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Abstract. In this paper, we introduce a novel suspect-and-investigate
framework, which can be easily embedded in a drone for automated park-
ing violation detection (PVD). Our proposed framework consists of: 1)
SwiftFlow, an efficient and accurate convolutional neural network (CNN)
for unsupervised optical flow estimation; 2) Flow-RCNN, a flow-guided
CNN for car detection and classification; and 3) an illegally parked car
(IPC) candidate investigation module developed based on visual SLAM.
The proposed framework was successfully embedded in a drone from
ATG Robotics. The experimental results demonstrate that, firstly, our
proposed SwiftFlow outperforms all other state-of-the-art unsupervised
optical flow estimation approaches in terms of both speed and accuracy;
secondly, IPC candidates can be effectively and efficiently detected by
our proposed Flow-RCNN, with a better performance than our base-
line network, Faster-RCNN; finally, the actual IPCs can be successfully
verified by our investigation module after drone re-localization.

Dataset and Demo Video:
sites.google.com/view/atg-pvd

1 Introduction

We are currently experiencing an unprecedented crisis due to the ongoing Coro-
navirus Disease 2019 (COVID-19) pandemic. Its worldwide escalation has taken
us by surprise, causing major disruptions to global health, economic and social
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systems. Indeed, our lives have changed overnight – businesses and schools are
closed, most employees are working from home, and many have found them-
selves without a job. Millions of people across the globe are confined to their
homes, while healthcare workers are at the frontline of the COVID-19 response
[1]. With the increase in COVID-19 cases, public transport use has plummeted,
as commuters shun buses, trams, and trains in favor of private cars and taxis.
For instance, USA Today reported that the transit ridership demand in April
2020 was down by about 75% nationwide, compared to normal, with figures of
85% in San Francisco, 67% in Detroit and 60% in Philadelphia [2].

With the increasing number of vehicles on the roads, parking spaces have
become scarce and many vehicles are parked just by the roadside, which in
turn results in a significant increase in parking violations. In late March 2020,
the Department of Transportation in Los Angeles [3] announced relaxed parking
enforcement regulations as part of the emergency response to COVID-19, so that
their citizens could practice safe social distancing without being concerned about
a ticket. As the Return-to-Work Plan progresses, the relaxed parking enforce-
ment regulations are no longer in force, consequently increasing the workload of
the local traffic law enforcement officers. The demand for automated and intel-
ligent parking violation detection (PVD) systems has thus become greater than
ever.

The existing automated PVD systems typically recognize illegally parked cars
(IPCs) by analyzing the videos acquired by closed-circuit televisions (CCTVs)
through 2D/3D object detection algorithms [4] or video surveillance analysis
algorithms [5]. However, the efficiency of such methods relies on CCTV cam-
era positions, as IPCs cannot always be detected, especially if they are at a
distant location. Deploying more CCTVs can definitely minimize misdetections,
but this will also incur a high cost, and/or may not be practical. Therefore,
many researchers have turned their focus towards mobile PVD systems, which
can be mounted on any vehicle type. For example, the Birmingham City Coun-
cil in England utilizes surveillance cars to detect IPCs and record their plate
numbers [6]. However, such surveillance cars are expensive and typically require
drivers. Therefore, autonomous machines, especially drones, have emerged as
more efficient and cheaper alternatives.

The cars in the street can be grouped into three categories: 1) moving cars
(MCs), 2) legally parked cars (LPCs) and 3) IPCs. MCs can be distinguished
from LPCs and IPCs using dynamic object detection techniques, such as optical
flow analysis, while IPCs can be distinguished from LPCs using object detection
networks, such as Faster-RCNN [7], with the assistance of parking spot infor-
mation. In this paper, we introduce a novel suspect-and-investigate PVD system
(see Fig. 1) embedded in a drone. In the suspicion phase, we first employ a novel
unsupervised optical flow estimation network, referred to as SwiftFlow, to esti-
mate the optical flow Ft between It and It+1. Ft is then incorporated into a novel
object detection and classification network, referred to as Flow-RCNN, to detect
cars and classify them into MCs, LPCs and IPC candidates. A visual simultane-
ous localization and mapping (VSLAM) module then builds a localizable map
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Fig. 1. The framework of our proposed suspect-and-investigate PVD system: the first
phase identifies suspected IPC candidates, and the second phase investigates the sus-
pected IPC candidates and issues tickets to the actual IPCs. The frame It in the
suspicion phase corresponds to the frame I ′t in the investigation phase.

containing the suspected IPC candidates. After a parking grace period (which
is typically five minutes) has elapsed, the drone flies back to the same location.
The VSLAM module in the investigation phase subsequently detects loop clo-
sure and re-localizes the drone in the pre-built map. Finally, the suspected IPC
candidates are re-identified, and the actual IPCs are marked in the map. Our
main contributions are summarized as follows:

– A novel suspect-and-investigate PVD framework;
– SwiftFlow, a novel unsupervised optical flow estimation network;
– Flow-RCNN, a novel car detection and classification network;
– A large-scale PVD dataset, published for research purposes.

2 Related Work

2.1 Optical Flow Estimation

Traditional approaches generally formulate optical flow estimation as a global
energy minimization problem [8–11]. Recently, convolutional neural networks
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(CNNs) have achieved impressive performance in optical flow estimation.
FlowNet [12] was the pioneering work in end-to-end deep optical flow esti-
mation. Its key component is a so-called correlation layer, which can provide
explicit matching capabilities. Later methods, PWC-Net [13] and LiteFlowNet
[14] introduced the popular coarse-to-fine architecture, which provides a good
trade-off between optical flow accuracy and computation efficiency. Meanwhile,
IRR-PWCNet [15] demonstrates that occlusion prediction integrated into optical
flow estimation can effectively enhance the optical flow estimation accuracy.

Although the aforementioned supervised optical flow estimation methods per-
form impressively, they generally require a large amount of optical flow ground
truth to learn the best solution. Acquiring such ground truth, especially for
real-world datasets, is extremely time-consuming and labor-intensive, making
these supervised approaches difficult to apply in real-world applications. For
these reasons, unsupervised learning has recently become the preferred tech-
nique for such applications. For instance, DSTFlow [16] employs a photometric
loss and a smooth loss in CNN training, which are similar to the global energy
used in traditional methods. Additionally, some methods, such as UnFlow [17],
DDFlow [18] and SelFlow [19] integrate occlusion reasoning into unsupervised
optical flow estimation frameworks to further improve their accuracy. However,
such approaches are typically computationally intensive, and they are difficult
to embed in a drone.

2.2 Object Detection

Discovering objects and their locations in images is still a challenging problem
in computer vision. Due to their promising results, CNNs have emerged as a
powerful tool for object detection. The modern deep object detection algorithms
can be grouped into two main types: a) anchor-based and b) anchor-free.

Anchor-based methods predict bounding boxes based on initial guesses.
According to the pipelines and primary proposal sources, they can be further
categorized as either one-stage or two-stage methods. The former make predic-
tions directly from hand-crafted anchors. For example, RetinaNet [20] employs a
feature pyramid network (FPN) to produce dense predictions at multiple scales.
On the other hand, the two-stage methods make predictions using the proposals
produced by a one-stage detector. For instance, Fast-RCNN [21] and Faster-
RCNN [7] perform cropping and resizing on images or feature maps, according
to the bounding box proposals. The RCNN branch in Faster-RCNN utilizes a
field of view (FOV), that is larger than the bounding box proposals, so as to
extract regions of interest (RoIs) directly from the feature maps.

Anchor-free methods usually do not rely on human-designed region propos-
als to bootstrap the detection process. For example, CornerNet [22] translates
the object detection problem into a keypoint detection and matching problem,
where specially-designed pooling layers construct biased receptive fields for cor-
ner point detection. CenterNet [23], which is based on CornerNet [22], utilizes
two customized modules: a) cascade corner pooling and b) center pooling, to
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enrich information collected by both the top-left and bottom-right corners. It
detects each object as a triplet, rather than a pair, of keypoints.

In recent years, incorporating additional visual information, such as semantic
predictions, into object classification is becoming an increasingly ubiquitous part
of object detection. Since MCs can be easily distinguished from optical flow
images, we incorporate the latter into our framework to improve IPC candidate
detection.

2.3 VSLAM

Traditional VSLAM approaches leverage visual features and the geometric rela-
tions between multiple views of a 3D scene (typically known as multi-view geom-
etry) to estimate camera poses and construct/update a map of the 3D scene.
The state-of-the-art VSLAM approaches are classified as either indirect [24–26]
or direct [27–29]. Both types extract visual features from images and associate
them with descriptors. However, the indirect methods sample corners and asso-
ciate them with higher dimensional descriptors, while the direct methods typi-
cally sample pixels with a relatively large local intensity gradient and associate
them with a patch of pixels surrounding their sampled location. Furthermore,
these two types of methods typically minimize different objective functions: the
indirect methods resort to geometric residuals, whereas the direct methods resort
to photometric residuals.

In order to combine the advantages of these two types of methods, Froster
et al. [30] proposed semi-direct visual odometry (SVO), which tracks camera
poses via sparse image alignment and utilizes hierarchical bundle adjustment
(BA) as the back-end to optimize the geometry structure and camera motion.
Furthermore, many researchers have integrated other computer vision tasks, such
as 2D object detection [31–33], instance segmentation [34,35] and flow/depth
prediction [36,37], into their SLAM systems, so as to address the problem of
the existence of dynamic objects, by exploiting high-level semantic information.
For example, Huang et al. [32] proposed ClusterVO, which uses a multi-level
probabilistic association scheme to both track low-level visual features and realize
high-level object detection. Moreover, Yang et al. [31] introduced CubeSLAM,
which performs single image 3D cuboid object detection, together with multi-
view object SLAM.

3 ATG-PVD Framework

3.1 SwiftFlow

Since our proposed SwiftFlow network is based on the pipeline of PWC-Net
[13], we first provide readers with some preliminaries about the latter. In PWC-
Net [13], feature maps are first extracted from video frames using a Siamese
pyramid network. Then, the feature map xlt+1 of the (t + 1)-th video frame at
level l is aligned with the feature map xlt of the t-th video frame at level l
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Fig. 2. The decoder architecture of our proposed SwiftFlow. The pipeline of two adja-
cent levels in the decoder are displayed for simplicity.

via a warping operation based on the upsampled flow prediction Fl+1
t at level

l + 1. A correlation layer is then employed to compute the cost volume, which
is subsequently concatenated with xlt as well as the upsampled flow prediction
Fl+1
t at level l + 1. Finally, the flow residual, predicted by the flow estimation

module, is combined with the upsampled flow prediction Fl+1
t at level l +1 using

an element-wise summation to generate the flow prediction Fl
t at level l. We

iterate this process and obtain the flow predictions at different scales.
SwiftFlow improves on PWC-Net [13] in terms of computational efficiency,

so that it can perform in real time on a drone. The decoder in PWC-Net [13]
has too many parameters, so we make three major modifications to the decoder
architecture (see Fig. 2) to minimize the model size and improve accuracy. As
the decoder in PWC-Net [13] employs a dense connection scheme in each pyra-
mid level, making the network computationally intensive, SwiftFlow establishes
connections only between two adjacent levels, which can reduce the number of
network parameters by 50%. Furthermore, the optical flow estimation modules
at different pyramid levels of PWC-Net [13] have different learnable weights to
estimate optical flow residuals. Considering that the optical flow estimation mod-
ules at different levels have the same functionality and the optical flow residuals
at different levels have similar value ranges, we believe sharing the weights of
optical flow estimation modules at all pyramid levels can be a more effective
and efficient strategy. We also add an additional convolutional layer before the
optical flow estimation module at each level for feature map alignment. More-
over, we notice that the warping operation can induce ambiguity to occluded
areas, which breaks correlation layer symmetry. We propose to add an asym-
metric layer before the correlation layer to alleviate this problem and improve
optical flow estimation accuracy. Therefore, we replace the warping operation
with a deformable convolutional layer [38], as shown in Fig. 2.



ATG-PVD: Ticketing Parking Violations on a Drone 7

(a) (b) (c) (d)

Fig. 3. Challenging cases for parked car detection and classification.

Referring to the commonly applied unsupervised training strategy, we train
SwiftFlow by minimizing the following weighted sum of losses:

L = λphoto · Lphoto + λsmooth · Lsmooth + λself · Lself, (1)

where Lphoto is the photometric loss that considers an occlusion-aware mask [39],
Lsmooth is the smoothness regularization [40], and Lself is the self-supervision
Charbonnier loss [18]. Following the instructions in [41], we set λphoto = 1 and
λsmooth = 2 in our experiments. Moreover, we use λself = 0 for the first 50% of
training steps, and increase it to 0.3 linearly for the next 10% of training steps,
after which it stays at a constant value.

3.2 Flow-RCNN

Given an RGB video frame and its corresponding estimated optical flow, the
proposed Flow-RCNN detects cars in the video frame and classifies them into
MCs, LPCs, and IPC candidates.

Judging whether a car is legally parked is very challenging. Intuitively, we
can resort to the parking spot delimitation lines, which are typically painted
in white. However, in real-world environments, methods that rely solely on the
parking spot information may fail. For instance, in Fig. 3(a), the white car is not
parked entirely within the designated parking spot; in Fig. 3(b), only parts of the
white car and parking spot appear; and in Fig. 3(c) and Fig. 3(d), the parking
spots are not enclosed. Moreover, parking spots are not always bounded by
rectangular line markings, as illustrated in Fig. 3(c). It is challenging to design a
rule-guided method to solve for these cases, even with perfectly labeled cars and
parking spots. Furthermore, various tall objects, such as light poles and trees,
often present salient optical flow estimations. In this case, the methods that rely
entirely on optical flow information can wrongly characterize an IPC/LPC as
an MC. Therefore, an end-to-end, optical flow-guided, and detect-and-classify
architecture for IPC candidate detection provides a better alternative.

The architecture of our proposed Flow-RCNN is illustrated in Fig. 4. It incor-
porates the optical flow information, obtained by SwiftFlow in Sect. 3.1, into the
conventional Faster-RCNN [7] architecture for IPC candidate detection, and it
outputs the position and category (MC, LPC or IPC candidate) of each car in
the video frame in an end-to-end manner. The RGB video frame is first passed
through a backbone CNN to produce multi-scale feature maps yi. The features
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Fig. 4. Flow-RCNN architecture. The optical flow image, obtained from SwiftFlow,
is fed into multiple convolutional layers. The optical flow features then dynamically
weigh each element in the multi-scale feature maps extracted from the RGB image.

extracted from the optical flow image then dynamically weigh the activation of
each element in the multi-scale feature maps yi, which enables the detector to
focus more on MCs. We then fuse the multi-scale feature maps to produce a
feature pyramid for the subsequent region proposal network (RPN) and RCNN
heads [7]. Since our dataset is highly imbalanced (see Fig. 7), i.e., most vehicles
are regarded as IPC candidates or IPCs, we apply focal loss [20] to mitigate the
class imbalance problem in the classification stage.

3.3 Mapping, Re-localization and Re-identification

Given RGB images and the corresponding detected IPC candidates, our next
target is to build a 3D map, investigate each IPC candidate and mark it in the
map. To this end, we develop a mapping, re-localization and re-identification
module, as illustrated in Fig. 5, on top of ORB-SLAM2 [42].

Our proposed system applies a suspect-and-investigate scheme to mark IPCs
in 3D. In the suspicion phase, we leverage ORB-SLAM2 [42] to build a 3D
localizable map and mark the detected IPC candidates in the map. Given
an RGB image containing detected IPC candidates, the system first extracts
ORB [43] features {u0, . . . , ut } and associates them with 2D bounding boxes{
B

2D
0 , . . . ,B

2D
h

}
. We explicitly exclude the ORB features extracted from MCs in

the subsequent procedures, i.e., tracking and mapping. The rest of the features
are then matched with the 3D keypoints {x0, . . . , xm} in the map. With these
3D-2D correspondences K � {(ik, jk)}k=1:N , the current camera pose T = [R, t] is
estimated in a perspective-n-point (PnP) scheme by minimizing the reprojection
error as follows [42]:

R∗, t∗ = arg min
R,t

∑

(i, j)∈K

‖ui − π(Rxj − t)‖, (2)

where π(·) is the camera projection function. After solving the camera pose,
the inlier correspondences K

∗ � {(ik, jk)}k=1:N ′ can be determined via their
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Fig. 5. The pipeline of our mapping, re-localization and re-identification module.

reprojection errors. Then we attempt to associate 2D bounding boxes in the
current frame with candidates in the map. A pair of 3D and 2D bounding boxes
(B

3D
i ,B

2D
j ) is associated if |Ki j | > δobj, where Ki j is a subset of K, (ui, xj) with

(i, j) ∈ K
∗ is a pair of 2D/3D keypoints belonging to a pair of 2D/3D bounding

boxes respectively and δobj is the threshold. In the mapping module, the system
triangulates 2D feature correspondences into 3D keypoints, which are assigned
with their corresponding 3D bounding box information. Then, it jointly opti-
mizes the camera poses of keyframes {T0, . . . ,Tn} and the 3D keypoint positions
{x0, . . . , xm}. We consider the 3D bounding boxes in the suspicion phase as IPC
candidates and mark them in the map. In the investigation phase, the system
detects loop closure to re-localize the drone in the pre-built map. After the drone
is successfully re-localized, we further verify existing IPC candidates. In the re-
localization stage, if sufficient semantic keypoints belonging to a candidate B

3D
i

are associated with a detected vehicle B
2D
j in the current frame, we re-identify

the candidate as an IPC and mark it in the map. The proposed solution does
not take into account that the local traffic law enforcement officers already have
2D street maps with labeled parking spots, but the drone map can be registered
with such 2D street maps to greatly improve IPC detection.

4 Experiments

4.1 Experimental Setup

Our proposed PVD system is embedded in an ATG-R680 drone1 (see Fig. 6),
controlled by a Pixhawk 42 advanced autopilot. The maximum take-off weight
of the drone is 5.6 kg. We utilize an Argus zoom pot3 microminiature tri-axis
gimbal camera to capture images with a resolution of 2160 × 3840 pixels at
25 fps. The captured images are then processed by an NVIDIA Jetson TX2

1 atg-itech.com.
2 docs.px4.io/v1.9.0/en/flight controller/pixhawk4.html.
3 topxgun.com/en/product-argus.html.

http://www.atg-itech.com
http://docs.px4.io/v1.9.0/en/flight_controller/pixhawk4.html
http://www.topxgun.com/en/product-argus.html


10 H. Wang et al.

Argus Pod

NVIDIA Jetson TX2

Pixhawk 4

RPLIDAR A2

Fig. 6. Experimental setup.

0     1     2      3     4     5      6   7    8    9    10

103

102

101

Th
e 

nu
m

be
r o

f i
m

ag
es

Cars per image
Th

e 
nu

m
be

r o
f  

ob
je

ct
s 

pe
r c

at
eg

or
y

IPC candidate   MC                 LPC

1000

Train   
Test

Object classes

2000

3000

4000

5000

6000

7000

8000

(c)(b)(a)

Su
sp

ic
io

n
In

ve
st

ig
at

io
n

(d)

(e)

Fig. 7. Our created ATG-PVD dataset: (a)–(c) the images on the first row are used in
the suspicion phase, while the images on the second row are used in the investigation
phase; (d) and (e) the statistical analysis of the dataset.

GPU4, which has an 8 GB LPDDR4 memory and 256 CUDA cores, for IPC
detection. Furthermore, we also equip our drone with an RPLIDAR A25, which
can perform 360◦ omnidirectional laser range scanning.

4.2 ATG-PVD Dataset

Using the aforementioned experimental setup, we created a large-scale real-world
dataset, named the ATG-PVD dataset, for parking violation detection. Our
dataset is publicly available at sites.google.com/view/atg-pvd for research pur-
poses. The ATG-PVD dataset contains seven sequences (resolution: 2160× 3840
pixels) and the corresponding 2D bounding box annotations for car detection and
classification. The ground truth used in the suspicion phase has three classes: a)
IPC candidates, b) MCs and c) LPCs, while in the investigation phase, the IPC
ground truth is also provided. Examples of the images used in the suspicion and
investigation phases are shown in Fig. 7(a)–(c).

In our experiments, we divide our ATG-PVD dataset into a training set and
a testing set, which respectively contains 4924 and 4398 images. The statistics
for these two sets are shown in Fig. 7(d) and (e), where it can be observed that
there are more IPC candidates or IPCs than MCs and LPCs. Additionally, most
4 developer.nvidia.com/embedded/jetson-tx2.
5 slamtec.com/en/Lidar/A2.

http://www.sites.google.com/view/atg-pvd
http://www.developer.nvidia.com/embedded/jetson-tx2
http://www.slamtec.com/en/Lidar/A2
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Table 1. Ablation study of our SwiftFlow on the KITTI flow 2015 [44] training dataset.
Best results are shown in bold font.

Backbone Reduce
Dense

Shared
Weights

Deformable
Convolution

F1-all
(%)

# Params
(M)

PWC-Net

– – – 8.37 8.75
✓ – – 7.22 5.26
✓ ✓ – 6.95 2.18
✓ ✓ ✓ 6.51 2.51

Table 2. The evaluation results on the KITTI flow benchmarks, where DDFlow [18],
UnFlow [17], Flow2Stereo [45] and SelFlow [19] are the state-of-the-art self-supervised
approaches. Best results are shown in bold font.

Approach
KITTI 2012 KITTI 2015

Runtime (s)
Out-Noc (%) Rank F1-all (%) Rank

DDFlow [18] 4.57 60 14.29 91 0.06
UnFlow [17] 4.28 53 11.11 66 0.12
Flow2Stereo [45] 4.02 48 11.10 65 0.05
SelFlow [19] 3.32 34 8.42 51 0.09

SwiftFlow (Ours) 2.64 24 7.23 35 0.03

images contain fewer than five cars. Furthermore, our experiments are conducted
on downsampled images with a resolution of 540 × 960 pixels. Sections 4.3, 4.4,
and 4.5 respectively discuss the performances of SwiftFlow, Flow-RCNN and our
PVD system in terms of both qualitative and quantitative experimental results.

4.3 Evaluation of SwiftFlow

Ablation Study. We conduct an ablation study to validate the effectiveness of
SwiftFLow. The experimental results are presented in Table 1. We can see that,
by removing dense connections between different levels, our approach can reduce
many parameters, but still retain a similar optical flow estimation performance,
compared with the PWC-Net [13] baseline. Moreover, sharing weights of flow
estimation modules can yield a performance improvement with fewer parame-
ters. Furthermore, thanks to deformable convolution, our proposed SwiftFlow
achieves the best performance with only a few additional parameters.

Evaluation. Since our ATG-PVD dataset does not contain optical flow ground
truth, we evaluate our proposed SwiftFlow on the KITTI flow 2012 [46] and
2015 [44] benchmarks. According to the online leaderboard of the KITTI flow
benchmarks, as shown in Table 2, our SwiftFlow ranks 24th on the KITTI flow
2012 benchmark6 and 35th on the KITTI flow 2015 benchmark7, outperforming
6 cvlibs.net/datasets/kitti/eval stereo flow.php?benchmark=flow.
7 cvlibs.net/datasets/kitti/eval scene flow.php?benchmark=flow.

http://cvlibs.net/datasets/kitti/eval_stereo_flow.php?benchmark=flow
http://cvlibs.net/datasets/kitti/eval_scene_flow.php?benchmark=flow
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Fig. 8. Examples from the KITTI flow benchmarks, where rows (a) and (b) on
columns (1)–(3) show the optical flow estimations and the corresponding error maps
of (1) UnFlow [17], (2) SelFlow [19] and (3) our SwiftFlow, respectively. Significantly
improved regions are highlighted with green dashed boxes. (Color figure online)

First Frame Second Frame SwiftFlow (Ours) DDFlow UnFlow

Fig. 9. Examples of the optical flow estimation results on our ATG-PVD dataset. Our
proposed SwiftFlow is compared with DDFlow [18] and UnFlow [17].

all other state-of-the-art unsupervised optical flow estimation approaches, with a
faster running speed (in real time) achieved in the mean time. Figure 8 presents
examples from the KITTI flow benchmarks, where we can see that SwiftFlow
yields more robust results than others. Furthermore, Fig. 9 shows optical flow
estimation results on our ATG-PVD dataset, indicating that our proposed Swift-
Flow performs much more accurately than both DDFlow [18] and UnFlow [17],
another two well-known unsupervised optical flow estimation approaches, espe-
cially on the boundary of the MCs.

4.4 Evaluation of Flow-RCNN

In our experiments, we compute the mean average precision (mAP) over ten IoU
thresholds between 0.50 and 0.95 (refer to [47] for more details) to quantitatively
evaluate the performance of our proposed Flow-RCNN. It should be noted that
IPCs are regarded as IPC candidates in both training and testing experiments,
due to the fact that IPCs are re-identified as IPC candidates.

We compute mAP for all three categories (IPC candidate, MC and LPC) so
as to comprehensively evaluate the performance of our proposed Flow-RCNN.
The quantitative results are provided in Table 3, where it can be observed that
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Table 3. Car detection mAP, where the best results are shown in bold font.

Method Total IPC candidate MC LPC

Faster-RCNN [7] 0.770 0.844 0.672 0.789
Flow-RCNN (ours) 0.789 0.845 0.733 0.796

(a) Occlusion (b) Motion blur (c) Complex environment

Fig. 10. Examples of our Flow-RCNN results.

Flow-RCNN outperforms the baseline network Faster-RCNN [7] (especially for
MC detection) in terms of both car detection and classification. It is rather
astonishing that Faster-RCNN can still successfully detect many MCs from only
RGB images, even without using optical flow information. We speculate that
the baseline network might also consider the road textures around a car when
inferring its category. For instance, an MC is typically at the center of a lane, and
the road textures around it are similar, which can weaken the influence caused
by motion blur problem.

Experimental results of our Flow-RCNN are given in Fig. 10, showing the
robustness of our proposed approach. For example, in Fig. 10(a), the light pole,
that occludes part of an IPC candidate, can produce a similar optical flow esti-
mation to an MC. Fortunately, our Flow-RCNN which fuses both RGB and flow
information can still detect the IPC candidate correctly. Furthermore, although
it is hard to extract features from a blurred car image, it can be seen in Fig. 10(b)
that our proposed approach can avoid such misdetections by leveraging addi-
tional optical flow information. Moreover, in complex environments, such as the
case shown in Fig. 10(c), car with different categories can still be successfully
detected and classified.

4.5 Evaluation of Parking Violation Detection

We also comprehensively evaluate the performance of the entire system for park-
ing violation detection using our ATG-PVD dataset, and a precision of 91.7%,
a recall of 94.9% and an F1-Score of 93.3% are achieved. An example of the
detected IPCs in the map is illustrated in Fig. 11, where readers can observe
that our proposed suspect-and-investigate system can detect parking violations
effectively and efficiently.
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IPC

RoI for Visualization 

Drone Trajectory in Two Phases

Fig. 11. An example of the detected IPCs in the map.

5 Conclusion

In this paper, we proposed a novel, robust and cost-effective parking violation
detection system embedded in an ATG-R680 drone equipped with a TX2 GPU.
Our system utilizes a so-called suspect-and-investigate framework, which con-
sists of: 1) an unsupervised optical flow estimation network named SwiftFlow,
2) a novel flow-guided object detection network named Flow-RCNN, and 3) a
drone re-localization and IPC re-identification module based on VSLAM. On the
KITTI flow 2012 and 2015 benchmarks, our proposed SwiftFlow outperforms all
other state-of-the-art unsupervised optical flow estimation approaches in terms
of both speed (real-time performance was achieved) and accuracy. By incorpo-
rating the inferred optical flow information into our object detection framework,
IPC candidates, MCs and LPCs can be effectively detected and classified, even in
many challenging cases. In the investigation phase, our VSLAM module detects
loop closure to re-localize the drone in the pre-built map. After the drone is suc-
cessfully re-localized, we further re-identify whether an existing IPC candidate
is an actual IPC. The experimental results both qualitatively and quantitatively
demonstrate the effectiveness and robustness of our proposed parking violation
detection system.
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