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Abstract— Disparity and optical flow estimation are respec-
tively 1D and 2D dense correspondence matching (DCM)
tasks in nature. Unsupervised domain adaptation (UDA) is
crucial for their success in new and unseen scenarios, enabling
networks to draw inferences across different domains without
manually-labeled ground truth. In this paper, we propose a
general UDA framework (UnDAF) for disparity or optical flow
estimation. Unlike existing approaches based on adversarial
learning that suffers from pixel distortion and dense correspon-
dence mismatch after domain alignment, our UnDAF adopts a
straightforward but effective coarse-to-fine strategy, where a co-
teaching strategy (two networks evolve by complementing each
other) refines DCM estimations after Fourier transform initial-
izes domain alignment. The simplicity of our approach makes
it extremely easy to guide adaptation across different domains,
or more practically, from synthetic to real-world domains.
Extensive experiments carried out on the KITTI and MPI Sintel
benchmarks demonstrate the accuracy and robustness of our
UnDAF, advancing all other state-of-the-art UDA approaches
for disparity or optical flow estimation. Our project page is
available at https://sites.google.com/view/undaf.

I. INTRODUCTION

Dense correspondence matching (DCM) is a fundamental
task in computer vision. This technique has been prevalently
applied in many robotics tasks, such as visual odometry [1]
and object tracking [2]. The goal of DCM is to ascertain
the relationship between each pair of pixels in two or more
images of the same 3D scene [3], [4]. Specifically, disparity
and optical flow estimation are respectively 1D and 2D DCM
tasks in nature, which target at stereo images and consecutive
video frames, separately.

With the evolution of artificial intelligence, deep learning
has emerged as a highly practical and powerful technology
for disparity [3], [5] and optical flow [4], [6] estimation,
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(a) Reference Image

(b) Disparity Estimation via LEAStereo

(c) Optical Flow Estimation via RAFT
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Fig. 1: LEAStereo [3] for disparity estimation and RAFT [4]
for optical flow estimation, which are both trained on a
synthetic dataset and tested on a real-world dataset. It can
be obviously seen that our UnDAF can significantly improve
the DCM accuracy across different domains.

and the achieved results are very compelling. However, such
data-driven approaches generally require a large amount of
training data with human-labeled correspondence ground
truth to learn the best model parameters for DCM tasks.
This data labeling process is always very time-consuming
and labor-intensive. Synthetic datasets with machine-labeled
ground truth are easy-to-acquire, but in practice, it is still
demanding to adapt a network from its learned scenario to
a new and unseen one, especially from a synthetic domain
to a real-world domain, as illustrated in Fig. 1. Therefore,
domain adaptation has become a pressing need for various
real-world DCM applications, especially for autonomous
driving. Many supervised [3], [4] and unsupervised [7], [8]
frameworks have been proposed in recent years. In this paper,
we mainly explore the second direction and propose a general
unsupervised domain adaptation framework (UnDAF) for
DCM, as illustrated in Fig. 2, which requires no ground-
truth labels in the target domain.

Existing unsupervised domain adaptation (UDA) ap-
proaches for DCM are typically developed under two dif-
ferent strategies: 1) designing an auxiliary loss for a specific
DCM task so that the network can maintain the performance
when adapting to the target domain [7], [8]; 2) training the
network in the source domain, and then fine-tuning it in
the target domain by minimizing unsupervised losses [9],
[10]. However, the former typically requires complicated
adversarial learning that suffers from pixel distortion and
dense correspondence mismatch after domain alignment [8],
while the latter always experiences efficiency degradation
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Fig. 2: An overview of our UnDAF, consisting of a DCM initialization phase and a DCM refinement phase. In the first
phase, we employ Fourier transform for domain alignment and utilize the adapted source dataset Ds→t for coarse DCM
initialization. In the second phase, we adopt a co-teaching strategy, which enables two networks to evolve by complementing
each other for further DCM refinement.

in the fine-tuning phase, due to the catastrophic forgetting
problem [11].

Excitedly, our UnDAF can address all these issues. In-
spired by [12], we first employ Fourier transform for domain
alignment and then adopt a co-teaching strategy for DCM
refinement. Our UnDAF not only inherently preserves the
DCM consistency between input images after domain align-
ment but also avoids the catastrophic forgetting problem.
Moreover, our UnDAF avoids extra training beyond the
primary DCM task, such as complicated adversarial learning.
The simplicity of our approach makes it extremely easy to
be combined with any existing supervised DCM network for
unsupervised adaptation across different domains, or more
practically, from synthetic to real-world domains.

To validate the effectiveness and robustness of our UnDAF,
we conduct extensive experiments on the public benchmarks:
1) the KITTI Stereo 2012 [13] and 2015 [14] for disparity
estimation; and 2) the KITTI Optical Flow 2012 [13] and
2015 [14], and the MPI Sintel [15] for optical flow esti-
mation. Extensive experimental results demonstrate that our
UnDAF outperforms all other state-of-the-art unsupervised
domain adaptation approaches for disparity or optical flow
estimation. The major contributions of this paper can be
summarized as follows:

• We demonstrate that simply employing Fourier trans-
form for domain alignment is effective for unsupervised
domain adaptation in DCM.

• We develop a co-teaching strategy, which can effectively
avoid error accumulation and improve the stability and
accuracy of unsupervised domain adaptation for DCM.

• We present extensive experiments on the public bench-
marks that demonstrate the state-of-the-art performance
of our UnDAF.

II. RELATED WORK

A. Dense Correspondence Matching

Traditional disparity estimation approaches generally em-
ploy local block matching or minimize a global energy func-
tion using Markov Random Field (MRF)-based optimization
techniques [16]. Similarly, traditional optical flow estimation
approaches typically minimize a global energy related to both
brightness consistency and spatial smoothness [17].

With recent advances in deep learning, supervised ap-
proaches based on convolutional neural networks (CNNs)
have achieved promising results for DCM. Specifically, these
networks first employ CNNs to extract visual features, and
then adopt a correlation layer to compute matching costs.
Finally, several convolution layers are utilized to generate
specific DCM results, such as disparity [3], [5] and optical
flow [4], [6]. However, as aforementioned, these supervised
approaches generally require a large amount of training data
with human-labeled correspondence ground truth, and this
data labeling process is always very time-consuming and
labor-intensive. Differently, unsupervised approaches learn
DCM without using correspondence ground truth. This is
achieved by minimizing joint losses, which typically in-
clude a photometric loss and a smoothness loss [18], [19].
However, these unsupervised approaches can only achieve
limited performance due to the lack of ground truth. Since
synthetic datasets with machine-labeled ground truth are
easy-to-acquire, unsupervised domain adaptation approaches
that adapt a network from its learned synthetic domain
to a real-world domain has become a promising direction
for various real-world DCM applications. Therefore, in this
paper, we embed existing supervised approaches into our
UnDAF to achieve effective and efficient unsupervised do-
main adaptation for disparity or optical flow estimation.
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B. Unsupervised Domain Adaptation

UDA aims at reducing the gap between source and tar-
get domains. Based on the concept of adversarial learning
introduced in unsupervised image-to-image translation [20],
many UDA approaches utilize a discriminator to distinguish
between source and target samples, and thus mitigating
domain gaps [21], [22]. To apply UDA in DCM, many
researchers have proposed to design an auxiliary loss for
each specific DCM task, such as disparity [8] and optical
flow [7] estimation. Other mainstream UDA approaches for
DCM advocate training networks on the source domain, and
then fine-tuning them on the target domain by minimizing
unsupervised losses [9], [10]. However, as discussed above,
these two categories of UDA approaches either require
complicated adversarial learning that suffers from pixel dis-
tortion and dense correspondence mismatch after domain
alignment [8] or perform adaptation inefficiently due to
the catastrophic forgetting problem [11]. In contrast, our
UnDAF not only inherently preserves the DCM consistency
between input images after domain alignment but also avoids
the catastrophic forgetting problem. Moreover, our UnDAF
avoids extra training beyond the primary DCM task, such
as complicated adversarial learning. Please note that in [12],
Yang et al. adopted Fourier transform for UDA in semantic
segmentation. Inspired by their work [12], we also adopt
a similar Fourier transform technique for UDA in DCM.
The difference between these two works is that semantic
segmentation typically takes one image as input, while
DCM tasks generally take two images as input. Therefore,
one additional advantage of adopting this Fourier transform
technique in our DCM task is that it can inherently preserve
the DCM consistency between input images after domain
alignment.

III. METHODOLOGY

Given a source dataset Ds = {(xs
i , y

s
i )}

Ns
i=1 and a target

dataset Dt = {xt
i}

Nt
i=1, where x and y respectively denote

the input images and ground-truth labels of a specific DCM
task (disparity or optical flow estimation), our goal is to train
a network to generate the corresponding DCM estimations
ŷt for the target domain. Specifically, xi = (xl, xr)i denotes
a pair of stereo images for disparity estimation; and xi =
(xt, xt+1)i denotes two consecutive video frames for optical
flow estimation. Since our UnDAF is a general framework
designed for these two DCM tasks, we will mainly use xi

and yi instead of their detailed components in the following
content for notation convenience.

Fig. 2 provides the pipeline of our UnDAF, which consists
of a DCM initialization phase and a DCM refinement phase.
In the first phase, we employ Fourier transform to align
source and target domains, and then train two identical
networks initialized with different parameters on the adapted
source dataset Ds→t. In the second phase, we adopt a co-
teaching strategy to evolve the two networks simultaneously
for further DCM refinement.

A. DCM Initialization Phase

As mentioned above, training a network on Ds and fine-
tuning it on Dt can lead to significant efficiency degradation
due to the catastrophic forgetting problem [11]. Therefore,
it is more effective to perform domain alignment from Ds

to Dt before fine-tuning the network. It is observed in [12]
that the semantic information can be retained when low-level
spectrum (amplitude) changes significantly, and the low-
level information is speculated to be the key to adaptation
across different domains [12]. Therefore, we follow [12] and
simply perform domain alignment between source and target
domains based on the low-level spectral signals computed
by Fourier transform, which inherently preserves the DCM
consistency between input images after domain alignment.
Such a paradigm also enables our UnDAF to avoid additional
training process, such as complicated adversarial learning.

Specifically, we use F : RH×W×3 → CH×W×3 to
denote the Fourier transform of an RGB image x, which
can be simply yielded using fast Fourier transform (FFT)
algorithm [23] as follows:

F(x)(u, v, c) =
∑
h,w

x(h,w, c)e−j2π( h
H u+ w

W v). (1)

We also denote the amplitude and phase components of F
as FA : RH×W×3 → RH×W×3 and FP : RH×W×3 →
RH×W×3, respectively. F−1 : CH×W×3 → RH×W×3

denotes the inverse Fourier transform, which can transform
spectral signals back to images. Furthermore, we follow [12]
and define a mask Mα of size H ×W , where all values are
0 except a centered square region with the side length of
α ·min(H,W ) and α ∈ (0, 1). The centered square region
is filled with 1, as illustrated in Fig. 2.

Then, for an arbitrary xs ∈ Ds, we randomly sample
an image xt

j ∈ xt where xt ∈ Dt, and conduct domain
alignment for each component xs

k ∈ xs as follows [12]:

xs→t
k = F−1([Mα⊙FA(xt

j)+(1−Mα)⊙FA(xs
k),FP (xs

k)]),
(2)

where ⊙ is the element-wise multiplication operation, and
j and k both belong to {l, r} and {t, t + 1} for disparity
and optical flow estimation, respectively. Eq. (2) shows that
we first replace the low frequency part of the amplitude of
the source image xs

k with the same part of the target image
xt
j [12]. Then, the modified amplitude map combined with

the original phase map of the source image xs
k is transformed

back to the image xs→t
k , which constitutes the adapted source

dataset Ds→t
k [12]. Fig. 2 shows that the scenario of xs→t

k

remains the same as that of xs
k, but the image style becomes

similar to that of xt
j . Please note that we only sample xt

j once
for each xs to preserve the DCM consistency between the
images of xs after domain alignment, which can also ensure
the consistency of the DCM ground-truth labels between Ds

and Ds→t.
After domain alignment, we have the adapted source

dataset Ds→t, which contains ground-truth labels for DCM
tasks and presents a similar image style to the target domain.
Subsequently, we train two identical networks with different
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Algorithm 1: Co-Teaching Strategy
Input: θA and θB, learning rate η, constant threshold τc and τo, epoch Tk and Tmax, iteration Nmax.
Output: θA and θB.

1 for T = 1 → Tmax do
2 Update Rc(T ) = τc ·min{ T

Tk
, 1} ▷ Update the threshold to filter out pixels with low confidence in ŷt

3 Update Ro(T ) = 1− τo ·min{ T
Tk

, 1} ▷ Update the threshold to filter out pixels with high occlusion probability in Ot

4 for N = 1 → Nmax do
5 Forward individually to obtain ŷs→t

i , ŷt
i , Ct

i and Ot
i , i ∈ {A,B}

6 Set Ct
i

(
Ct

i < Rc(T )
)
= 0, i ∈ {A,B} ▷ Filter out pixels with low confidence in ŷt

7 Set Ot
i

(
Ot

i > Ro(T )
)
= 1, i ∈ {A,B} ▷ Filter out pixels with high occlusion probability in Ot

8 Compute LA = Lsu
A (ŷs→t

A , ys→t) + λ1 · Lss
A(ŷ

t
A, ŷ

t
B, C

t
B) + λ2 · Lun

A (xt, ŷt
A, O

t
B)

9 Compute LB = Lsu
B (ŷs→t

B , ys→t) + λ1 · Lss
B (ŷ

t
B, ŷ

t
A, C

t
A) + λ2 · Lun

B (xt, ŷt
B, O

t
A)

10 Update θi = θi − η∇Li, i ∈ {A,B}
11 end
12 end

initialization parameters on Ds→t using commonly adopted
supervised loss Lsu(ŷs→t, ys→t) for any DCM task, where
ŷs→t denotes the corresponding DCM estimation. However,
since Ds→t does not possess the same data distribution as
Dt, networks trained only on Ds→t cannot adapt to Dt

well. Therefore, this training process only lasts for several
epochs for DCM initialization, and then we step into the
next phase for DCM refinement by further utilizing Dt. The
reasons why we employ two identical networks with different
initialization parameters are explained in the next subsection.

B. DCM Refinement Phase

When using Dt for further DCM refinement, our UnDAF
turns UDA for DCM into a semi-supervised learning (SSL)
problem [12]. One popular technique for SSL problems
is self-training [24]. Specifically, the predictions and the
corresponding confidence maps in the target domain are first
generated, and then the predictions with high confidence
are regarded as pseudo ground-truth labels for supervision,
which minimizes the following loss [9]:

Lss(ŷt, ỹt, Ct) =

∑
p Ldiff(ŷt, ỹt)⊙ S (Ct)∑

p S (Ct)
, (3)

where ỹt and Ct respectively denote the pseudo ground-truth
labels and the corresponding confidence maps in the target
domain; p denotes all valid pixels; Ldiff(·, ·) measures the
difference between two inputs, which is similar to Lsu(·, ·);
and S(·) is the stop-gradient operation. However, since
the predicted confidence maps and the DCM estimations
are highly correlated, the selected highly confident pseudo
ground-truth labels can be highly noisy, which will lead to
significant performance degradation for the target domain.

Another loss prevalently adopted in UDA for DCM is the
unsupervised occlusion-aware photometric loss [25], [26],
which has the following formulation:

Lun(xt, ŷt, Ot) =

∑
p Lph(xt, ŷt)⊙ (1− S (Ot))∑

p (1− S (Ot))
, (4)

where Lph(xt, ŷt) measures the photometric difference in
xt based on ŷt; and Ot ∈ [0, 1] is the occlusion map,

which measures the occlusion probability for each pixel.
However, since the DCM estimations and the occlusion maps
are highly correlated, simply using Lun can also lead to the
same performance degradation problem caused by overfitting
to the noise as simply using Lss.

Inspired by [27], we adopt a co-teaching strategy in
the refinement phase to address these issues, as shown in
Algorithm 1. We simultaneously train two identical networks
A (with parameter θA) and B (with parameter θB), which
have been initialized in the previous phase. In each epoch,
we first update two thresholds Rc(T ) and Ro(T ) to filter
out the pixels with low confidence in ŷt and the pixels with
high occlusion probability in Ot (Line 2 and 3), respectively.
Rc(T ) and Ro(T ) change gradually with epoch increases to
ensure that the confidence of the selected pixels in ŷ becomes
increasingly high and the occlusion probability of the se-
lected pixels in Ot becomes increasingly low. Subsequently,
we let two networks forward individually on Ds→t and Dt to
generate several outputs (Line 5), respectively. After that, we
filter out pixels with low confidence in ŷt and pixels with
high occlusion probability in Ot (Line 6 and 7). The key
to our co-teaching strategy is that each network computes
its own loss after two networks exchange several important
variants including ŷt, Ct and Ot (Line 8 and 9), as illustrated
in Fig. 2. Finally, we update the parameters of two networks
separately (Line 10).

The reason why our co-teaching strategy can improve
the accuracy of UDA for DCM is twofold. 1) Generally,
networks first learn clear patterns, and then overfit to the
noise, which further causes significant performance degra-
dation [28]. The way of gradually changing the filtering
thresholds Rc(T ) and Ro(T ) enables the networks to avoid
overfitting to the possible outliers [27]. 2) In addition to
the dynamic threshold scheme, we also let two networks
exchange several important variants including ŷt, Ct and
Ot, so that they can further evolve with better robustness
and accuracy. Specifically, when simply using Lss and Lun,
there always exist two highly correlated variants, which
can induce a lot of noise and further cause performance
degradation. By forcing two networks to exchange these
variants, the correlation chain can be broken, which can
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(a) Disparity Estimation (b) Optical Flow Estimation

Fig. 3: Performance comparison among CyCADA [21],
CLAN [22], CrDoCo [7], StereoGAN [8] and our UnDAF
on the KITTI 2015 training set [14].

effectively improve the DCM performance.
Please note that although our co-teaching strategy looks

similar to several existing approaches [27], [29], [30], they
have several major differences. 1) [27] focuses on image-
level tasks (image classification), while our approach focuses
on pixel-level tasks (DCM). 2) [27] is designed for super-
vised learning with noisy labels, and our previous works [29],
[30] are designed for unsupervised stereo matching and
optical flow estimation. Differently, our approach is designed
for UDA, a completely new task. Therefore, the details
of our approach and these existing approaches [27], [29],
[30] are also different. Specifically, our approach performs
domain alignment before adopting the co-teaching strategy.
In addition, our co-teaching strategy takes confidence maps
into consideration to improve the accuracy of UDA for DCM.

IV. EXPERIMENTS

A. Datasets and Implementation Details

To validate the effectiveness of our UnDAF, we respec-
tively adopt LEAStereo [3] and RAFT [4] as the backbone
networks for disparity and optical flow estimation, since they
have achieved impressive performance for the corresponding
DCM tasks. Their combinations with our UnDAF are respec-
tively referred to as UnDAF-LEAStereo and UnDAF-RAFT.
The supervised loss Lsu, learning rate η, maximum number
of epochs Tmax and optimizer are the same as those used in
the backbone network for each DCM task. For α selection,
we follow [12] and select three values, α = 0.01, α = 0.05
and α = 0.09. The final DCM estimation is the average value
of these three models.

In our experiments, we first compare our UnDAF with
other state-of-the-art UDA approaches. However, many ex-
isting approaches do not publish their results on the above-
mentioned benchmarks. Also, we cannot test their perfor-
mance on these benchmarks because of their submission
policies. Therefore, we respectively set the Virtual KITTI 2
dataset [31] and the KITTI 2015 training set [14] as the

Approach ST KITTI 2012 KITTI 2015

Noc All Noc All

PSMNet [5] ✓ 1.49 1.89 2.14 2.32
GwcNet-gc [32] ✓ 1.32 1.70 1.92 2.11
AcfNet [33] ✓ 1.17 1.54 1.72 1.89
LEAStereo [3] ✓ 1.13 1.45 1.51 1.65

OASM-Net [34] – 6.39 8.60 7.39 8.98
MC-CNN-WS [35] – 3.02 4.45 4.11 4.97
MADNet [10] – – – 4.27 4.66
SsSMnet [25] – 2.30 3.00 3.06 3.40
UnDAF (Ours) – 1.79 2.25 2.33 2.56

TABLE I: Disparity evaluation results (%) on the KITTI
Stereo 2012 [13] and KITTI Stereo 2015 [14] benchmarks.
“ST” denotes supervised training on the benchmarks. “Noc”
and “All” represent the F1 for non-occluded pixels and
all pixels, respectively [13], [14]. “UnDAF” is short for
“UnDAF-LEAStereo”. Best results for “ST” and “non-ST”
approaches are both bolded.

source and target domains, and compare the DCM per-
formance of our UnDAF with other state-of-the-art UDA
approaches. The experimental results are presented in Sec-
tion IV-B.

To further evaluate our UnDAF on the public benchmarks,
the following adaptation schemes are adopted: 1) Scene
Flow [36] → MPI Sintel [15], 2) Virtual KITTI 2 [31]
→ KITTI 2012 [13] and 3) Virtual KITTI 2 [31] →
KITTI 2015 [14]. The experimental results are presented in
Section IV-C. Furthermore, we conduct ablation studies to
demonstrate the effectiveness of our co-teaching strategy and
selected loss functions. The experimental results are shown
in Section IV-D.

Two standard evaluation metrics are used for performance
comparison, 1) the average end-point error (AEPE) that mea-
sures the average difference between the DCM estimations
and ground-truth labels and 2) the percentage of erroneous
pixels (F1) that measures the percentage of bad pixels whose
error is larger than 3 pixels [13]–[15]. The AEPE and F1 can
be computed over all pixels or only non-occluded pixels [13],
[14]. Please note that the two metrics are both computed over
all pixels, if not specified.

B. Comparison with Other UDA Approaches

We compare our UnDAF with several existing UDA ap-
proaches, including CyCADA [21], CLAN [22], CrDoCo [7]
and StereoGAN [8]. All approaches employ the same back-
bone network as our UnDAF for each DCM task, and the
performance comparison is shown in Fig. 3. It is clearly ob-
served that our UnDAF outperforms the state-of-the-art UDA
approaches for both disparity and optical flow estimation,
which demonstrates the effectiveness of our UnDAF.

C. Evaluation Results on Public Benchmarks

Referring to the online leaderboards of the KITTI
2012 [13], KITTI 2015 [14] and MPI Sintel [15] benchmarks
shown in Table I and II, our UnDAF greatly surpasses all
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Approach ST MPI Sintel KITTI 2012 KITTI 2015

Clean (px) Final (px) Noc (%) All (%) Noc (%) All (%)

PWC-Net [6] ✓ 4.39 5.04 4.22 8.10 6.12 9.60
LiteFlowNet [37] ✓ 4.54 5.38 3.27 7.27 5.49 9.38
LiteFlowNet3 [38] ✓ 2.99 4.45 2.51 5.90 4.29 7.34
RAFT [4] ✓ 1.61 2.86 – – 3.07 5.10

UnFlow [26] – 9.38 10.22 4.28 8.42 7.46 11.11
DDFlow [19] – 6.18 7.40 4.57 8.86 9.55 14.29
SelFlow† [39] – 6.56 6.57 4.31 7.68 9.65 14.19
UFlow [40] – 5.21 6.50 4.26 7.91 8.41 11.13
UnDAF-RAFT (Ours) – 3.91 5.08 3.36 7.32 5.95 9.56

TABLE II: Optical flow evaluation results on the MPI Sintel [15], KITTI Optical Flow 2012 [13] and KITTI Optical
Flow 2015 [14] benchmarks. “ST” denotes supervised training on the benchmarks. For the MPI Sintel Clean and Final
benchmarks [15], the AEPE for all pixels is presented. For the KITTI Optical Flow 2012 and KITTI Optical Flow 2015
benchmarks, “Noc” and “All” represent the F1 for non-occluded pixels and all pixels, respectively [13], [14]. † indicates the
model using more than two frames. Best results for “ST” and “non-ST” approaches are both bolded.

MADNet [10]

UFlow [40]

UnDAF-LEAStereo (Ours)

UnDAF-RAFT (Ours)

(a)

(b)

Reference Image

Fig. 4: Error maps for (a) disparity and (b) optical flow
estimation on the KITTI 2015 benchmark [14]. Significantly
improved regions are highlighted with red boxes.

other unsupervised approaches for both disparity and optical
flow estimation. Since these unsupervised approaches and
our UnDAF all do not require the ground-truth labels of
the target dataset (real-world dataset), these experimental
results have demonstrated the effectiveness of our UnDAF
for constructing a bridge between synthetic and real-world
DCM applications. Excitedly, it is observed that our UnDAF
performs competitively, even compared with some super-
vised DCM approaches, which further verifies the effective-
ness of our UnDAF. Some examples of the experimental
results on the KITTI 2015 benchmark are shown in Fig. 4,
where it is evident that our UnDAF can achieve significant
improvements compared to the existing approaches.

D. Ablation Study

In our ablation studies, we respectively set the Virtual
KITTI 2 dataset [31] and the KITTI 2015 training set [14]
as the source and target domains. The experimental results
of our UnDAF with some of the loss functions or our
co-teaching strategy disabled are presented in Table III.
We can clearly observe that our co-teaching strategy can
significantly improve the performance of UDA in DCM, and
the setup with the combination of Lss, Lun and our co-
teaching strategy achieves the best results for both disparity
and optical flow estimation, as shown in (d) of Table III. We

No. Lss Lun CoT F1 (%)

Disparity Optical Flow

(a) – – – 6.95 16.75
(b) ✓ – – 4.59 13.70
(c) ✓ ✓ – 3.36 11.67
(d) ✓ ✓ ✓ 2.85 10.23

TABLE III: Experimental results of our UnDAF with some
of the loss functions or our co-teaching (CoT) technique
disabled. Best results are bolded.

analyze that compared with existing approaches that transfer
errors back to themselves directly, our co-teaching strategy
enables two networks to adaptively correct the inaccurate
estimations, which can effectively avoid error accumulation
and further improve the stability and accuracy of UDA for
DCM.

V. CONCLUSION

In this paper, we proposed a general unsupervised domain
adaptation framework (UnDAF) for dense correspondence
matching (DCM) tasks, including disparity and optical flow
estimation. Specifically, we demonstrated that simply em-
ploying Fourier transform for domain alignment is effective
for unsupervised domain adaptation (UDA) in DCM, which
not only inherently preserves the DCM consistency between
input images after domain alignment but also avoids the
catastrophic forgetting problem. It also enables our UnDAF
to avoid additional training process beyond the primary DCM
task, such as complicated adversarial learning. In addition,
we developed a co-teaching strategy, which can effectively
avoid error accumulation and improve both the stability
and accuracy of UDA for DCM. Extensive experiments
on the public benchmarks demonstrated the accuracy and
robustness of our UnDAF, advancing all other state-of-the-
art UDA approaches for disparity or optical flow estimation.
Moreover, the DCM networks trained on the synthetic dataset
can successfully adapt to real-world driving scenarios via our
UnDAF, which constructed a bridge connecting synthetic and
real-world DCM applications.
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