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Conventional machine vision systems have separate perception, memory, and processing architectures, 
which may exacerbate the increasing need for ultrahigh image processing rates and ultralow power 
consumption. In contrast, in-sensor visual computing performs signal processing at the pixel level using 
the collected analog signals directly, without sending data to other processors. Therefore, the in-sensor 
computing paradigm may hold the key to realizing extremely efficient and low power visual signal processing 
by integrating sensing, storage, and computation onto focal planes using either novel circuit designs or 
new materials. The focal-plane sensor-processor (FPSP), which is a typical in-sensor visual computing 
device, is a vision chip that has been developed for nearly 2 decades in domains such as image processing, 
computer vision, robotics, and neural networks. In contrast to conventional computer vision systems, the 
FPSP gives vision systems in-sensor image processing capabilities, thus decreasing system complexity, 
reducing power consumption, and enhancing information processing efficiency and security. Although many 
studies on in-sensor computing using the FPSP have been conducted since its invention, no thorough and 
systematic summary of these studies exists. This review explains the use of image processing algorithms, 
neural networks, and applications of in-sensor computing in the fields of machine vision and robotics. 
The objective is to assist future developers, researchers, and users of unconventional visual sensors in 
understanding in-sensor computing and associated applications.

Introduction

Vision is one of the most important perception methods and 
is extremely useful for information collection and interpreta-
tion [1]. It is highly desirable to develop ultrahigh-speed and 
ultralow-energy visual information processing methods and 
technologies for applications in machine vision, robotics, the 
Internet of Things (IoT), and artificial intelligence (AI). System 
latency, power consumption, and privacy issues are 3 major 
constraints that may hinder the further development and wider 
applications of conventional machine vision systems and their 
associated technologies [2,3]. In contrast to the mammalian 
retinal mechanism, wherein raw signals can be rapidly pro-
cessed through several layers of cells (Fig. 1A), a considerable 
time lag can be introduced during visual signal digitization, 
storage, and transmission processes in a conventional machine 
vision system. Latency is a bottleneck that prevents quick 
responses to dynamic changes, resulting in substantial ineffi-
ciencies as irrelevant data are ferried through the entire system. 
In addition, the use of external image processors, such as CPU/
GPU/VPU/DSPs, tends to result in a higher power consump-
tion, which is not compatible with portable tasks (Fig. 1B). 
Moreover, the data deluge that results from ubiquitous sensors 

may obscure useful information, thereby encouraging terminal 
sensors to extract only a limited amount of critical information 
[4]. Thus, a substantial amount of data movement from the 
sensing chip to the processing units is reduced [5]. Furthermore, 
there is a considerable need to extract crucial information from 
raw analog signals as opposed to collected images, particularly 
in privacy-sensitive scenarios.

To overcome these issues, data processing should occur as 
close as possible to the time of signal collection using the par-
adigm of in-sensor computing [6]. Bioinspired by the mam-
malian retina (Fig. 1A), the role of the vision sensor in this 
approach is to acquire visual information and to digest it, 
producing highly compressed information instead of video 
frames (Fig. 1C). Additionally, in-sensor visual computing offers 
image-free visual signal processing, which ensures data confi-
dentiality. In-sensor computing is an interdisciplinary research 
area closely related to existing technologies, including sensors, 
analog signal processing, near-sensor computing, and in-memory 
computing (Fig. S1). In-sensor computing devices integrate 
perception, temporary storage, data processing, and analysis 
with raw analog signals within a sensing chip. Although near- 
sensor computing reduces the physical distance between sens-
ing and computing, data movement from sensors to processing 
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remains necessary. Memristors are typically used for both 
memory and computing [7] by utilizing tunable resistances as 
synaptic weights. The objective of “in-sensor” computing [6,8] 
is to sense, extract, analyze, store, and compute sensory signals 
in an in situ manner within sensors. In contrast to conventional 
digital electronics-based sensor technology, which mainly 
focuses on data collection with external data processing, 
in-sensor signal processing emphasizes sensing, signal storage, 
and the preprocess, where the analog signal is collected. By 
integrating sensing, storage, and computing on the sensing 
plane of the sensory chip, low power and efficient edge com-
puting is enabled for the embedded system, which is meaning-
ful in the area of the IoT. Avoiding the need to send redundant 
information to the cloud reduces the pressure on the central 
computation and data transmission bandwidth. The idea of 

in-sensor visual computing is bioinspired by the mammalian 
brain and visual system, where the retina preprocesses visual 
information and then sends extracted signals to the brain 
through optical nerves [9]. Currently, this in-sensor visual com-
puting technology can be applied to many emerging hardware 
systems based on advanced large-scale circuit designs such as 
SCAMP vision systems, photodiode arrays [10,11], event cam-
eras [12], and memristors [13–15].

Recently, progress has been made in the development of in- 
sensor computing devices. Currently, 2 main types of in-sensor 
computing architecture are available:

(a) In-sensor architecture by integrating sensing, memory, 
and computing units: A focal-plane sensor-processor (FPSP) 
[16] integrates visual sensing, storage, and computing units on 
the focal plane under the architecture of a cellular neural network 
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Fig. 1. The origin of in-sensor visual computing. (A) The concept of in-sensor computing is bioinspired by the retina mechanism, wherein visual signals can be generated and 
pre-processed by different types of cells [108]. (B) Conventional machine vision system: Light density needs to be read and converted to digital data before being loaded into 
memory and processing units for meaningful information extraction. (C) Visual data can be generated, stored, and processed in sensors through the bioinspired hardware design.
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(CeNN) (Fig. 2A). For each processing element (PE), the gen-
erated analog signals from the pixel can be transferred to tem-
poral memory units through the bus and then processed using 
the arithmetic logic unit (ALU) and registers. Each PE plays the 
role of a cell, interacting with its neighbors for signal exchange 
and processing. Hence, in-sensor visual inference is realized 
by the hardware CeNN and its synaptic weights in memory. 
The representative devices under the focal-plane sensor- 
processor (FPFS) architecture mainly include the SCAMP pixel 
processor array (PPA), Q-Eye [17], MIPA4k [16], asynchronous– 
synchronous focal-plane sensor-processor array (ASPA) [16], 
kovilta [18], and Aistorm Mantis2 [19].

(b) Detect-and-memorize materials for in-sensor computing 
architectures: Material-based detect-and-memorize (DAM) 
devices (Fig. 2B) have recently been proposed to mimic the func-
tional mechanism of photonic synapses for implementing artificial 
neural networks [5,20]. Among emerging materials and devices, 
memristors are representative because they facilitate sensing, tem-
poral memory, and computing capabilities when combined with 
other photosensitive devices [10]. Specifically, visual signals gen-
erated from photoreceptors such as photodiodes can be further 
processed within artificial networks composed of memristors 
with tunable resistances as weights. Table S1 lists the differences 
between the 2 rising in-sensor computing architectures.

Among the new types of emerging sensors, the SCAMP 
PPA [21–25] is comparatively mature in terms of its develop-
ment history, sensing resolution, and practicality. Therefore, 
this review mainly concentrates on studies of the SCAMP PPA 
with other relevant devices as the related work. The SCAMP 
PPA is a visual device that operates directly on the current, 
enabling focal-plane image processing with useful results as 
an output from raw sensor data. The motivation is to design a 
fully programmable general-purpose single-instruction multiple- 
data (SIMD) cellular processor array for a novel world–machine 
interface that can sense, store, and reason without relying on 
external centralized processing units [26,27].

Using an all-in-sensor scheme, a device can perceive its 
environment and efficiently generate useful results with 
reduced energy consumption, latency, and data bandwidth 
[5,6]. Considering these advantages of the emerging SCAMP 
PPA, this paper reviews the research progress with in-sensor 
processing technology using SCAMP PPAs, aiming to intro-
duce a new visual inference solution that can overcome the 
aforementioned bottlenecks. Specifically, this study investi-
gated image processing algorithms and neural networks, cov-
ering everything from low-level image processing methods to 
high-level image inference, and their associated applications. 
The work most closely related to our review is [28], which has 

...

...

Photoreceptors Processing elements

Registor

Memory ALU

...

...

Ni1

Multi-layer register network

y1

y2

y3

yn

...

...N11 N1j

Ni1 Nij

N11

N1i

Wi Wj

Si

SiO2

Detect-and-memorize materials

Electrode

Light

P1

PN

Wij

W1ij

Wnij

...

...

P1

PN

Pixel

Multi-layer neural network

y1

y2

y3

yn

...

A

B

Fig. 2. In-sensor perception and computing architectures and their associated artificial networks. (A) An in-sensor cellular network can be created with an array of PEs that 
integrates sensing, memory, and computing units. (B) A neural network with DAM materials.
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a specific focus on integrated circuit design and robot-oriented 
applications (Table S3).

Hence, this study reviews in-sensor computing algorithms 
and their applications developed on the SCAMP PPA and com-
pares them with conventional visual sensors and other types of 
in-sensor computing visual sensors, inspiring researchers and 
developers researching unconventional computing with emerg-
ing visual sensors. The sections of this review are hardware, 
software, development frameworks, and applications, as shown 
in Fig. S2. In particular, the “Introduction” section provides an 
overview of in-sensor visual computing topics. The “Hardware” 
section summarizes the current devices in the scope of sensory- 
level computing with their advantages over conventional visual 
sensors. Associated platforms and frameworks are introduced 
in the “Software” section, followed by the “Algorithms” section 
covering low-level to high-level in-sensor visual information 
processing algorithms. By leveraging the established hardware 
and software infrastructure, the “Applications” section illustrates 
the applications of our research in state estimation and robotics. 

The “Challenges and Future Trends” and “Conclusion” sections 
present the existing challenges with potential future routes and 
summaries, respectively. The provided supplementary materials 
include comparison tables.

Hardware

Focal-plane sensor-processor
A representative FPSP device, the SCAMP vision system is an 
emerging in-sensor visual computing device. Currently, the 
most recent version of the SCAMP series system is SCAMP-5d 
(Fig. 3), which comprises 256 × 256 PEs. The SCAMP-5d 
vision system is a general-purpose, programmable, massively 
parallel vision system [29] that has many applications in the 
fields of robotics [31–34] and computer vision [30–32]. For 
the PPA shown in Fig. 1C, the photodetector converts light 
into an analog signal that can be directly and parallelly pro-
cessed on analog registers (AREGs). In contrast to the current 
hardware design structure of computer vision systems, the 
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Fig. 3. Milestones of key studies with SCAMP PPAs during the last 15 years from low-level image processing to high-level pattern recognition and motion control.
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PPA bypasses the analog/digital conversion (ADC) after sens-
ing and directly operates on the analog electric current using 
an arithmetic unit, thereby accelerating the signal processing 
speed and avoiding the bottlenecks of the ADC and the data 
transmission process.

The PPA is a hardware implementation of a CeNN with a 
new optimization of a mixture of analog and digital computing 
using AREGs and digital registers (DREGs), respectively. The 
studies based on the PPA reviewed in this work utilize the 
parallel nature of the CeNN architecture for efficient and 
high-performance computing, where each “cell” is intricately 
connected with its 4 neighbors and information can be shared 
efficiently. Hence, the PPA can be modeled as a CeNN architec-
ture for visual information computing. The CeNN processing 
circuit architecture was first proposed by Chua and Yang [33] 
and was followed by the CeNN universal machine [34] as a pro-
totype. Subsequently, as a new circuit architecture and parallel 
computing paradigm, it has gained widespread popularity in 
academia, serving as the basis of a substantial number of research 
outputs and applications in pattern recognition [35], image 
processing [36], and biological vision modeling [37]. With the 
aforementioned hardware features, the SCAMP PPA has the 
following advantages over conventional machine systems:

Efficiency and low latency: It is clear from Fig. 1C that in- 
sensor computing bypasses signal digitization, transmission, and 
storage processes onto external devices, hence enabling high-
speed image processing [29] and convolutional neural network 
(CNN) inference [38], which can be integrated with agile mobile 
robot platforms [39–42]. In addition, PE distribution and simul-
taneous instruction execution on the PEs enable efficient parallel 
signal processing. Carey et al. [29] demonstrated object detec-
tion with a frame rate of 100,000 frames per second (FPS) using 
the SCAMP vision system, and Liu et al. [38] proposed a binary 
shallow neural network on the PPA with a binary classification 
problem of up to 17,000 FPS. This work demonstrates the effi-
ciency of image processing in a sensor once the parallelism 
mechanism of the PPA is fully exploited.

Low power consumption: According to Fig. 1C, no external 
processing units or data processing is needed; hence, the power 
consumption can be decreased substantially. The maximum 
power cost of the SCAMP-3 vision system for complex object 
tracking and counting is 29 mW [43]. The overall power con-
sumption for the image processing and CNN inference tasks 
within a SCAMP-5 vision system is less than 2 W [44]. This 
feature qualifies the SCAMP vision system for use on mobile 
platforms, which typically have a short battery life. In addition, 
according to the power consumption test from [45], given 8 
popular kernel filters, the SCAMP PPA generates the same 
convolution results with considerably lower power consump-
tion (>20 times) at a higher speed (>100 times) compared with 
common CPUs and GPUs.

Data security and privacy protection: A unique but nonneg-
ligible feature of in-sensor analog computing with the PPA is 
its inherent feature of data security and privacy protection. Data 
security is feasible because of the focal-plane analog informa-
tion processing without an ADC, extra data recording, storage, 
or intermediate transmission procedures. Generally, the only 
output after analog computing is the extracted useful target 
information without redundant information, which renders it 
difficult to obtain the original data for sensitive information or 
user re-identification [46]. Hence, privacy can be strictly pro-
tected using in-sensor processing mechanisms.

In-sensor computing devices
Conventional sensors act primarily as information collectors. 
In recent years, with the development of techniques for inte-
grated circuit design and the growing need for low power and 
low latency edge computing, sensors have gradually become 
integrated with the ability to process signals independent of 
general-purpose computers. The goal of near-sensor processing 
is to use a dedicated machine learning accelerator chip located 
on the same printed circuit board [47], or 3-dimensional (3D)- 
stacked with the complementary metal-oxide semiconductor 
(CMOS) image chip [48]. Although this enables CMOS image 
chip data to be processed close to the sensor rather than in the 
cloud, data transport expenses between the sensing and process-
ing chips still exist. By contrast, the in-sensor computing par-
adigm aims to embed processing capability for each individual 
pixel. This section introduces classic in-sensor visual computing 
devices. Table S2 lists the differences between in-sensor com-
puting devices.

Aistorm Mantis2 [19]: The Mantis system is based on the 
event-driven charge domain for analog signal processing with-
out digitization and provides an “always on” solution for analog 
signal processing. A key feature claimed by Aistorm is noise 
canceling techniques associated with analog signals. In addi-
tion, AI can be integrated into chips for various applications. 
However, the latest Mantis product has a resolution of only 
96 × 96, which is challenging for tasks that normally require 
higher resolution.

Eye-RIS [49]: The Eye-RIS commercial vision system on 
chip extends CMOS pixel functionality with image storage (7 
grayscale images and 4 binary images) and digital/analog sig-
nal processing ability. Specifically, a 32-bit reduced instruction 
set computer (RISC) is integrated with a vision sensor for 
image postprocessing after parallel in-sensor preprocessing. 
The resolution of the Eye-RIS vision sensor is 176 × 144. 
Notably, Eye-RIS’s overall functional diagram is similar to that 
of the SCAMP vision system, where the counterpart of the 
RISC is the M0 microcontroller in the SCAMP PPA [50]. 
However, the most significant difference is that the Eye-RIS 
has a digital image co-processor (DICop) that handles geomet-
ric transformations and can send the results back to the pixel 
level for further processing.

Memristor-based devices [51]: Memristor-based hardware 
provides platforms for deploying neural networks using the 
programmable resistance within the integrated circuits to 
mimic the synaptic connections in a human brain [13–15,51,52]. 
However, it only integrates storage and processing functions, 
which can be regarded as in-memory computing. Hence, signals 
must be input from sensors or other storage devices. Therefore, 
these systems are typically integrated with other sensory sys-
tems for information processing.

Dynamic vision sensor [12]: A dynamic vision sensor (DVS) 
produces data in the form of sparse contrast-change events that 
facilitate low latency visual processing using external computa-
tional hardware [53–55]. These binary events are generated by 
in-sensor processing according to brightness changes. Although 
the pixels in a DVS have a primitive in-sensor processing ability 
that works by binarizing brightness changes, they achieve an ultra-
high-speed response to the environment while working with exter-
nal hardware computing units, enabling enormous potential for 
robotics and computer vision in challenging environments [56].

Other emerging sensor devices: Mennel et al. [10] used a 2D 
semiconductor (WSe2) photodiode array as the vision sensor, 
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with the photoresponsivity matrix storing the connecting 
weights of the neural network and both supervised and unsu-
pervised learning for classification. However, laser light and a 
set of optical systems are required to project images onto a chip, 
which prevents its practical usage. Song et al. [11] proposed a 
CMOS-based processing-in-pixel (PIP) architecture, where 
image convolution (8-bit weight configuration) can be run for 
image preprocessing before the image data are read. In addition, 
Datta et al. [57] proposed the processing-in-pixel-in-memory 
paradigm, in which the first few convolutional layers of a CNN 
can be processed, and the compressed data are then sent to 
other near-sensor processors.

Software

For emerging vision sensors, providing user-friendly develop-
ment and simulation tools is essential for researchers and engi-
neers for idea exploration and application validation. Hence, 
this section introduces the platforms and frameworks of the 
SCAMP PPA for efficient prototyping.

Development framework
Currently, comprehensive development tools exist for this 
emerging in-sensor computing device that can aid researchers 
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Fig. 4. Development frameworks for the SCAMP vision system. (A) Development framework for the SCAMP vision system. (B) Semi-simulation framework of the SCAMP-5d 
vision system and virtual environment. (C) Full-simulation framework of the SCAMP-5d vision system for robot applications.
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and engineers in developing their projects. Chen et al. [58] 
developed guidelines and documents, libraries (low- and mid-
level basic image processing algorithms), simulations, and 
development environment configurations (https://scamp.git-
lab.io/scamp5d_doc/) (Fig. 4A). This system, called Scamp5d, 
utilizes a SCAMP-5 vision chip, which is equipped with sen-
sor-level SIMD parallel processing capabilities. A dual-core 
ARM microcontroller was employed to manage the vision chip, 
offer supplementary computational abilities, and provide input/
output (IO) interfaces. The vision system was programmed 
using C++. Scamp5d can be connected to microcontrollers, 
single-board computers, or other hardware using common IO 
buses and a USB 2.0 port. It also enables remote debugging, 
configuration, and reprogramming of the network. The soft-
ware interface of Scamp5d is openly designed for easy integra-
tion with other software systems such as the Robot Operating 
System. As a standalone vision system, Scamp5d can output 
highly processed data instead of video streams, rendering it 
appropriate for applications such as miniature robots and dis-
tributed sensor networks. In addition, simulation of the vision 
chip can be executed through cross-compiling.

Similar to the SCAMP vision system development software 
framework, the KOVILTA vision system [18] software devel-
opment framework is a modular and scalable framework 
designed to be easy to use and extend. The framework is based 
on a set of core components that provide the basic functions 
of a vision system, such as image acquisition, image processing, 
and object detection. The framework also provides a set of 
extension points that enable users to add new features and 
functionalities to the vision system. The KOVILTA vision sys-
tem software development framework is divided into 2 main 
layers: the core layer and the application layer. The core layer 
provides the basic functions of the vision system, including 
image acquisition, image processing, and object detection. The 
application layer provides the user interface and functions 
specific to the application. The core layer of the KOVILTA 
vision system software development framework is imple-
mented in C++. It comprises a set of libraries that provide the 
basic functions of the vision system. These libraries include 
the following: an image acquisition library that provides func-
tionality for acquiring images from cameras; an image pro-
cessing library that provides functionality for image processing 
tasks such as resizing, cropping, and filtering; and an object 
detection library that provides functionality for detecting 
objects in images. The application layer of the KOVILTA vision 
system software development framework is implemented in 
Python. The application layer comprises a set of scripts that 
provide the user interface and functionality specific to the 
application.

Semi-simulated and fully simulated platform
To further explore robot-related applications with a SCAMP 
vision system, Liu et al. [59] proposed a semi-simulated plat-
form (Fig. 4B), wherein a real SCAMP can communicate with 
the CoppeliaSim robot simulator through a remote application 
programming interface (API). Using this platform, customers 
can directly process the camera readings after they are trans-
mitted to the real SCAMP, and then send them back to the 
instructions generated by in-sensor computing to the entities 
in the simulator. Based on an earlier semi-simulated platform, 
Fan et al. [60] (Fig. 4C) developed a fully simulated environ-
ment integrating the SCAMP server development environment 
and the CoppeliaSim robot simulator, wherein the simulated 
SCAMP vision system and the robot simulator can commu-
nicate bidirectionally through a remote API.

Kernel filter compiler
Image convolution is necessary for mid-level image processing 
or convolutional neural networks. In addition to the aforemen-
tioned convolution with binary/ternary weights, approximated 
kernel filters for convolution are proposed by [45] with auto-
matic code generation. Each full-precision coefficient in the 
kernel filters is approximated using a combination of multiple 
additions/subtractions and divisions (Eq. 1).

where n denotes the approximation depth. This work provides 
an effective way to approximate full-precision kernel filters and 
automatically generate codes for SCAMP PPA hardware. Using 
a similar coefficient approximation strategy, Stow et al. [61–63] 
automatically generated codes for the PPA, which outperformed 
the earlier AUKE in terms of simultaneous kernel optimization 
and generated more efficient codes.

Algorithms

In-sensor low- and mid-level image processing
Early algorithms for the SCAMP PPA mainly focused on low-
level image processing and machine vision methods to enhance 
image quality and extract basic textures with combinations of 
inherent built-in functions based on SCAMP-3, with a reso-
lution of 128 × 128. Specifically, these developed image pro-
cessing methods are closely related to the cellular architecture 
of the SCAMP vision system because the PPA is a cellular 
processor array. Wang [64] contributed to early explorations of 
image processing on the PPA covering coarse grain processing, 
image skeleton extraction, and background detection algorithms. 

(1)� ≈

n
∑

i=0

ai ∕2
i, ai ∈ { − 1, 0, 1},

Fig. 5. Overview of SCAMP PPA-based algorithms and applications. In-sensor image processing. (i) High dynamic range (HDR). (ii) Edge, skeleton, and contour detection. (iii) 
Corner detection.
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Barr et al. [65] presented tracking of multiple randomly moving 
objects using SCAMP-3, and Carey et al. [66] performed count-
ing of 5 preset objects at 25,000 FPS and single-object tracking 
at 100,000 FPS using the SCAMP-5 vision system. Table S4 lists 
the main research on the PPA, which is illustrated in detail in 
the following context.

High dynamic range
Image enhancement occurs along with the image capture pro-
cess on the SCAMP PPA, whereas conventional image enhance-
ment only occurs after the image data have been obtained. As 
an important image enhancement method, high dynamic range 
(HDR) has been fully exploited in sensors with PPA.

HDR is an important low-level image preprocessing method 
for obtaining rich image information, even under extreme light-
ing conditions, such as a mixture of both dim and strong light 
intensities. Conventional image sensors rely on either global or 
rolling shutters to generate a sequence of images with different 
exposure time settings and then combine them into an HDR 
image, which means that both the exposure and image capture 
processes limit the efficiency of HDR imaging [30,67,68]. In 
2006, Dudek [69] proposed sensor-level adaptive sensing and 
image processing using SCAMP-3 [43,70], wherein different 
exposure settings were combined for an image with a wide 
dynamic range. Inspired by Dudek’s work, Martel [68] signifi-
cantly contributed to the field of HDR images using the SCAMP-5 
vision system (Fig. 5, i). An example of in-sensor HDR image 
generation is [71], wherein pixel-wise exposure can be con-
ducted under various lighting conditions to generate HDR 
images, followed by automotive applications [72]. Furthermore, 
Bose et al. [31] utilized HDR images to extract binary edges as 
robust input information under various illumination conditions 
for visual odometry estimation. However, the use of iterative 
exposure for different regions of the image slows image preproc-
essing. To accelerate HDR imaging, Martel et al. [30] proposed 
learning shutter functions to expose each pixel independently 
using an end-to-end training strategy. In their study, a U-Net 
was trained for the exposure functions of each individual PE 
sensor, and these trained functions were compiled into a sensor 
for inference. So et al. [73] further demonstrated a new codesign 
of in-sensor irradiance encoding and decoding for snapshot 
HDR imaging, which could enable more applications such as 
photography and adaptive machine vision under varying light 
conditions.

Contour and skeleton extraction
Contour is an important feature of objects within an image that 
can help identify different entities. The initial contour extraction 
algorithms were proposed based on pixel-level snakes with 
exceptionally low latency in [74]. Subsequently, in 2007, Alonso-
Montes et al. [75] proposed an in-sensor automatic retinal vessel 
tree extraction method based on a CeNN. The shared key meth-
ods in [69,74,75] iteratively extract contours based on the active 
contour model and CeNN. In 2008, Dudek et al. [76] proposed 
an image preprocessing method based on cellular automata for 
robotic scenarios. The skeleton within the binary image shows 
the size, position, and simplified shape of the object. Fast image 
skeletonization [77] was implemented in [78] based on 
wave-trigger propagation/collision. Razmjooei and Dudek [79] 
proposed an approximate Euclidean distance transform that 
uses simple and efficient shifting operations. Examples of con-
tour and skeleton extraction are shown in Fig. 5 (ii).

Local visual feature detection
Other image processing methods such as background extrac-
tion have been exploited by Wang and Dudek [80,81]. For 
higher-level feature extraction, edge features can be obtained 
by deploying Sobel kernel filters or Laplacian filters, which 
were used in later works on focal-plane visual odometry [31] 
and neural networks [82]. As for other features, such as corner 
point extraction (Fig. 5, iii), Chen [32] utilized DREGs based 
on the Fast16 algorithms, which were used in subsequent visual 
odometry work [83]. Other methods have been exploited for 
different image processing tasks. Wang and Dudek [84] pro-
posed a simple coarse-grain mapping method to process 
higher resolution than the PPA resolution by storing sub-im-
ages in different registers. Furthermore, to alleviate the prob-
lem of scarce hardware resources on the PPA, Martel et al. [85] 
proposed algorithms to trade off the PE resolution and regis-
ters by grouping several pixels into “super-pixels,” enabling 
them to run more complicated algorithms.

Based on the aforementioned low- and mid-level image 
processing methods, researchers are motivated to exploit 
more general high-level image processing by leveraging state-
of-the-art innovations in the field of computer vision, such 
as neural networks.

In-sensor neural network computing
High-level image processing tasks such as object classification, 
localization, and segmentation are mainly implemented using 
in-sensor neural network inference. Table S5 lists and compares 
existing neural networks with the SCAMP vision system.

Convolutional neural network for classification
The deployment of a neural network on the PPA is a break-
through because it enables the PPA to be open to more possi-
bilities with advanced general methods. With the use of CNNs, 
several types of tasks, such as classification, regression, local-
ization, and segmentation, which typically rely on powerful 
GPUs/CPUs, can be feasible.

Research on CNN implementation and inference within the 
PPA was pioneered by Bose et al. [44,86], in which a CNN with 
a single convolutional layer was implemented on the PPA array 
and a fully connected layer was implemented on its controller 
chip. This work performs 16-bit image convolution operations 
using 4 × 4 DREG “Super Pixel” blocks and demonstrates live 
digit classification using the MNIST dataset at approximately 
200 FPS. In their work, ternary {−1, 0, 1} kernel filters were 
stored on the flash memory of the PPA system and effectively 
encoded in the instructions/operations sent to the PPA array, 
performing convolutions sequentially. To fully exploit the PPA’s 
parallel computing characteristics and further improve CNN 
inference efficiency, Bose et al. [87] proposed the idea of in- 
pixel weight storage, in which the network weights are directly 
stored within the registers of the PPA’s PEs. This enabled both 
the parallel computation of multiple convolutions and the imple-
mentation of a fully connected layer on the PPA array, resulting 
in ×22 faster CNN inference (4,464 FPS) on the same digit 
recognition task. Based on these 2 studies, Liu et al. [38] pro-
posed a high-speed lightweight neural network (Fig. 6, i) using 
BinaryConnect [88] with a new convolution implementation 
method that enabled varying convolutional strides. This study 
demonstrated 4 different classification tasks with frame rates 
ranging from 2,000 to 17,500 FPS with different stride setups. 
Subsequently, based on this network, direct servo control using 
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CNN results [89] and simulated robot tracking from a drone 
[59] using the in-sensor CNN computing results were exploited.

AnalogNet2 [90,91] extended the initial work [92], imple-
menting a CNN that achieved 96.9% accuracy on the MNIST 
dataset at a speed of 2,260 FPS; however, it required all fully 
connected layers to be performed externally to the PPA array 
with only 3 convolutional kernel filters on the PPA as the first 
layer. Notably, in [82], a recurrent neural network was imple-
mented on the microcontroller of the SCAMP with features 
extracted from the sensor. Consequently, these 2 studies com-
bined in-sensor feature extraction and offline network linear 
layers. Liu et al. [93] proposed a binarized CNN (binary weights 
and activations) with a batch norm for both classification and 
coarse segmentation (Fig. 6, ii). To handle classification prob-
lems with more labels and segmentation tasks, they proposed 
the idea of dynamic model swapping by uploading weights of 
trained models onto PPA registers, targeting multiple simpler 
subtasks.

Fully convolutional neural network for coarse 
segmentation and localization
Previous work on PPA CNN inference performed classification, 
and no neural network architecture for segmentation and local-
ization existed. To expand neural network architecture on the 
PPA, Liu et al. [94] (Fig. 6, iii) introduced fully convolutional 
neural networks based on binarized neural networks with 
3 convolutional layers. In their work, object localization and 
coarse segmentation were implemented based on heat map 
extraction. In addition, to simplify computation and reduce the 
number of intermediate parameters, group convolution was 
employed. Considering the limited AREG and DREG resources 
available on sensors, a dynamic model swapping scheme can 
be a solution for running multiple networks in an application. 
A neural network can be decomposed into several smaller net-
works within the storage and computing capacity of the PPA, 
and these networks can be performed in sequence to generate 
the final inference results.

Fig. 6. Overview of SCAMP PPA-based algorithms and applications. In-sensor neural networks. (i) High-speed binary neural network. (ii) Binarized neural network. (iii) Binarized 
fully convolutional network (FCN).
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Applications

In-sensor state estimation
2D and 3D estimations are some of the most common applica-
tions of machine vision systems. These methods are typically 
computationally expensive; therefore, powerful processing units 
are required. However, a conflict exists between the power con-
sumption and processing efficiency of embedded vision systems, 
which require both low latency and low power costs. The SCAMP 
PPA offers a solution to these issues because of its capability for 
high-speed signal processing with low power consumption. This 
section investigates in-sensor 2D and 3D estimation.

Pose estimation
Bose et al. [31] proposed in-sensor 4-degree-of-freedom (DoF) 
visual odometry entirely in sensors by mapping a real-time input 
image with the previous keyframe through image scaling, shifting, 
rotation, and alignment (Fig. 7, ii). They demonstrated visual 
odometry (VO) estimation at frequencies greater than 1,000 Hz 
with a power cost of approximately 2 W. Subsequently, Murai et al. 
[83] proposed 6-DoF visual odometry based on the edge and cor-
ner points extracted in the sensor and postprocessing on a com-
puter with a frame rate of 300 FPS (Fig. 7, i). They leveraged feature 
edge and corner extraction methods [32] and calculated the visual 
odometry off the sensor using a method similar to that of standard 
VO systems [95]. They combined in-sensor feature extraction and 
a ready-to-use VO computing method off-sensor, which might 
be a direction in the future to combine efficient image preproc-
essing in-sensor and high-volume postprocessing with a powerful 
CPU/GPU, particularly when facing a shortage of storage and 
general calculation resources for large-scale computing.

Depth estimation
The SCAMP vision system can also operate with other accesso-
ries to share the computational burden of additional applications. 

Martel et al. [96–98] mounted a controllable liquid lens to gen-
erate a semi-dense map in real time. Theirs was the first study 
on depth estimation that leveraged external physical accessories 
(Fig. 7, iii). Using this focus-tunable lens, a large amount of com-
putational pressure on the sensor was relieved. In an experiment, 
their method achieved sparse depth images at a frame rate of 
greater than 25 FPS, providing 32 depth levels. This in-sensor 
feature extraction and post-image processing of the controller 
scheme are also widely used in many different applications [82,83] 
(Fig. 7, iii) where the task requirement for storage and computing 
resources is greater than the capacity of the PPA as mentioned 
previously.

Gaze estimation
Considering the size of the PPA sensor chip and its low power 
consumption, it could potentially be deployed on wearable 
devices such as glasses and virtual reality devices. Bose et al. 
[99] showed gaze tracking at greater than 10,000 Hz with a 
processing delay of less than 0.1 ms. The PPA enables effective 
visual data processing at the point of light acquisition (Fig. 7, iv). 
Their work decreased data transmission from the sensor to 
processing from whole pictures to a handful of contextual bytes 
by extracting information necessary for gaze tracking on the 
PPA, saving substantial power and time and enabling a speed 
considerably higher than that of conventional camera sensors.

In-sensor computing for robots
Short battery life and limited load are the 2 main factors that 
prohibit long-term use of mobile robots in various applica-
tions. In-sensor computing and visual devices may be the keys 
to solving this problem with emerging hardware designs. The 
portable PPA system (171 g) can perform in-sensor processing 
for spatial AI to reduce the data transmission pressure between 
the sensor and main processor, thereby improving overall 

Fig. 7. Overview of SCAMP PPA-based algorithms and applications. State estimation. (i) Six-DoF binary feature visual odometry (BIT-VO). (ii) Four-DoF VO. (iii) Depth estimation. 
(iv) Gaze estimation.
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processing efficiency while maintaining low power consump-
tion [100].

In-sensor perception and navigation for quadrocopters
The SCAMP-5d vision system has been integrated into quad-
rocopter systems for target tracking, visual odometry, and 
racing. Greatwood et al. [40,41,101] performed various exper-
iments by integrating a SCAMP-5d vision system with a quad-
rotor. Figure 8 (i) shows a flight control system in terms of 
hardware integration and a control block diagram, where a 
preset target can be tracked with useful information extracted 
from the sensor, even for short periods of target loss [40]. In 
this application, direct in-sensor target position extraction 
reduces the pressure of image capture, transmission, and pro-
cessing for the entire system. Subsequently, based on a similar 
hardware platform, Greatwood et al. proposed in-sensor visual 
odometry using perspective correction in an agile micro-air 
vehicle. Subsequently, a drone (Fig. 8, ii) racing within a preset 
environment was demonstrated by leveraging the efficient 
image processing ability of PPA [101], wherein the target posi-
tion can be estimated at approximately 500 FPS. McConville 
et al. [42] applied the in-sensor visual odometry developed by 
Bose et al. [31] to an unmanned aerial system for real-time 
and control purposes (Fig. 8, iv). They demonstrated that the 
SCAMP-5 PPA sensor can be used for position estimation in 
outdoor flights, potentially enabling navigation and recovery in 
global navigation satellite system-denied environments.

In-sensor perception and navigation for mobile vehicles
Liu [39] et al. proposed reactive agile navigation on a non- 
holonomic ground vehicle up to 3.88 m/s (Fig. 8, vi) using 
the PPA to robustly recognize preset patterns in a complex 
environment. Using a preset fixed pattern for target tracking 
is, although extremely efficient and accurate, limited to gen-
eralized environments that have useful random features. 
Therefore, Chen et al. [82] used in-focal-plane feature extrac-
tion from the environment and ran a recurrent neural net-
work on the microcontroller using this extracted information 
to estimate the proximity to the ambient objects for obstacle 
avoidance purposes (Fig. 8, iii and v) with a speed ranging 

from 0.64 to 1.8 m/s in the experiment. Furthermore, Liu et al. 
[89] demonstrated a direct visual servo control using CNN 
inference results, which is promising for future vision-motor 
control platforms such as ground vehicles to have a light-
weight servo control system without external control units.

Castillo-Elizalde et al. [102] proposed 1D mapping and 
localization by extracting features from the input images as 
the database and then localizing the incoming image by com-
paring it with the database and applying the motion model. 
In their work, 2 methods were utilized in different scenarios 
to downsample the original images: direct resizing and a local 
binary pattern. Their implementation achieved a running 
speed of over 300 Hz on large public datasets that encom-
passed more than 2,000 locations. It operates with a power 
consumption of 2.5 W and 500 GOPS/W. The potential appli-
cations of this study are to give mobile robots the ability to 
efficiently create in- sensor maps and localize (Fig. 8, vii).

Challenges and Future Trends

As illustrated, the SCAMP PPA is a versatile in-sensor com-
puting device designed using novel electric circuits. This unique 
hardware design enables various image processing algorithms 
ranging from low- and mid-level image processing to high-level 
neural network inference. These algorithms have a wide range 
of applications in the fields of machine vision and robotics. 
Although the PPA has unique advantages over conventional 
machine vision systems, several limitations associated with this 
technology exist, which are summarized as follows:

1. The current resolution of the SCAMP-5d vision system is 
256 × 256 for grayscale images, which inherently forbids appli-
cations that require accurate localization and detection with 
RGB clues.

2. Computing and RAM resources are scarce. The PPA offers 
only 7 in-sensor DREGs and 13 AREGs for both calculation 
and temporary memory, blocking the development and deploy-
ment of more sophisticated algorithms.

3. Analog noise and computing errors are nonnegligible for 
in-sensor computing with AREGs, particularly when it comes 
to iterative massive parallel computing.

Fig. 8. Overview of SCAMP PPA-based algorithms and applications. Robot applications. (i) Ground target tracking. (ii) Drone racing. (iii) Robot random exploring with a car-like 
robot. (iv) VO with a drone. (v) Robot random exploring with a fixed-wheel robot. (vi) Agile reactive navigation. (vii) Mapping and localization.
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4. More advanced parallel algorithms, particularly neural 
networks for image processing adaptive to the unique cellular 
circuit design, are still needed.

However, we regard these limitations as motivations for 
manufacturing optimization and research opportunities rather 
than obstacles. Engineers and researchers are developing and 
optimizing next-generation SCAMP vision systems based on 
the following aspects:

1. Hardware platforms: The next-generation in-sensor com-
puting PPA requires higher resolution and more computing 
resources, a more powerful microcontroller, better AREGs with 
less noise, and more advanced manufacturing techniques to 
decrease the bulk of the vision system.

2. Model deployment methods: More advanced program-
ming and development tools, particularly for neural networks, 
are necessary to simply download a neural network model into 
the SCAMP PPA and avoid manually implementing the CNN 
layer by layer.

3. High-performance neural network quantization and 
deployment: Considering the issue of reduction in accuracy 
while deploying a quantized neural network in a sensor, a 
high-performance neural network quantization method is 
needed. Further network compression approaches need to 
be investigated for enhanced neural network compression 
performance. In addition, associated network deployment 
techniques should be proposed to bridge the performance 
gap between off-sensor simulation and in-sensor inference.

4. Unconventional computing in sensors: Considering the 
aforementioned limitations, novel computing architectures and 
methods for on-sensor computing need to be investigated. For 
example, advancements have been made in unconventional 
computing methods such as neural cellular automata [103], 
elementary cellular automata, neuromorphic computing, trans-
formers [104], graph neural networks [105], and reservoir 
computing [106]. In particular, cellular automata-based reser-
voir computing [107] has achieved considerable progress in 
sequential information processing, which is inspired by the 
mechanism of recurrent neural networks.

5. Sensor fusion: A variety of studies and applications have 
been proposed with a single grayscale SCAMP PPA. However, 
some research, such as research in stereo vision or simultaneous 
localization and mapping (slam), that typically needs multiple 
sensors is complicated for a single SCAMP PPA. Hence, the 
fusion of multiple SCAMP PPAs or a PPA with other types of 
sensors is a future direction that could further explore the 
in-sensor capabilities of the SCAMP PPA.

6. Edge computing: Edge computing is the process of phys-
ically bringing computational capacity closer to the source of 
data, which is typically from an IoT device or a sensor. Edge 
computing obtains its name from the way computational power 
is sent to a device or network’s “edge.” Data are processed faster, 
bandwidth is increased, and data sovereignty is ensured via 
edge computing. The in-sensor computing device is suitable as 
a sensory terminal for edge computing because of its signal 
processing ability.

Notably, the current SCAMP-5d vision system is manufac-
tured using 180-nm techniques, and the whole vision system 
costs less than 2 W of power. The next-generation SCAMP 
vision system under development will achieve higher perfor-
mance with less power consumption. Our team is working on 
the co-development and co-optimization of circuit design, 
integration technologies, and associated algorithms needed to 

successfully deploy in-sensor image processing with the PPA 
for both academic and commercial applications.

Conclusion
Power consumption, processing latency, and data security are 
key issues that limit the development of conventional machine 
vision systems owing to their separate hardware architectures 
for perception, storage, and processing. These difficulties 
become more apparent as image resolution increases. However, 
a new visual sensor hardware architecture with in-sensor visual 
information processing may be the key to resolving these 
issues. Hence, this study analyzed the recent advancements in 
in-sensor computing using different types of visual sensors. 
Specifically, we focused on the PPA as a major example because 
of its consistent research history and various applications. 
Relevant types of visual sensors with in-sensor computing capa-
bilities were also introduced. This paper reviews in-sensor work 
with the PPA during the last 15 to 20 years, in which key algo-
rithms and applications have been introduced, enabling tech-
nological progress ranging from low-level image processing to 
visual odometry, neural networks, and mobile robot navigation. 
Despite its many limitations, numerous research studies and 
applications based on the SCAMP-5 vision system are under-
way, primarily because its unique electric circuit design enables 
low power, efficient, and secure image processing for embedded 
systems. More meaningful and in-depth research outputs 
with a better fabricated PPA (the SCAMP-7 vision system) 
are foreseeable in the near future. To realize the vast potential 
of in-sensor processing technologies, collaboration between 
chip engineers, image processing researchers, and roboticists 
is required, starting with low-level VLSI design and progressing 
to fundamental algorithms and practical applications. The 
SCAMP PPA can be regarded as an emerging, interdisciplinary, 
and fertile research platform for studying analog signal pro-
cessing, machine learning, fundamental parallel image algo-
rithms, and novel simultaneous perception and processing for 
mobile/embedded systems.
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