. 2706–2711.

[6] R. Fan et al., “Pothole detection based on disparity transformation
and road surface modeling,” IEEE Transactions on Image Processing,
vol. 29, pp. 897–908, 2019.

[7] H. Wang et al., “SNE-RoadSeg+: Rethinking depth-normal translation
and deep supervision for freespace detection,” in 2021 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS).
IEEE, 2021, pp. 1140–1145.

[8] X. Qi et al., “GeoNet: Geometric neural network for joint depth and
surface normal estimation,” in Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2018, pp. 283–291.

[9] X. Qi et al., “GeoNet++: Iterative geometric neural network with edge-
aware refinement for joint depth and surface normal estimation,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 44,
no. 2, pp. 969–984, 2020.

[10] R. Fan et al., “Three-filters-to-normal: An accurate and ultrafast
surface normal estimator,” IEEE Robotics and Automation Letters,
vol. 6, no. 3, pp. 5405–5412, 2021.

[11] Y. Nakagawa et al., “Estimating surface normals with depth image
gradients for fast and accurate registration,” in 2015 International
Conference on 3D Vision (3DV). IEEE, 2015, pp. 640–647.

[12] C. Wang et al., “Comparison of local plane fitting methods for range
data,” in Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), vol. 1. IEEE, 2001.

[13] K. Klasing et al., “Realtime segmentation of range data using continu-
ous nearest neighbors,” in 2009 International Conference on Robotics
and Automation (ICRA). IEEE, 2009, pp. 2431–2436.

[14] K. Jordan et al., “A quantitative evaluation of surface normal estima-
tion in point clouds,” in 2014 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS). IEEE, 2014, pp. 4220–4226.

[15] N. Ming et al., “SDA-SNE: Spatial discontinuity-aware surface nor-
mal estimation via multi-directional dynamic programming,” in 2022
International Conference on 3D Vision (3DV), 2022, pp. 486–494.

[16] K. Klasing et al., “Comparison of surface normal estimation methods
for range sensing applications,” in 2009 International Conference on
Robotics and Automation (ICRA). IEEE, 2009, pp. 3206–3211.

[17] S. Jin et al., “A comparison of algorithms for vertex normal compu-
tation,” The Visual Computer, vol. 21, no. 1, pp. 71–82, 2005.

[18] J. M. Hammersley and P. Clifford, “Markov fields on finite graphs and
lattices,” Unpublished manuscript, vol. 46, 1971.

[19] N. Silberman et al., “Indoor segmentation and support inference from
RGBD images,” in European Conference on Computer Vision (ECCV).
Springer, 2012, pp. 746–760.

[20] Vasiljevic et al., “DIODE: A Dense Indoor and Outdoor DEpth
dataset,” CoRR, 2019.

[21] M. Wardetzky, “Discrete laplace operators,” An Excursion Through
Discrete Differential Geometry: AMS Short Course, Discrete Differ-
ential Geometry, January 8-9, 2018, San Diego, California, vol. 76,
p. 1, 2020.

12366

Authorized licensed use limited to: TONGJI UNIVERSITY. Downloaded on July 17,2023 at 07:15:27 UTC from IEEE Xplore.  Restrictions apply. 


