
TYPE Original Research

PUBLISHED 15 August 2022

DOI 10.3389/fnins.2022.909448

OPEN ACCESS

EDITED BY

Zongwei Wang,

Peking University, China

REVIEWED BY

Wei Wang,

Technion Israel Institute of

Technology, Israel

Leibin Ni,

Huawei Technologies, China

Feichi Zhou,

Southern University of Science and

Technology, China

*CORRESPONDENCE

Yanan Liu

yanan.liu@ieee.org

Walterio Mayol-Cuevas

walterio.mayol-cuevas@

bristol.ac.uk

SPECIALTY SECTION

This article was submitted to

Neuromorphic Engineering,

a section of the journal

Frontiers in Neuroscience

RECEIVED 31 March 2022

ACCEPTED 28 June 2022

PUBLISHED 15 August 2022

CITATION

Liu Y, Bose L, Fan R, Dudek P and

Mayol-Cuevas W (2022) On-sensor

binarized CNN inference with dynamic

model swapping in pixel processor

arrays. Front. Neurosci. 16:909448.

doi: 10.3389/fnins.2022.909448

COPYRIGHT

© 2022 Liu, Bose, Fan, Dudek and

Mayol-Cuevas. This is an open-access

article distributed under the terms of

the Creative Commons Attribution

License (CC BY). The use, distribution

or reproduction in other forums is

permitted, provided the original

author(s) and the copyright owner(s)

are credited and that the original

publication in this journal is cited, in

accordance with accepted academic

practice. No use, distribution or

reproduction is permitted which does

not comply with these terms.

On-sensor binarized CNN
inference with dynamic model
swapping in pixel processor
arrays

Yanan Liu1,2*, Laurie Bose1, Rui Fan3, Piotr Dudek4 and

Walterio Mayol-Cuevas1,5*

1Bristol Robotics Laboratory, Faculty of Engineering, University of Bristol, Bristol, United Kingdom,
2School of Microelectronics, Shanghai University, Shanghai, China, 3Department of Control Science

and Engineering, College of Electronics and Information Engineering, Tongji University, Shanghai,

China, 4School of Electrical and Electronic Engineering, University of Manchester, Manchester,

United Kingdom, 5Amazon.com, Seattle, WA, United States

Many types of Convolutional Neural Network (CNN) models and training

methods have been proposed in recent years aiming to provide e�ciency

for embedded and edge devices with limited computation and memory

resources. The wide variety of architectures makes this a complex task

that has to balance generality with e�ciency. Among the most interesting

camera-sensor architectures are Pixel Processor Arrays (PPAs). This study

presents two methods that are useful for embedded CNNs in general but

particularly suitable for PPAs. The first is for training purely binarized CNNs,

the second is for deploying larger models with a model swapping paradigm

that loads model components dynamically. Specifically, this study trains

and implements networks with batch normalization and adaptive threshold

for binary activations. Then, we convert batch normalization and binary

activations into a bias matrix which can be parallelly implemented by an

add/sub operation. For dynamic model swapping, we propose to decompose

applications that are beyond the capacity of a PPA into sub-tasks that can

be solved by tree networks that can be loaded dynamically as needed.

We demonstrate our approaches to various tasks including classification,

localization, and coarse segmentation on a highly resource constrained PPA

sensor-processor.

KEYWORDS

on-sensor computing, SCAMP vision system, pixel processor array, embedded

computer vision, convolutional neural network

1. Introduction

Sensing, storage, and processing integration on a single chip are appealing for

embedded real-time Convolutional Neural Network (CNN) inference. With an all-

in-sensor scheme, a device can perceive the environment and generate useful results

efficiently with reduced energy consumption, latency, and data bandwidth (Bose et al.,

2017, 2019, 2020; Zhou and Chai, 2020). Pixel Processor Arrays (PPAs) (Figure 1)

Frontiers inNeuroscience 01 frontiersin.org

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2022.909448
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2022.909448&domain=pdf&date_stamp=2022-08-15
mailto:yanan.liu@ieee.org
mailto:walterio.mayol-cuevas@bristol.ac.uk
mailto:walterio.mayol-cuevas@bristol.ac.uk
https://doi.org/10.3389/fnins.2022.909448
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fnins.2022.909448/full
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Liu et al. 10.3389/fnins.2022.909448

FIGURE 1

SCAMP-5d vision system and the pixel processor array (PPA).

SCAMP-5d consists of PPA with 256×256 Processing Elements

(PE) and ARM Micro-controller where parallel image processing

is conducted on PPA by directly operating on an analog signal

(electric current from PIX, which is proportional to the light

intensity) within Analog Registers (AREGs) and bit operation

within Digital Registers (DREGs).

(Carey et al., 2013) are emerging programmable massively

parallel vision sensors that integrate imaging, storage, and

computation on the focal plane. Considering the distributed

Processor Elements (PEs, Figure 1) of PPA, the neural network

inference needs to be carefully implemented to fully take

advantage of the sensor’s parallel processing performance.

However, full-precision neural networks usually require large

amounts of memory space for weights and temporal results such

as activations. Furthermore, floating-point computation, which

is possible with modern CPU/GPUs, does not suit current on-

sensor computing devices. With these challenges in mind, this

study designs and trains purely binarized convolutional neural

networks (CNNs) for PPA’s hardware architecture and proposes

new methods to deploy these proposed CNNs on the PPA across

image classification, object localization, and coarse segmentation

tasks with different neural network architectures.

For real-time execution of a deep neural network with

millions of floating-point parameters, a powerful CPU/GPU is

often required, which is incompatible with embedded visual

sensors, such as SCAMP. As a result, we partition reasonably

complicated tasks into smaller ones that may be executed within

PPA’s storage and register resource limits. More precisely, neural

network models can be regularly uploaded into registers for

computing based on the outcomes of the previous inference.

In this case, only one neural network or segment of a network

is performed at one time, while the rest of the models are

saved in flash memory and can be dynamically uploaded

into registers when needed. Specifically, we send input images

through a sequence of networks, at each stage the output

of the last network is used to determine which network is

used next, effectively allowing a more complex task to be

performed by a series of simple networks. We apply this scheme

to classification, object localization, and segmentation tasks.

In the experiments, we implement the proposed CNN tree

architecture on the sensor and demonstrate it with: real-time 37-

class English letter classification, objects’ localization, and coarse

image segmentation. The major contributions of this study can

be summarized as follows:

(1) We train purely binarized CNNs (binary weights and

activations) and implement them on the PPA for the

first time. This approach of binary activation alleviates

the accumulation of analog computing errors and value

saturation after each layer, thus, enabling deeper neural

networks on the sensor. With the binary neuron activations

as inputs, the linear layers can be implemented by simply

counting the number of bits (Liu et al., 2020a).

(2) We propose a dynamic-swapping CNN architecture where

multiple neural networks can be composed for more

sophisticated inference tasks by dynamically uploading

neural network models when needed.

(3) We present the first implementation of a Fully

Convolutional Network (FCN) architecture for PPAs.

Our approach uses group convolutional layers (Wang et al.,

2019), and stores hundreds of convolutional filter weights

upon the focal plane of the PPA. Unlike earlier study, we

apply batch normalization during training and utilize this

to learn bias parameters to be applied during inference on

the PPA device.

2. Related study

Pixel Processor Arrays combine sensing, processing, and

memory. This helps to reduce the key factors on embedded

systems such as latency, energy consumption, and bandwidth,

as data movements are optimized and redundant information

is eliminated close to its source. The SCAMP-5d vision

system (Dudek, 2004; Carey et al., 2013) is a general-purpose

programmable massively parallel PPA vision system that has

been recently demonstrated in robotic tasks (Greatwood et al.,

2017, 2018; McConville et al., 2020; Fan et al., 2021; Liu

et al., 2021a) and computer vision (Bose et al., 2017; Chen

et al., 2017; Martel et al., 2020). Figure 1, illustrates how

the SCAMP’s Processing Element (PE) uses a photosensor

to convert light into an analog signal which is then directly

processed in the adjacent arithmetic logic unit (ALU) and analog

(AREG) and binary (DREG) registers. In contrast to current

hardware design structures of computer vision systems, the

PPA eliminates the need for Analog/Digital Conversion (ADC)

after sensing and directly operates on analog electric currents,

accelerating the signal processing speed and in the mean time,

avoiding the bottleneck of ADC and data transmission process.

Note, however, that noise can be introduced when performing

arithmetic operations or temporal information storage onAREG

(Zhou and Chai, 2020).

Frontiers inNeuroscience 02 frontiersin.org

https://doi.org/10.3389/fnins.2022.909448
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Liu et al. 10.3389/fnins.2022.909448

First examples of CNN implementation and inference

within PPAs were demonstrated by Bose et al. (2019) where

a CNN with a single convolutional layer and a single fully-

connected layer is implemented upon the PPA array and its

controller chip, respectively. Their study performs 16-bit image

convolution operations using 4×4 DREG “Super Pixel” blocks

and demonstrates live digit classification based on the MNIST

dataset at a speed around of 200 FPS. In their study, the ternary

–1, 0, 1 kernel filters are stored in the program memory, and

are effectively encoded in the instructions/operations sent to

the PPA array, performing convolutions in sequence. To fully

take advantage of PPA’s parallel computing characteristics and

further improve the CNN inference efficiency, Bose et al. (2020),

for the first time, proposed the idea of in-pixel weight storage,

where the ternary weights are directly stored in DREG enabling

a ×22 faster CNN inference (4,464 FPS) on the same digit

recognition task with a similar network architecture by parallel

image convolution and fully-connected layer. Based on these

two studies, Liu et al. (2020a) proposed a high-speed lightweight

neural network using BinaryConnect (Courbariaux et al., 2015)

for multiple classification tasks with a new method of image

convolution implementation using different high parameters

(stride) across four different classification tasks including hand

gesture recognition and plankton classification with frame rates

ranging from 2,000 to 17,500 per second with different stride

setups. Later, based on this network, a direct servo control

using CNN results from Liu et al. (2021c) and a simulated

robot tracking from a drone (Liu et al., 2021b) with on-

sensor CNN computing results are exploited. Apart from this

computer vision research, Chen et al. (2020) uses abstract

features (mainly edges, corner points, and blobs) as inputs to

a neural network for proximity estimation on a mobile robot

platform, where feature extraction is performed on the PPA and

a layer-recurrent network is carried out on the micro-controller.

Other CNN-related study based on SCAMP can be seen from

Wong et al. (2018, 2020) and Guillard (2019) where a CNN

with a single convolutional layer of 3 kernel filters on the PPA

and a single fully-connected layer on the M0 controller for

digit recognition. However, their multiplication operation in

convolution is approximated using combinations of additions

and 1/2 divisions, where errors are introduced in theory and

accumulated in practice which prevents it from a deeper network

with many convolution filters. AUKE (Debrunner et al., 2019)

is a useful tool to automatically generate convolution kernel

codes on the PPA. Stow et al. (2021) is another compiler

targeting the SCAMP-5 vision system developed by Stow et al.

Furthermore,Martel et al. trained neural networks to learn pixel-

wise exposures for HDR imaging and video compression (Martel

et al., 2020).

Previous study by Bose et al. (2019), Bose et al. (2020),

and Liu et al. (2020a), based on PPA for CNN-related research

and implementation use binary weights and does not adopt

batch norms in the training or inference process, the possible

reasons are that to find a proper method to implement a

binary CNN with the batch norm on PPA is challenging

considering the PPA special hardware architecture and limited

hardware resources and how much batch normalization can

contribute to a shallow binary neural network on SCAMP

remained unexploited. Based on the study of Bose et al.

and Liu et al. above, our study proposed methods to train

binarized CNNs across applications of letter recognition, object

2D localization, and coarse segmentation. Specifically, we use

a series of techniques including batch normalization, group

convolution, and activation function tanh to balance the

network performance and deployment difficulties on the sensor.

3. Method

Neural network architectures for PPAs have to be carefully

designed taking into account model size, architecture, and the

feasibility of exploiting the PPA’s parallel computation and

on-sensor storage. This is essential due to the limited on-

sensor resources compared to standard computer GPU/CPU

hardware. This section attempts to find a balance between the

neural network performance and its efficient implementation on

current PPAs.

3.1. CNN with binary weights and
activations

BinaryConnect (Courbariaux et al., 2015) trains neural

network with binary weights during forward propagations.

However, BinaryConnect is not a fully binary neural network

with floating-point neuron activations. Both the CNN and

FCN presented in this study are based on the Binarized CNN

(Courbariaux et al., 2016) with both binary weights and neuron

activations. Such binary values can be stored in 1-bit DREG and

processed with bit-wise operations upon the PE array. Binarized

CNN reduces the intermediate memory storage required for

neuron activations and replaces most arithmetic operations with

bit-wise operations. These qualities make such fully binarized

neural networks highly suitable for PPAs.

During training, we employ a simple strategy to binarise the

weights and activations. All the weights are efficiently binarized

in a deterministic manner Equation 1.

wb = Sign(wr) =

{

+1 wr > 0,

−1 otherwise
(1)

where wr is floating-point weights and wb is the binary weights.

In terms of activations, we train channel-wise adaptive threshold

α to obtain more informative binary feature maps, inspired by

Frontiers inNeuroscience 03 frontiersin.org

https://doi.org/10.3389/fnins.2022.909448
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Liu et al. 10.3389/fnins.2022.909448

the study by Liu et al. (2020b). In Equation 2,

ab = sign(ar − α) =

{

+1 ar > α,

−1 otherwise
(2)

α is the trainable threshold for binarization of each channel, ar is

the full-precision activations and ab is the binarized activations.

The key to the back propagation is the gradient calculation and

accumulation for Stochastic Gradient Descent (SGD). During

the training process, using standard back-propagation and

stochastic gradient descent, the gradients are calculated with

the floating-point weights. The weights and activations are only

binarized during the forward pass. In our study, the binarized

CNN is trained on PC and the CNN inference process is

implemented on the PPA of the SCAMP-5d vision system.

The training process for batch norm parameters can be

seen by Ioffe and Szegedy (2015). From Equations 3 to 8, ǫ

is used to avoid a zero denominator. The main scaling and

shifting parameters γ and β for batch norm are learned during

the training process. Then the batch norm can be applied to

manipulate activations (Ioffe and Szegedy, 2015). In Figure 2, for

a mini-batch B = {x1, x2, ..., xn} and a single layer of Binarized

CNN during the forward propagation process:

Y =

n
∑

i=0

wixi (3)

Ŷ = γ
Y − µ

√

σ 2 + ǫ
+ β =

γ
√

σ 2 + ǫ
(Y − (µ−

√

σ 2 + ǫ

γ
β)) (4)

Considering activation function tanh and positive scalar does

not change the sign of inputs. Hence,

Z = sign(A) = sign(tanh(Ŷ − α)) = sign(Ŷ − α)

= sign(Y − (µ −

√

σ 2 + ǫ

γ
β)− α)

(5)

Hence:

Z = sign(Y − B) (6)

Where,

B = µ + α −

√

σ 2 + ǫ

γ
β (7)

In Equation 7,

σ 2 =
1

n

n
∑

i=1

(xi − µ)2,µ =
1

n

n
∑

i=1

xi (8)

β , γ , and α are all trainable parameters that can be obtained

directly after training. Thus, the “Bias” B can be calculated using

these trained parameters offline before implementing it on the

PPA. During the inference process on the sensor, the batch

norm, activation function, and learnable threshold are reduced

to a bias term, as shown in Equation 7. Hence, the on-sensor

inference process can be simplified as shown in Figure 2B.

3.2. Dynamic model swapping and CNN
tree

Device constraints for embedding visual systems invite us

to reflect on alternative ways in which architectures can be

developed and deployed. Especially when considering massively

parallel and low lag hardware such as the SCAMP-5 PPA. Of

interest is to be able to deal with challenging and complex tasks

which due to device constraints are not possible to directly port

to embedded devices. One opportunity here is to partition larger

models and tasks into sub modules and sub tasks that can then

be deployed.

Considering that the overall storage space in a SCAMP

vision system (which includes a PPA as well as a microcontroller

with its own RAM and flash memory) is much bigger than

the one available in the PPA computing registers, it is possible

to store several models in the flash memory and upload them

dynamically in real time to the PPA registers for specific

computation (Figure 3).

This allows designing newways in which CNN and inference

models, in general, can be deployed. For example, classification

network trees with CNNs can be constructed. Specifically, there

can be an input signal (image) that can first be assessed by a first

switching network with reference to which downstream model

should process it next. This, therefore, reduces the complexity

of classification into binary or a few classes which can then be

repeated in levels as necessary (Figure 4, Left).

Another alternative is to have shared processing models that

are followed by task-specific submodels (Figure 4, Right). In this

case, consider that a device is having to perform different tasks

on the same input image, e.g., detecting objects and segmenting

image regions. The first shared module could then be the first

few convolutional layers of a model which use the entirety of the

PPA. The result can then be followed by sub modules that are

dynamically and in real time loaded to the PPAwhich implement

grouped convolutions that are task-specific e.g., object detection

and/or specific region segmentation. In this case, we trade

overall speed for the ability to fit multiple tasks for which some

portions are shared, removing redundant computation.

In this article, we explore initial implementations for

dynamic swapping models for tree CNN architectures and

shared convolutions.

4. CNN architecture on sensor

The overall binarized CNN architecture for sensing, storage,

and computing can be seen in Figure 5. First for imaging, the

photo detectors (PIX) within each PE convert light into analog

signals which can be directly transferred and temporarily stored

into AREG. The input image on AREG is then resized and

replicated to fill the whole 256×256 PE for parallel processing

purposes. With the binary convolutional weights stored in

Frontiers inNeuroscience 04 frontiersin.org

https://doi.org/10.3389/fnins.2022.909448
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Liu et al. 10.3389/fnins.2022.909448

FIGURE 2

(A) The binarized CNN forward propagation with the batch norm and adaptive activation function before simplification. The activation function

tanh is used considering its feature of sign invariance to inputs. (B) The simplified inference process on the PPA device by mathematically

transforming batch norm, activation function into a “bias” B to be subtracted from Y . With this method, the whole inference is not only

significantly simplified but also transformed all the multiplication into addition/subtraction operations.

FIGURE 3

Neural network dynamic model swapping for the SCAMP.

DREG, the image convolution can be performed using the

replicated image and its associated weights. As illustrated in

Section 3, the batch norm can be efficiently implemented by

subtracting a matrix that is plotted in AREG. The binary

activations can be obtained by binarizing the full-precision

activations after being subtracted by the bias matrix. Then the

binarized activations act as the inputs for the next convolutional

layer using a similar process as the first layer. The fully-

connected layer receives the binarized activations as an input;

given binary weights, the final prediction can be created by

conducting multiplications with the XNOR operation and then

counting the bits for each label. The maximum number of bits

indicates the final CNN inference result. The following sections

detail the implementation method for each layer.

4.1. Convolutional layer

As shown in Figure 5, the image convolution can be executed

in parallel on the PPA by “Multiplications”, shifting, and

add/sub. First, the image information stored across the PE

array is ‘multiplied’ by binary filter weights of –1,1 stored in

another DREG. Then by shifting and adding horizontally 3 times

and vertically for another 3 times, convolution results for the

bottom right cell of each 4×4 PE block are generated. After

repeating this process 16 times in a similar manner, an image

convolution with stride 1 can be obtained. Image convolution

with different strides can be implemented by different shifts (Liu

et al., 2020a). Each 4×4 kernel filter is replicated across a 64×64

block (16 blocks in total), allowing multiple convolutions to be

calculated in parallel. This study implements a CNN with two

convolutional layers, the resolution of input images to PPA is

256×256 and after resizing and replication, 16 64×64 (16 images

and each of them has a resolution of 64×64) images are inputs

for the first convolutional layer followed by 2×2 max-pooling.

For the second convolutional layer, a group convolution (Wang

et al., 2019) with 16 groups and 4×4 max-pooling is utilized

to simplify the calculation, reduce the memory requirement,

and accelerate the network inference process. The input image

for the second convolutional layer (shown in Figure 5) contains

four identical images (128×128) in each of them there are 16

feature maps. After an image convolution with a group of 16,

64 feature maps are then generated simultaneously which act as

inputs for the next CNN layer. With this method, there is no

need to shift feature maps and add/subtract them into a new

one as the normal convolution with a group of 1 does. For the

second convolutional layer, hence calculation errors based on

the analog signals can be reduced and the inference process can

be accelerated with fewer register-based operations. More details

about the kernel filter layouts and convolution implementation

can be seen in Supplementary Figures S1, S2.

4.2. Fully-connected layer by bit counting

As shown in Figure 6, the first step for the fully-connected

layer is to multiply input binary feature maps with 1-bit weights.

This is achieved by performing the XNOR operation between

Frontiers inNeuroscience 05 frontiersin.org

https://doi.org/10.3389/fnins.2022.909448
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Liu et al. 10.3389/fnins.2022.909448

FIGURE 4

Two examples of dynamic swapping architectures. (Left) A CNN classification tree where each module is loaded dynamically as needed based

on the switching CNN. (Right) A shared convolution module first processes the input and each distinct task use its own sub-modules that are

loaded one at a time to produce the di�erent outputs.

FIGURE 5

Convolutional neural network (CNN) inference process with multiple layers on the PPA by integrating image sensing, storage, and calculation

using both DREG and AREG.

the given binary activations (Figure 6 top left) and weights

(top right), which can be efficiently processed with the parallel

bit operation on DREG. This figure shows the weights for 10

labels and they are pre-stored in a “snake” pattern in a 4×4

block on a DREG. Different from earlier study (Bose et al.,

2019, 2020; Liu et al., 2020a) where the fully-connected layer is

implemented mainly by using the built-in scamp5_global_sum

function to estimate the summation of values in AREG, which

is not accurate to fully represent the CNN outputs, in our study,

the final CNN output can be obtained by activating each label’s

position shown from the bottom right in Figure 6 and counting

the amount of positive and negative bits, which can be more

accurate than approximation summation method. The pixel

counting accuracy can be found in Supplementary Figure S3,

which shows the similarity between a simulation on PC that can

be regarded as ground truth and binarized CNN on the PPA.

4.3. Binary activation, batch norm, and
max-pooling

This study uses tanh as the activation function for the

convolutional layer because tanh does not change the sign of

inputs. Hence, it could simplify the batch norm calculation on

the PPA while maintaining a satisfactory accuracy as illustrated

in Section IV. The ReLU is applied for the second fully-

connected layer on the micro-controller to improve the overall

performance of the CNN. In terms of the implementation of the

activation function, the tanh activation function is transformed

into batch norm weights as can be seen in Figures 2, 5. For a

CNN with two convolutional layers, max-pooling with 2 and 4

is used respectively to cooperate with the parameter of group 16.

With this combination, there is no need for multiple shifts and

addition operations on AREG to get the final activations after

Frontiers inNeuroscience 06 frontiersin.org

https://doi.org/10.3389/fnins.2022.909448
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Liu et al. 10.3389/fnins.2022.909448

FIGURE 6

Fully-connected layer implementation. The fully-connected layer on PPA uses parallel XNOR operation and bit counting. The binary weights for

labels are stored on DREG in a specific order within a 4×4 box. For example, the results for label 0 can be obtained by counting the sum of

values in orange boxes (−1− 1− 1+ 1 = −2). The results for label 9 from green boxes (1+ 1− 1+ 1 = 2).

the second convolutional layer as described in Bose et al. (2020).

Hence, the second image convolution is simplified significantly

while keeping a suitable accuracy.

4.4. Bit counting for the fully-connected
layer

When calculating the neuron activations from the fully

connected layer, it is necessary to count the number of set

bits in a DREG. In this study, we make use of the “sandcastle

summation” method (Supplementary Figure S4)1 (Bose et al.,

2021). In brief, this method provides an efficient way to calculate

an exact count of the number of set bits in a DREG. It achieves

this by manipulating the DREG’s content via efficient parallel

operations, into a form where the number of set pixels can be

easily determined. Specifically forming a stacked “sandcastle” of

1 https://youtu.be/a2VO3aWHnYc

set pixels, after which the number of set pixels can be determined

by calculating the area of this “sandcastle” stack. This approach

is typically two orders of magnitude faster than a naive approach

of counting set pixels individually.

5. FCN on sensor

An FCN is a type of convolution neural networks that only

performs convolution operations without using fully-connected

layers, which provide pixel-level classification, targeting image

segmentation (Long et al., 2015). This article proposes a 3-

conv layer FCN that can be implemented on a PPA sensor.

This study extends from previous CNN classifications, that

were done using fully-connected output layers (Bose et al.,

2020; Liu et al., 2020a). In this article, FCN is used for heat

map generation by adding one convolutional layer with 128

filters and replacing the final fully-connected layer with a

convolutional layer of kernel size 1×1. Figure 7 shows the

Frontiers inNeuroscience 07 frontiersin.org

https://doi.org/10.3389/fnins.2022.909448
https://youtu.be/a2VO3aWHnYc
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Liu et al. 10.3389/fnins.2022.909448

FIGURE 7

An overview of an on-sensor fully convolutional network (FCN) architecture and inference process using a PPA for heat map generation. A

three-layer FCN architecture is used in our study. The first convolutional layer can be seen in Figure 5 in detail. In the second convolutional

layer, 128 convolutional kernel filters are applied to the 16 input binary feature maps from the first layer, generating 64 feature maps with a

convolution group setup of eight. The fusion of intermediate extracted features is implemented by addition within each group. The third layer

uses binary filters with a size of 64× 1× 1, hence, the final feature maps can be obtained by “Multiplication” with bit operation based on DREG.

The final heat map is generated by combining these input 64 feature maps by shifting and addition operations.

overall FCN architecture with configurations for each layer.

Figure 5 illustrates the first convolution layer, generating 16

binary feature maps. The second layer adopts group image

convolution (Chollet, 2017) of 8 on the input 16 feature maps to

make a trade off between convolution computation complexity

and network performance, where each of 64 outputs is generated

by adding two intermediate feature maps (Figure 9). These 64

binary feature maps from the second convolutional layer are

stored in 4 DREG. The third layer then generates the final heat

map representing the prediction probability distribution, taking

these 64 binary feature maps and combining them within an

AREG. Each binary feature map is multiplied by an associated

weight of –1/1.

5.1. FCN deployment on the PPA

This study proposes a 3-conv layer FCN that can be fully

parallelly implemented on the PPA. As can be seen from

Figure 9, the first layer of FCN shares the same architecture as

the CNN in Figure 5. Then, 16 binary featuremaps are generated

after image convolution, batch norm, and adaptive binarization

in the first layer. To fully use the information from the given

image and efficiently send outputs to the next layer, there is no

max pooling applied in this layer. The second layer adopts group

image convolution (Chollet, 2017) of 8 on the input 16 feature

maps to make a trade off between convolution computation

complexity and network performance, where each of 64 outputs

is generated by adding two intermediate feature maps. These

64 binary feature maps are then stored in 4 DREG as can be

seen from the outputs of the second convolutional layer. In

the third layer, to generate the final heat map representing the

position probability distribution, these 64 binary feature maps

from the last layer need weighted by –1/1 and then summed

up. First of all, after 1 × 1 convolution, these 64 feature maps

stored in 4 DREG are relocated to 1 AREG after 2 × 2 max

pooling. Then the summation of these extracted feature maps

can be obtained by shifting and adding into one 64 × 64 heat

map which represents the position distribution probability of

the object. It is worth mentioning that for the second layer,

we combine parallel and sequential implementation of the

convolution, where for each iteration out of four in total, 16

feature maps are generated. Compared to our previous 2-layer

network (Liu et al., 2020a) where 29,056 parameters are needed

for a binary classification task, this 3-conv layer neural network

has only 2,656 parameters which significantly alleviates the

storage pressure for the embedded vision system, while in the

meantime, generates more informative results such as the object

2D position and segmentation information within an image.

The following section gives the implementation detail of the

binarized FCN on the sensor.

First Layer: Sixteen binary filters are replicated to fill a DREG

for parallel convolution purposes (Bose et al., 2020; Liu et al.,

2020a). The image convolution on the PPA can be decomposed

as ‘multiplications’, shifting, addition, and the convolution result

are obtained by performing the shifting and addition process 16

times with a stride = 1. Then the pre-calculated bias B is input

into 4×4 grids on an AREG and is subtracted from the feature

map (Figure 5). Then the output binary image is obtained by

binarizing the feature map after subtracting B. In this layer, tanh

is used as the activation function.When implementing inference

on the sensor, the tanh activation function is transformed into

binarization with a sign function, with offset computed from

batch norm parameters as can be seen from Equation 7.

Second Layer: Group convolution is an advantageous approach

for embedded devices due to the reduced number of parameters

generated by group computing. The key to the second layer is

to implement the group convolution with 16 feature maps as

inputs and 64 feature maps as outputs. By dividing 16 input

feature maps into eight groups, thus, there are 128 binary filters

need to be stored on the sensor. The layout of filters directly

affects inference efficiency. We design a storage structure for

Frontiers inNeuroscience 08 frontiersin.org

https://doi.org/10.3389/fnins.2022.909448
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Liu et al. 10.3389/fnins.2022.909448

FIGURE 8

(Left) The layout of 8 filters in a block with a size 16×8. (Middle) The layout of 8 kernel filters in a 64×64 block. (Right) The layout of 128 kernel

filters. Before performing a convolution operation (8 times in total) in the 2nd layer, each set (8 sets in total) of kernel filters is activated and then

replicated to fill all 256×256 PEs. With this method, 128 filters can be stored within one DREG.

FIGURE 9

An overview of an on-sensor FCN inference process within the PPA for object localization. The first convolutional layer uses the same

convolution module with CNN in Figure 5. As for the second convolutional layer, 128 convolutional kernel filters are applied on 16 input binary

feature maps, generating 64 feature maps with a convolution group setup of eight. The fusion of intermediate extracted features is implemented

by addition within each group. The third layer uses binary filters with a size of 64× 1× 1, hence the final feature maps can be obtained by

‘multiplication’ with bit operation based on DREG. The final heat map is generated by fusing these input 64 binary feature maps by only shifting

and addition operations. More details on group convolution implementation can be seen in Supplementary Figure S5.

filters in the first (Supplementary Figure S1) and the second

layer. Figure 8 illustrates the layout of these filters within one

DREG. As can be seen, each time to perform a convolution,

the corresponding kernel filters are activated in parallel, shifted,

and replicated to fill each 64×64 block in 256×256 PEs. This

filter storage structure can also extend to store more filters

following a similar way to fill all PEs with 16 filters. In Figure 9,

to implement a second convolution layer with 8 groups, the

input 16 binary feature maps are first transformed by switching

the position of adjacent maps. This is followed by convolution

with associated 32 filters for these 32 feature maps. Then 16

gray-scale feature maps are obtained by adding each two of

the 32 maps. By performing convolution for another 96 filters,

64 gray-scale feature maps can be derived. The bias matrix is

subtracted and then after binarization, 64 binary feature maps

are generated.

Third Layer: In this layer, as shown in Figures 7, 64 1-bit filters

are input into a DREG, followed by ‘multiplication’ with the 1-

bit featuremaps from the previous layer. After 1×1 convolution,

these 64 feature maps in 4 DREGs are relocated to 1 AREG after

2 × 2 maxpooling. The summation of these extracted features

can be obtained by shifting and adding them into one 64 × 64

heat map (shown in Supplementary Figure S6). Unlike in the

previous two layers, the activation function for this layer is ReLU

to generate a gray-scale feature map as the final prediction result

of the network.

Frontiers inNeuroscience 09 frontiersin.org

https://doi.org/10.3389/fnins.2022.909448
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Liu et al. 10.3389/fnins.2022.909448

FIGURE 10

Letters from the EMNIST dataset and their three categories. (Left) The visualization of the average value for each letter from the EMNIST dataset.

As can be seen, several classes share lots of similarities to some degree, such as I and L, f and F, h and n, g and q, and Q and a which makes this

classification task challenging. (Right) CNN tree architecture using dynamic model swapping on SCAMP in which each CNN performs

comparatively simpler tasks using the 4-layer CNN. These 4 categories using EMNIST merged classes.

6. Experiments

This section demonstrates experiments, classification,

localization, and segmentation, based on the proposed binarized

CNN and FCN architecture, respectively. Figure 5 shows the

design of a binarized CNN architecture as a node of the CNN

tree for 37 English letters (Figure 10, Left) recognition. FCN

architecture for object 2D localization, road, and grass coarse

segmentation is validated in this section.

6.1. CNN tree on EMNIST for English
letter classification

The EMNIST dataset (Cohen et al., 2017) is a set of

handwritten characters extended from the MNIST (LeCun

et al., 2010) dataset with the same image format. This study

uses the merged class which contains 11 lower-case classes,

11 upper-case classes, and 15 mixed classes where some of

letters are difficult to distinguish from upper case to lower case,

such as O, X, and C. Hence, in total, there are 37 types of

labels in the merged class. Considering the scarce hardware

computing resources, especially the amount of DREG/AREG, to

store weights, temporary activations, and perform convolution,

this article proposes a CNN tree architecture consisting of 4

CNNs (Figure 10, Right), where the network can be swapped

simply by loading associated weights from the flash memory to

the DREG because all these four networks share an identical

architecture. The overall 4 CNN structure is shown in Figure 10.

The three categories of these 37 letters are obtained using k-

means clustering via Principal Component Analysis (Ding and

He, 2004) shown in Figure 11.

FIGURE 11

Thirty-seven English letters are clustered into 3 categories. Black

dots represent the center of each category.

With the proposed CNN tree where each CNN uses 2

convolutional layers + 2 fully-connected layers, better accuracy

of 86.74% is obtained compared to a single neural network with

group 1 or 16 (Table 1). As can be seen from Figure 5, a third

convolutional layer is challenging to extend to improve the CNN

performance because the size of the feature map is 8×8 after

two max-pooling (2 and 4) which is too tiny to add another

max-pooling for the third convolutional layer. An alternative

would be more fully-connected layers but it is also limited by

the hardware resources. To improve the overall classification

accuracy, a CNN tree with 4 CNNs (Figure 10) is proposed,

where the basic idea is to use a combination of four 4-layer

neural networks uploaded into SCAMP in sequence to get a

Frontiers inNeuroscience 10 frontiersin.org

https://doi.org/10.3389/fnins.2022.909448
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Liu et al. 10.3389/fnins.2022.909448

closer accuracy with a deeper neural network that exceeds the

SCAMP hardware storage/computation capacity. It might be

challenging to store all the weights for a deeper neural network

directly on a sensor-processor chip, but the parameters in each

branch can be uploaded into the system from external memory,

according to the last inference result, which alleviates the storage

pressure and at the same time, obtains a better accuracy than

a single neural network. In terms of the CNN tree training,

four CNNs are trained separately with the same neural network

structure. The accuracy for each CNN can be seen in Table 1. In

addition, Supplementary Figure S10 shows the binary training

process and comparison between a single network and a CNN

tree. Note that CNN-1 suffers from a poorer performance

compared to its counterparts resulting fromnot only the number

TABLE 1 Convolutional neural network (CNN) classification accuracy

among di�erent CNNs.

CNNs Accuracy Parameter amounts

CNN switch 95.55% 132,873

CNN 0 95.27% 133,153

CNN 1 84.74% 133,293

CNN 2 94.44% 133,153

Overall 86.74% –

Single 4-layer CNN 84.20% 134,063

Single 4-layer CNN 84.55% 149,423

Group =1 (2nd conv)

The bold value indicates the classification accuracy.

of classes (15 vs. 11) but also the number of similar classes, such

as F and f, L and I, and g and q shown in Figure 10, Left.

To evaluate the CNN implementation on SCAMP,

Supplementary Figure S3 compares the first fully-connected

neuron values between SCAMP and Simulation on PC because

noises are mainly caused by analog signal processing on

the PPA and there would be no noise introduced to the last

fully-connected layer afterward since it is implemented on

the micro-controller. As shown in Supplementary Figure S3,

the neuron values from SCAMP using digital summation

are close to the ground truth in simulation and the average

TABLE 2 Computation time breakdown CNN of a single branch.

Processing steps Approximately time cost (µs)

Imaging and thresholding 35

Character resize and duplication 359

1st Image convolution 184

1st Batch norm and activation 235

2nd Group convolution 184

4×4 maxpooling 34

2nd Batch norm and activation 235

1st fully-connected layer 4,318

2nd fully-connected layer 11

Total time cost 5,595 (178 FPS)

number of weights ≈133k

model size ≈0.127 KB

FIGURE 12

Examples of CNN tree inference on SCAMP-5d. For each letter from left to right: (1) Real-time hand-written input image by facing the SCAMP to

a writing pad. (2) first convolutional layer. (3) convolutional layer after batch norm. (4) binary feature maps after maxpooling and activation

function. (5) second convolutional layer. (6) convolutional layer after batch norm. (7) binary feature maps for fully-connected layer after

maxpooling and activation function. (8) prediction bar for first CNN inference results (Category 0, 1, 2). (9) Switch CNN inference results. (10)

prediction bar for the second CNN inference results. (11) final CNN inference results. Notice that for each letter inference process, visualization

is only for one CNN.

Frontiers inNeuroscience 11 frontiersin.org

https://doi.org/10.3389/fnins.2022.909448
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Liu et al. 10.3389/fnins.2022.909448

FIGURE 13

Data collection environment and inference results. Left) The data collection environment where a vehicle is moving around and images are

generated from a bird’s eye view of a simulated drone; top left: A robot simulator for environment setup and collection of training data; middle

left: The collected images from the drone’s camera are converted into gray-scale images for the real PPA and the segmentation annotations of

the road. Right) The training and annotated datasets for grass segmentation; bottom left: this study uses the Gaussian distribution to represent

the vehicle position within an image; right: FCN inference results on-sensor. The left column is the input gray-scale image on the sensor with

yellow dots indicating the FCN inference localization prediction and the right column is the inference results for coarse segmentation on the

sensor. The density and distribution of colorful points (right) represent the possibility of the position of the road (bright yellow) and grass (green)

segmentation. The experimental performance for localization (accuracy) and segmentation (IoU) on the PPA can be seen in Figure 14. An

example video can be seen at https://youtu.be/Z_ydv_0DRnM.

absolute error measured is around 22 for each neuron with

a value ranging from 0 to 500. Figure 12 visualizes the on-

sensor inference process from the input image, convolutions,

activations, and final predictions. The final measured accuracy

with EMNIST datasets on the PPA is around 82%, which sees a

4–5% accuracy gap from the groundtruth in the PC simulation.

Supplementary Figure S9 demonstrates some of the live demos

of letter classification. In addition, a break down of time cost

within one branch of networks for each inference step can be

seen from Table 2.

6.2. FCN inference, experiments, and
evaluation

This section demonstrates the application of the proposed

network architecture to coarse segmentation and object 2D

localization from a bird’s eye view. We implement the

FCN algorithm on the SCAMP vision system hardware

(Supplementary Figure S8). We created an environment in the

Webots2 (Michel, 2004) robot simulator (Figure 13, Left) for

data collection and the validation of FCN deployment on the

sensor. Training, testing, and validation datasets are collected by

repeatedly taking images from a flying drone equipped with a

simulated ‘SCAMP’ and then validation images are sent to the

2 https://cyberbotics.com/

real PPA hardware for inference. Binarized FCN is trained offline

based on these datasets with the method proposed in Section

3. The whole neural network for both coarse segmentation and

localization is performed on the sensor.

Figure 13, Left shows the samples of collected datasets and

their annotations for the segmentation of road and grass. To

validate the performance of the proposed network on different

tasks, a road and grass coarse segmentation is explored in

this section. As shown in Figure 13, Left, we directly use the

road/grass shape as the ground truth for coarse segmentation.

Notice that the trees and grass areas often share similar

gray-scale levels with the road, making coarse segmentation

unfeasible by simply using binary thresholding. Table 4 shows

the Intersection over Union (IoU) performance comparison

between FCN inference on simulation and sensor. Specifically,

IoU is measured here by counting the number of intersected

pixels over the number of united pixels of the predictions and

groundtruth. Some of the results can be seen in Figure 13.

Table 3 compares the experimental results on the sensor and

its counterpart baseline on the computer with identical neural

networks and validation images. More results can be seen from

the Supplementary Video.

6.2.1. Object detection

We also implemented an object detection task, based on the

heat map. As for the object localization, rather than using the

Frontiers inNeuroscience 12 frontiersin.org

https://doi.org/10.3389/fnins.2022.909448
https://youtu.be/Z_ydv_0DRnM
https://cyberbotics.com/
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Liu et al. 10.3389/fnins.2022.909448

TABLE 3 Intersection over union (IoU) performance comparison

between simulation and on the sensor for coarse segmentation.

Task IoU

Road segmentation on simulation 74.0%

Road segmentation on sensor 69.3%

Grass segmentation on simulation 76.6%

Grass segmentation on sensor 72.9%

vehicle segmentation image as the ground truth for training,

we use Gaussian position distribution (Figure 13, Left) as the

ground truth since the probability distribution is adequate to

represent the object’s 2D localization. For the validation, a

distance threshold is set from 0 to 63 to count the number of

predictions with a distance to the groundtruth that falls into

this threshold. A zero distance means a perfect prediction. The

final localization is obtained by the weighted sum of all the

possible positions. After the test, within a distance of 10 pixels,

the vehicle localization accuracy for simulation and SCAMP is

around 88 and 83%, respectively (Figure 13). Table 4 shows the

FCN performance in terms of time, power consumption, and

model size.

Notice that there is about a 5–6% performance gap for the

experiment on sensor compared to the simulation. This is due to

noise in the convolution operation performed on AREG because

of the inherent non-idealities of analog computation (Carey

et al., 2014) and some random bit-flipping errors observed

in DREG when performing massively parallel shifting and

replications. Mitigation of these issues requires further software

or hardware solutions but is mostly due to the prototype

nature of the SCAMP hardware. In this study, we aimed to

strike a balance between network complexity and viability

for deployment upon the available PPA prototype hardware.

Pixel-wise accurate segmentation, with a quality equal to one

that can be obtained using a CPU/GPUs hardware, using

an embedded low-power SCAMP-5d vision system, is still a

challenging task with current hardware and neural network

architecture.

6.2.2. Shared convolutional layer for multiple
tasks with FCN

We use a dynamic model swapping strategy to run these

three networks on the PPA by sharing the first convolutional

layer among these networks (shown in Figure 15) considering

the same testing environment and similar network structure

for these three networks. With this shared weights scheme, less

storage requirement for DREG and higher inference efficiency

without uploading extra weights from the flash memory can

be obtained for three networks. Rather than train these

three networks concurrently which might cause an unbalanced

training process for each task because of their different scale of

TABLE 4 Computation time, performance, and weights for heat map

generation with the binarized fully convolutional network (FCN) on

sensor.

Processing steps Time cost (µs)

Image replication 112

1st Image convolution 184

1st Batch norm and activation 235

kernel filter activation and replication 212

2nd Group convolution 184×4 = 736

2×2 maxpooling 35×4 = 140

2nd Batch norm and activation 235×4 = 940

Third convolutional layer 966

Total time cost 3,525 (283 FPS)

number of weights 2,578

power consumption ≈1.5 W

model size ≈0.31 KB

FIGURE 14

Performance comparison between simulation and on the sensor

for localization task.

loss (Sener and Koltun, 2018), we adopt a straightforward but

efficient method by training the neural network for localization

first, locking the weights in the first convolutional layer and

then training the other segmentation networks, respectively.

The reason to train these three networks in this way is that

the localization task is more sensitive to the final heat map

prediction hence better to train separately, while segmentation

for road and grass are similar tasks that are more tolerant to

the final heat map prediction. Some selected results can be seen

in Figure 15. A break down of time cost within one branch

of networks for each inference step can be seen in Table 2.

Notice that, according to our test, it takes around 26 ms to

upload a CNN model from the external flash memory into a

DREG. However, this issue can be solved by pre-storing the

Frontiers inNeuroscience 13 frontiersin.org

https://doi.org/10.3389/fnins.2022.909448
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Liu et al. 10.3389/fnins.2022.909448

FIGURE 15

An FCN tree architecture with a shared convolutional layer for three task-specific FCNs. One of the task-specific FCNs performs object

detection (yellow circle), and two of the region segmentation (road and grass).

binary models into DREGs or AREGs before the CNN inference

process.

7. Conclusion

In this study, we consider methods to improve the efficient

embedding and deployment of neural networks on resource-

constrained Pixel processor Arrays (PPAs). We propose a

series of methods including purely binarized networks, group

convolution, fully-connected layer with the digital summation,

and network tree with dynamic swapping. We demonstrate

performance on classification, localization, and segmentation

tasks. By integrating these techniques, a deeper neural network

with better inference capacity is enabled on the SCAMP PPA,

hence making more sophisticated tasks possible. In contrast to

previous studies that have mainly focused on classification with

fully-connected layers, for the first time, we exploit the on-

sensor FCN architecture with novel implementation methods.

We validate, using the SCAMP-5 PPA, the visual competencies

of region segmentation and target object localization with a

latency of 3.5 ms for each inference. In addition, this study

explores a new CNN tree architecture by running several neural

networks in sequence according to the previous network output.

Each network in the tree fully takes advantage of the hardware

resources of the embedded device. With this method deeper and

wider CNN/FCN tree can be deployed upon SCAMP and other

embedded devices. Two experiments of 37 letter classification

with a network tree architecture and object coarse segmentation

with a shared convolution layer demonstrate the effectiveness

of the proposed binarized CNN and implementation method

on the SCAMP vision system. Some classic and deeper neural

networks (such as AlexNet and VGG-16) are still challenging to

implement without further hardware development progress of

PPAs.We believe there is still a range of important developments

that can be made for PPAs, which together with further advances

in hardware will help improve lag, energy consumption, and

data bandwidth for embedded vision systems.

Data availability statement

The raw data supporting the conclusions of this article will

be made available by the authors, without undue reservation.

Author contributions

YL proposed the binarized neural networks on the PPA

with their implementations and experimental validation. LB

contributed to the accurate summation methods based on the

DREGs. RF contributed to the idea of alphabet classification

and its categorization methods. PD and WM-C planned and

supervised the project. WM-C proposed the idea of model

dynamic swapping. WM-C, PD, and RF reviewed the results and

the final version of the manuscript. All authors contributed to

the article and approved the submitted version.

Funding

This work was supported by National Key R&D

Program of China (Grant No. 2020AAA0108100), UK

Frontiers inNeuroscience 14 frontiersin.org

https://doi.org/10.3389/fnins.2022.909448
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Liu et al. 10.3389/fnins.2022.909448

EPSRC EP/M019454/1, EPSRC Centre for Doctoral

Training in Future Autonomous and Robotic Systems:

FARSCOPE, and China Scholarship Council (CSC, No.

201700260083).

Conflict of interest

Author LB is currently employed by Pixelcore Research.

Author PD was employed by Pixelcore Research. AuthorWM-C

was employed by Amazon.com.

The remaining authors declare that the research was

conducted in the absence of any commercial or financial

relationships that could be construed as a potential conflict

of interest.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed

or endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be

found online at: https://www.frontiersin.org/articles/10.3389/

fnins.2022.909448/full#supplementary-material

References

Bose, L., Chen, J., Carey, S. J., Dudek, P., and Mayol-Cuevas, W. (2017). “Visual
odometry for pixel processor arrays,” in Proceedings of the IEEE International
Conference on Computer Vision (Venice: IEEE), 4604–4612.

Bose, L., Chen, J., Carey, S. J., Dudek, P., and Mayol-Cuevas, W. (2019). “A
camera that cnns: Towards embedded neural networks on pixel processor arrays,”
in Proceedings of the IEEE/CVF International Conference on Computer Vision
(ICCV) (Seoul: IEEE).

Bose, L., Dudek, P., Chen, J., and Carey, S. J. (2021). “Sand castle summation for
pixel processor arrays,” in The 17th International Workshop on Cellular Nanoscale
Networks and their Applications (Catania: CNNA).

Bose, L., Dudek, P., Chen, J., Carey, S. J., and Mayol-Cuevas, W. W. (2020).
“Fully embedding fast convolutional networks on pixel processor arrays,” in
European Conference on Computer Vision (Glasgow: Springer), 488–503.

Carey, S. J., Lopich, A., Barr, D. R., Wang, B., and Dudek, P. (2013). “A 100,000
fps vision sensor with embedded 535gops/w 256× 256 simd processor array,” in
2013 Symposium on VLSI Circuits (Kyoto: IEEE), C182-C183.

Carey, S. J., Zarándy, Á., and Dudek, P. (2014). “Characterization of processing
errors on analog fully-programmable cellular sensor-processor arrays,” in 2014
IEEE International Symposium on Circuits and Systems (ISCAS) (Melbourne, VIC:
IEEE), 1580–1583.

Chen, J., Carey, S. J., and Dudek, P. (2017). “Feature extraction using a
portable vision system,” in IEEE/RSJ International Conference on Intelligent Robots
and Systems, Workshop on Vision-based Agile Autonomous Navigation of UAVs
(Vancouver, CA: Navigation UAVs).

Chen, J., Liu, Y., Carey, S. J., and Dudek, P. (2020). “Proximity estimation using
vision features computed on sensor,” in 2020 IEEE International Conference on
Robotics and Automation (ICRA) (Paris: IEEE), 2689–2695.

Chollet, F. (2017). “Xception: deep learning with depthwise separable
convolutions,” in Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (Honolulu, HI: IEEE), 1251–1258.

Cohen, G., Afshar, S., Tapson, J., and Van Schaik, A. (2017). “Emnist: extending
mnist to handwritten letters,” in 2017 International Joint Conference on Neural
Networks (IJCNN) (Anchorage, AK: IEEE), 2921–2926.

Courbariaux, M., Bengio, Y., and David, J.-P. (2015). “Binaryconnect: training
deep neural networks with binary weights during propagations,” in Advances in
Neural Information Processing Systems (Montreal, QC), 3123–3131.

Courbariaux, M., Hubara, I., Soudry, D., El-Yaniv, R., and
Bengio, Y. (2016). Binarized neural networks: training deep neural
networks with weights and activations constrained to+ 1 or-
1. arXiv preprint arXiv:1602.02830. doi: 10.48550/arXiv.1602.02
830

Debrunner, T., Saeedi, S., and Kelly, P. H. (2019). Auke: Automatic
kernel code generation for an analogue simd focal-plane sensor-processor
array. ACM Trans. Arch. Code Optimizat. 15, 1–26. doi: 10.1145/32
91055

Ding, C., and He, X. (2004). “K-means clustering via principal component
analysis,” in Proceedings of the Twenty-First International Conference on Machine
Learning (Banff), 29.

Dudek, P. (2004). “Accuracy and efficiency of grey-level image filtering on vlsi
cellular processor arrays,” in Proceedings of CNNA (Budapest), 123–128.

Fan, W., Liu, Y., and Xing, Y. (2021). Fully-simulated integration of
scamp5d vision system and robot simulator. arXiv preprint arXiv:2110.06386.
doi: 10.48550/arXiv.2110.06386

Greatwood, C., Bose, L., Richardson, T., Mayol-Cuevas, W., Chen, J., Carey,
S. J., et al. (2017). “Tracking control of a uav with a parallel visual processor,” in
2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
(Vancouver, BC: IEEE), 4248–4254.

Greatwood, C., Bose, L., Richardson, T., Mayol-Cuevas, W., Chen, J., Carey, S.
J., et al. (2018). “Perspective correcting visual odometry for agile mavs using a pixel
processor array,” in 2018 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS) (Madrid: IEEE), 987–994.

Guillard, B. (2019). Optimising Convolutional Neural Networks for Super-Fast
Inference on Focal-Plane Sensor-Processor Arrays (Master’s thesis). Imperial College
London, London, United Kingdom.

Ioffe, S., and Szegedy, C. (2015). Batch normalization: accelerating deep network
training by reducing internal covariate shift. arXiv preprint arXiv:1502.03167.
doi: 10.48550/arXiv.1502.03167

LeCun, Y., Cortes, C., and Burges, C. (2010).Mnist Handwritten Digit Database.
AT&T Labs. Available online at: http://yann.lecun.com/exdb/mnist/ 2:18. (accessed
June 18, 2022).

Liu, Y., Bose, L., Chen, J., Carey, S. J., Dudek, P., and Mayol-
Cuevas, W. (2020a). “High-speed light-weight cnn inference via strided
convolutions on a pixel processor array,” in The 31st British Machine Vision
Conference (BMVC) (Manchester).

Liu, Y., Bose, L., Greatwood, C., Chen, J., Fan, R., Richardson, T., et al.
(2021a). Agile reactive navigation for a non-holonomic mobile robot using
a pixel processor array. IET Image Process. 15, 1883–1892. doi: 10.1049/ipr2.
12158

Liu, Y., Chen, J., Bose, L., Dudek, P., and Mayol-Cuevas, W. (2021b). “Bringing
a robot simulator to the scamp vision system,” in 2021 IEEE International
Conference on Robotics and Automation (ICRA) workshop: On and Near-sensor
Vision Processing, from Photons to Applications (Xi’an: IEEE).

Liu, Y., Chen, J., Bose, L., Dudek, P., and Mayol-Cuevas, W. (2021c). “Direct
servo control from in-sensor cnn inference with a pixel processor array,” in 2021
IEEE International Conference on Robotics and Automation (ICRA) workshop: On
and Near-sensor Vision Processing, from Photons to Applications, Oral presentation
(Xi’an: IEEE).

Liu, Z., Shen, Z., Savvides, M., and Cheng, K.-T. (2020b). “Reactnet: towards
precise binary neural network with generalized activation functions,” in European
Conference on Computer Visio (Springer), 143–159.

Frontiers inNeuroscience 15 frontiersin.org

https://doi.org/10.3389/fnins.2022.909448
https://www.frontiersin.org/articles/10.3389/fnins.2022.909448/full#supplementary-material
https://doi.org/10.48550/arXiv.1602.02830
https://doi.org/10.1145/3291055
https://doi.org/10.48550/arXiv.2110.06386
https://doi.org/10.48550/arXiv.1502.03167
http://yann.lecun.com/exdb/mnist/
https://doi.org/10.1049/ipr2.12158
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Liu et al. 10.3389/fnins.2022.909448

Long, J., Shelhamer, E., and Darrell, T. (2015). “Fully convolutional networks for
semantic segmentation,” in Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition (CVPR) (Boston, MA: IEEE).

Martel, J. N., Mueller, L., Carey, S. J., Dudek, P., andWetzstein, G. (2020). Neural
sensors: learning pixel exposures for hdr imaging and video compressive sensing
with programmable sensors. IEEE Trans. Pattern Anal. Mach. Intell. 42, 1642–1653.
doi: 10.1109/TPAMI.2020.2986944

McConville, A., Bose, L., Clarke, R., Mayol-Cuevas, W., Chen, J.,
Greatwood, C., et al. (2020). Visual odometry using pixel processor arrays
for unmanned aerial systems in gps denied environments. Front. Rob. AI 7, 126.
doi: 10.3389/frobt.2020.00126

Michel, O. (2004). Cyberbotics ltd. webotsTM : professional mobile robot
simulation. Int. J. Adv. Rob. Syst. 1, 5. doi: 10.5772/5618

Sener, O., and Koltun, V. (2018). Multi-task learning as multi-objective
optimization. arXiv preprint arXiv:1810.04650. doi: 10.48550/arXiv.1810.04650

Stow, E., Murai, R., Saeedi, S., and Kelly, P. H. (2021). Cain: Automatic
code generation for simultaneous convolutional kernels on focal-plane sensor-
processors. arXiv preprint arXiv:2101.08715. doi: 10.1007/978-3-030-95953-1_13

Wang, X., Kan, M., Shan, S., and Chen, X. (2019). “Fully learnable
group convolution for acceleration of deep neural networks,” in Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR) (Long Beach, CA).

Wong, M., Saeedi, S., and Kelly, P. H. (2018). Analog Vision-Neural Network
Inference Acceleration Using Analog SIMD Computation in the Focal Plane (M. Sc.
dissertation). Imperial College London, London, United Kingdom.

Wong, M. Z., Guillard, B., Murai, R., Saeedi, S., and Kelly, P. H. (2020).
Analognet: convolutional neural network inference on analog focal plane sensor
processors. arXiv preprint arXiv:2006.01765. doi: 10.48550/arXiv.2006.01765

Zhou, F., and Chai, Y. (2020). Near-sensor and in-sensor computing. Nat.
Electron. 3, 664–671. doi: 10.1038/s41928-020-00501-9

Frontiers inNeuroscience 16 frontiersin.org

https://doi.org/10.3389/fnins.2022.909448
https://doi.org/10.1109/TPAMI.2020.2986944
https://doi.org/10.3389/frobt.2020.00126
https://doi.org/10.5772/5618
https://doi.org/10.48550/arXiv.1810.04650
https://doi.org/10.1007/978-3-030-95953-1_13
https://doi.org/10.48550/arXiv.2006.01765
https://doi.org/10.1038/s41928-020-00501-9
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

	On-sensor binarized CNN inference with dynamic model swapping in pixel processor arrays
	1. Introduction
	2. Related study
	3. Method
	3.1. CNN with binary weights and activations
	3.2. Dynamic model swapping and CNN tree

	4. CNN architecture on sensor
	4.1. Convolutional layer
	4.2. Fully-connected layer by bit counting
	4.3. Binary activation, batch norm, and max-pooling
	4.4. Bit counting for the fully-connected layer

	5. FCN on sensor
	5.1. FCN deployment on the PPA

	6. Experiments
	6.1. CNN tree on EMNIST for English letter classification
	6.2. FCN inference, experiments, and evaluation
	6.2.1. Object detection
	6.2.2. Shared convolutional layer for multiple tasks with FCN


	7. Conclusion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher's note
	Supplementary material
	References


