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Abstract: The interpretation of ego motion and scene change is a fundamen-
tal task for mobile robots. Optical flow information can be employed to es-
timate motion in the surroundings. Recently, unsupervised optical flow esti-
mation has become a research hotspot. However, unsupervised approaches are
often easy to be unreliable on partially occluded or texture-less regions. To
deal with this problem, we propose CoT-AMFlow in this paper, an unsuper-
vised optical flow estimation approach. In terms of the network architecture,
we develop an adaptive modulation network that employs two novel module
types, flow modulation modules (FMMs) and cost volume modulation modules
(CMMs), to remove outliers in challenging regions. As for the training paradigm,
we adopt a co-teaching strategy, where two networks simultaneously teach each
other about challenging regions to further improve accuracy. Experimental re-
sults on the MPI Sintel, KITTI Flow and Middlebury Flow benchmarks demon-
strate that our CoT-AMFlow outperforms all other state-of-the-art unsupervised
approaches, while still running in real time. Our project page is available at
https://sites.google.com/view/cot-amflow.
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1 Introduction

Mobile robots typically operate in complex environments that are inherently dynamic [1]. There-
fore, it is important for such autonomous systems to be conscious of dynamic objects in their sur-
roundings. Optical flow describes pixel-level correspondence between two ordered images, and can
be regarded as a useful representation for dynamic object detection. Therefore, many approaches
for mobile robot tasks, such as SLAM [2], dynamic object detection [3] and robot navigation [4],
incorporate optical flow information to improve their performance.

With the development of deep learning technology, deep neural networks have presented highly
compelling results for optical flow estimation [5, 6, 7]. These networks typically excel at learning
optical flow estimation from large amounts of data along with hand-labeled ground truth. How-
ever, this data labeling process can be extremely time-consuming and labor-intensive. Recent un-
supervised optical flow estimation approaches have attracted much attention, because their advan-
tage in not requiring ground truth enables them to be easily deployed in real-world applications
[8, 9, 10, 11, 12]. However, their performance in challenging regions, such as partially occluded
or texture-less regions, is often unsatisfactory [10, 13]. The underlying cause of this performance
degradation is threefold: 1) The popular coarse-to-fine framework [12, 13] is often sensitive to noises
in the flow initialization from the preceding pyramid level, and the challenging regions can intro-
duce errors in the flow estimations, which in turn propagate to subsequent levels. 2) The commonly
used cost volume [10, 11] for establishing feature correspondence can contain many outliers due to
the ambiguous correspondence in challenging regions. However, most existing networks directly
send the noisy cost volume to the following flow estimation layers without explicitly alleviating the
impact of outliers. 3) Many training strategies have been proposed to improve accuracy in chal-
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Figure 1: An overview of our CoT-AMFlow. We integrate self-supervision into a co-teaching frame-
work, where two AMFlows with different initializations teach each other about challenging regions
to improve stability against outliers and further enhance the accuracy of flow estimation.

lenging regions for unsupervised optical flow estimation, such as occlusion reasoning [9, 10] and
self-supervision [11, 12, 13]. These strategies generally train a single network to provide prior in-
formation. However, the prior information is not accurate enough because a single network can be
easily disturbed by outliers if the ground truth is inaccessible. Also, the inaccurate prior information
can further lead to significant performance degradation.

To overcome these limitations, we propose CoT-AMFlow, which comprises adaptive modulation
networks, named AMFlows, that learn optical flow estimation in an unsupervised way with a co-
teaching strategy. The overview of our proposed CoT-AMFlow is illustrated in Fig. 1, and we
leverage three novel techniques to improve the flow accuracy, as follows:

• We apply flow modulation modules (FMMs) in our AMFlow to refine the flow initialization
from the preceding pyramid level using local flow consistency, which can address the issue
of accumulated errors.

• We present cost volume modulation modules (CMMs) in our AMFlow to explicitly reduce
outliers in the cost volume using a flexible and efficient sparse point-based scheme.

• We adopt a co-teaching strategy, where two AMFlows with different initializations simulta-
neously teach each other about challenging regions to improve robustness against outliers.

We conduct extensive experiments on the MPI Sintel [14], KITTI Flow 2012 [15], KITTI Flow
2015 [16] and Middlebury Flow [17] benchmarks. Experimental results show that our CoT-AMFlow
outperforms all other unsupervised approaches, while still running in real time.

2 Related Work

2.1 Optical Flow Estimation

Traditional approaches typically estimate optical flow by minimizing a global energy that mea-
sures both brightness consistency and spatial smoothness [18, 19, 20]. With recent development in
deep learning technology, supervised approaches using convolutional neural networks (CNNs) have
been extensively applied in optical flow estimation, and the achieved results are very promising.
FlowNet [5] was the first end-to-end deep neural network for optical flow estimation. It employs a
correlation layer to compute feature correspondence. Later on, PWC-Net [6] and LiteFlowNet [7]
presented a pyramid architecture, which consists of feature warping layers, cost volumes and flow
estimation layers. Such an architecture can achieve remarkable flow accuracy and high efficiency
simultaneously. Their subsequent versions [21, 22] also made incremental improvements. Unsu-
pervised approaches generally adopt similar network architectures to supervised approaches, and
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Figure 2: An illustration of our AMFlow, which uses FMMs and CMMs to refine flow initializations
and remove outliers in cost volumes, respectively.

focus more on training strategies. However, existing network architectures do not explicitly address
the issues of noisy flow initializations and outliers in the cost volume, as previously mentioned.
Therefore, we develop the FMMs and CMMs in our AMFlow to overcome these limitations.

Among the training strategies for unsupervised approaches, DSTFlow [8] first presented a photo-
metric loss and a smoothness loss for unsupervised training. Additionally, some approaches train a
single network to perform occlusion reasoning for accuracy improvement [9, 10]. Self-supervision
[11, 12] is also an important strategy for unsupervised training. It first trains a single network to gen-
erate flow labels, and then conducts data augmentation to make flow estimations more challenging.
The augmented samples are further employed as supervision to train another network. One variant
of self-supervision is to train only one network with a two-forward process [13]. However, training
a single network to provide flow labels is likely to be unreliable due to the disturbance of outliers
and the lack of ground-truth supervision. To address this issue, we integrate self-supervision into
a co-teaching framework, where two networks simultaneously teach each other about challenging
regions to improve stability against outliers.

2.2 Co-Teaching Strategy

The co-teaching strategy was first proposed for the image classification task with extremely noisy
labels [23]. Since then, many researchers have resorted to this strategy for various specific robust
training tasks, such as face recognition [24] and object detection [25]. The main difference between
previous studies and our approach is that they focus on the task of supervised learning with noisy
labels, while we focus on the task of unsupervised learning. Moreover, the noises in their tasks exist
at image level (noisy image classification labels), while the outliers in our task exist at pixel level
(inaccurate flow estimation pixels in challenging regions).

3 Methodology

3.1 AMFlow

In this subsection, we first introduce the overall architecture of our AMFlow, and then present our
FMM and CMM. Since we use many notations, we suggest readers refer to the glossary provided in
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the appendix for better understanding. Fig. 2 illustrates an overview of our proposed AMFlow, which
follows the pipeline of PWC-Net [6]. Different pyramid levels of feature maps are first extracted
hierarchically from the input images I1 and I2 using a siamese feature pyramid network, and then
are sent to the coarse-to-fine flow decoder. Here, we take level l as an example to introduce our flow
decoder, for simplicity. First, the upsampled flow estimation Fl+1

12 at level l + 1 is processed by our
FMM for refinement, and the generated modulated flow F̂l+1

12 is employed to align the feature map xl2
with the feature map xl1. A correlation operation is then employed to compute the cost volume Cl ,
which is then processed by our CMM to remove outliers. After getting the modulated cost volume
Ĉl , we take it as input and employ the same flow estimation layer as PWC-Net [6] to estimate the
flow residual, which is subsequently added with F̂l+1

12 to obtain the flow estimation Fl
12 at level l.

This process iterates and the flow estimations at different scales are generated.

Flow Modulation Module (FMM). In the coarse-to-fine framework, a flow estimation from the
preceding level is adopted as a flow initialization at the current level. Therefore, the inaccurate
flow estimations in challenging regions can propagate to subsequent levels and cause significant
performance degradation. Our FMM is developed to address this problem based on the concept of
local flow consistency [26].

Our FMM is based on the assumption that the neighboring pixels with similar feature maps should
have similar optical flows. Therefore, for a pixel p with an inaccurate flow estimation F (p), we
will look for another pixel q around p, which has a similar feature map to p and an accurate flow
estimation F (q). Then, we replace F (p) with F (q).

To this end, we first compute a confidence map Ml based on the upsampled flow estimation Fl+1
12

and the downsampled input images Il1 and Il2, as illustrated in Fig. 2. The confidence computing
operation is defined as follows:

Ml = exp
(
−

����B
(
Il1, ω

(
Il2,F

l+1
12

)) ����

)
, (1)

whereB(·, ·) denotes the function for measuring the photometric difference [13], andω(I,F) denotes
the warping operation of image I based on flow F. Then, we use a self-correlation layer to compute
a self-cost volume Cl

s, which measures the similarity between each pixel in the feature map xl1
and its neighboring pixels. The adopted self-correlation layer is identical to the correlation layer
used in the above-mentioned flow decoder, except that it only takes one feature map as input. We
further concatenate Ml with Cl

s, and send the concatenation to several convolution layers to obtain a

displacement map Dl . Finally, we warp Fl+1
12 based on Dl to get the modulated flow estimation F̂l+1

12 .

Cost Volume Modulation Module (CMM). Ambiguous correspondence in challenging regions can
introduce noises into the cost volume, which further influence the subsequent flow estimation layers.
Our CMM is designed to reduce noises in the cost volume.

Several traditional approaches have formulated the task of denoising the cost volume as a weighted
least squares problem, which obtains the following solution for level l [27, 28]:

Ĉl (p, f ) =
∑

q∈N l (p)

wl (p, q) · Cl (q, f ), (2)

where Ĉl (p, f ) denotes the modulated cost at pixel p for flow residual candidate f ; pixel q belongs to
the neighborsN l (p) of p; wl (p, q) denotes the modulation weight; and Cl (q, f ) denotes the original
cost at pixel q for flow residual candidate f . Note that the one-dimensional f is transformed from
the original two-dimensional flow residual candidate for simplicity, which is the same as the scheme
adopted in PWC-Net [6].

The intuition of our CMM is to implement (2) in deep neural networks, which is realized by a
flexible and efficient sparse point-based scheme based on deformable convolution [29]:

Ĉl (p, f ) =
K∑
k=1

wl
k · C

l
(
p + pk + ∆pl

k, f
)
· ∆ml

k, (3)

where K denotes the number of sampling points; wl
k

denotes the modulation weight for the k-th
point; and pk is the fixed offset of the original convolution layer to p. To make the modulation
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Algorithm 1: Co-Teaching Strategy

Input: ΘA and ΘB, learning rate η, constant threshold τ, epoch Tk and Tmax, iteration Nmax.
Output: ΘA and ΘB.

1 for T = 1→ Tmax do
2 Shuffle training set D
3 for N = 1→ Nmax do
4 Forward individually to obtain Fi

12, Oi
12, F̃i

12, F̃i∗
12 and Õi

12, i ∈ {A,B}
5 Set Oi

12

(
Oi

12 > R (T )
)
= 1, i ∈ {A,B} . Filter out pixels with high occlusion probability

6 Compute LA = LA
ph(I1, I2,FA

12,O
B
12) + λ1 · L

A
sm(I1,FA

12) + λ2 · L
A
ss(F̃A

12, F̃
A∗
12 , Õ

B
12)

7 Compute LB = LB
ph(I1, I2,FB

12,O
A
12) + λ1 · L

B
sm(I1,FB

12) + λ2 · L
B
ss(F̃B

12, F̃
B∗
12 , Õ

A
12)

8 Update Θi = Θi − η∇Li , i ∈ {A,B}
9 end

10 Update R (T ) = 1 − τ ·min
{
T
Tk
, 1

}

11 end

scheme more flexible, we also employ a separate convolutional layer on Cl to learn an additional
offset ∆pl

k
and a spatial-variant weight ∆ml

k
. These two terms can effectively and efficiently help

remove outliers in challenging regions.

3.2 Loss Function

We employ three common loss functions, 1) photometric loss Lph, 2) smoothness loss Lsm and 3)
self-supervision loss Lss, to train our CoT-AMFlow, as illustrated in Fig. 1. For each network, the
forward flow F12 and backward flow F21 can be obtained given the input images I1 and I2. Then,
we can compute an occlusion map O12 with the range between 0 and 1 [10], where a higher value
indicates that the corresponding pixel is more likely to be occluded, and vice versa. Based on these
notations, we first introduce our adopted photometric loss [10] as follows:

Lph(I1, I2,F12,O12) =
∑

p ψ (B (I1, ω(I2,F12))) � (1 − S (O12))∑
p (1 − S (O12))

, (4)

where ψ(x) =
√

x2 + 0.0012 is the generalized Charbonnier penalty function [30]; S(·) stands for
the stop-gradient; and � denotes element-wise multiplication. (4) shows that occluded regions have
little impact on Lph, since there does not exist correspondence in these regions. Moreover, we stop
the gradient at the occlusion maps to avoid a trivial solution. Then, the following formulation shows
our utilized second-order edge-aware smoothness loss [31]:

Lsm(I1,F12) =
1

Np

∑
p

∑
d∈{x,y }

exp *
,
−50

∑
c

�����
∂I1
∂d

�����
+
-
·

�����
∂2F12

∂d2

�����
, (5)

where c denotes the color channel and Np is the total number of pixels. We also adopt a self-
supervision scheme [13]. Specifically, we first conduct transformations Timg

θ , Tflo
θ and Tocc

θ on
(I1, I2), F12 and O12 respectively to construct augmented samples Ĩ1, Ĩ2, F̃12 and Õ12. The trans-
formations include spatial, occlusion and appearance transformation [13]. We also obtain a flow
prediction F̃∗12 based on Ĩ1 and Ĩ2. Then, our self-supervision loss is shown as follows [11]:

Lss(F̃12, F̃∗12, Õ12) =

∑
p ψ

(S
(
F̃12

)
− F̃∗12

2

)
� S

(
Õ12

)
∑

p S
(
Õ12

) , (6)

where ‖·‖2 denotes the L2 norm. Note that, different from O12, Õ12 measures the occlusion rela-
tionship between F̃12 and F̃∗12. A higher value in Õ12 indicates that the corresponding pixel is less
likely to be occluded in F̃12 but more likely to be occluded in F̃∗12 [11]. Therefore, (6) shows that
Lss helps improve the accuracy of flow estimations in challenging regions.

The whole loss function for training our CoT-AMFlow is a weighted sum of the above three losses,
as shown on Line 6 and 7 in Algorithm 1. The details will be introduced in Section 3.3.
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3.3 Co-Teaching Strategy

Our co-teaching strategy is illustrated in Fig. 1, and the corresponding steps are shown in Algo-
rithm 1. Specifically, we simultaneously train two networks A (with parameter ΘA) and B (with
parameter ΘB). In each mini-batch, we first let the two networks forward individually to obtain
several outputs (Line 4). Then, we filter out the pixels with a high occlusion probability by setting
their value in the occlusion map as 1 (completely occluded and thus have no impact on Lph) (Line
5). The filtering threshold is controlled by R (T ), which equals 1 at the beginning and then decreases
gradually with the increase of epoch number. The key point of our co-teaching strategy is that each
network uses the occlusion maps estimated by the other network to compute its own loss function
(Line 6 and 7). Finally, we update the parameters of the two networks separately and also update
R (T ) (Line 8 and 10). Next, we will answer two important questions about our co-teaching strat-
egy: 1) Why do we need a dynamic threshold R (T ) and 2) why can swapping the occlusion maps
estimated by two networks help improve the accuracy for unsupervised optical flow estimation?

To answer the first question, we know that it is meaningless to compute photometric loss on the
occluded regions, and thus we adopt an occlusion-masked photometric loss. According to [32],
networks will first learn easy and clear patterns, i.e., unchallenging regions. However, with the
number of epochs increasing, networks will gradually be affected by the inaccurately estimated
occlusion maps and thus overfit on the occluded regions, which in turn will lead to more inaccurate
occlusion estimations and further cause significant performance degradation. To address this, we
keep more pixels in the initial epochs, i.e., R (T ) is large. Then, we gradually filter our pixels with
high occlusion probability, i.e., R (T ) gradually decreases, to ensure the networks do not memorize
these possible outliers.

The dynamic threshold can, however, only alleviate but not entirely avoid the adverse impact of
the occluded regions. Therefore, we further adopt a scheme with two networks, which connects to
the answer to our second question. The intuition is that different networks have different abilities
to learn flow estimation, and correspondingly, they can generate different occlusion estimations.
Therefore, swapping the occlusion maps estimated by the two networks can help them adaptively
correct the inaccurate occlusion estimations. Compared with most existing approaches that directly
transfer errors back to themselves, our co-teaching strategy can effectively avoid the accumulation
of errors and thus improve stability against outliers for unsupervised optical flow estimation. Note
that since deep neural networks are highly non-convex and a network with different initializations
can lead to different local optimums, we employ two AMFlows with different initializations in our
CoT-AMFlow, following [23], as illustrated in Fig. 1.

4 Experimental Results

4.1 Dataset and Implementation Details

In our experiments, we set λ1 = 2 in our loss function. In addition, we use λ2 = 0 for the first
40% of epochs and increase it to 0.15 linearly for the next 20% of epochs, after which it stays at a
constant value. The learning rate η adopts an exponential decay scheme, with the initialization as
10−4, and the Adam optimizer is used. Moreover, we set τ = 0.8 and Tk = 0.1Tmax in Algorithm 1
for evaluation on public benchmarks.

We first evaluate our CoT-AMFlow on three popular optical flow benchmarks, MPI Sintel [14],
KITTI Flow 2012 [15] and KITTI Flow 2015 [16]. The experimental results are shown in Section
4.2. Then, we perform a generalization evaluation on the Middlebury Flow benchmark [17], as pre-
sented in Section 4.3. We also conduct extensive ablation studies to demonstrate the superiority of 1)
our selection of τ and Tk ; 2) our FMM and CMM; 3) our AMFlow over other network architectures;
and 4) our co-teaching strategy over other strategies for unsupervised training. The experimental
results are presented in the appendix.

Furthermore, we follow a similar training scheme to those of the previous unsupervised approaches
[11, 12, 13] for fair comparison. For the MPI Sintel benchmark, we first train our model on raw
movie frames and then fine-tune it on the training set. For the two KITTI Flow benchmarks, we
first employ the KITTI raw dataset to pre-train our model and then fine-tune it using multi-view
extension data. Additionally, we adopt two standard evaluation metrics, the average end-point error
(AEPE) and the percentage of erroneous pixels (F1) [14, 15, 16, 17].
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Table 1: Evaluation results on the MPI Sintel, KITTI Flow 2012 and KITTI Flow 2015 benchmarks.
Here, we show the primary evaluation metrics used on each benchmark. For the Sintel Clean and
Final benchmarks, the AEPE (px) for all pixels is presented. For the KITTI Flow 2012 and 2015,
“Noc” and “All” represent the F1 (%) for non-occluded pixels and all pixels, respectively. “S”
denotes supervised approaches. † indicates the network using more than two frames. Best results
for supervised and unsupervised approaches are both shown in bold font.

Approach S MPI Sintel KITTI 2012 KITTI 2015

Clean Final Noc All Noc All Time (s)

PWC-Net [6] 3 4.39 5.04 4.22 8.10 6.12 9.60 0.03
LiteFlowNet [7] 3 4.54 5.38 3.27 7.27 5.49 9.38 0.09
LiteFlowNet2 [22] 3 3.48 4.69 2.63 6.16 4.42 7.62 0.05
MaskFlownet [33] 3 2.52 4.17 2.07 4.82 3.92 6.11 0.06
RAFT [34] 3 1.61 2.86 – – 3.07 5.10 0.20

UnFlow [9] – 9.38 10.22 4.28 8.42 7.46 11.11 0.12
DDFlow [11] – 6.18 7.40 4.57 8.86 9.55 14.29 0.06
SelFlow† [12] – 6.56 6.57 4.31 7.68 9.65 14.19 0.09
ARFlow [13] – 4.78 5.89 4.71 8.49 8.91 11.80 0.01
ARFlow-mv† [13] – 4.49 5.67 4.56 7.53 8.97 11.79 0.02
UFlow [35] – 5.21 6.50 4.26 7.91 8.41 11.13 0.04
CoT-AMFlow (Ours) – 3.96 5.14 3.50 8.26 6.28 10.34 0.06

4.2 Performance on Public Benchmarks

According to the online leaderboards of the MPI Sintel1, KITTI Flow 20122 and KITTI Flow 20153

benchmarks, as shown in Table 1, our CoT-AMFlow outperforms all other unsupervised optical
flow estimation approaches. We can clearly observe that our approach is significantly ahead of other
unsupervised approaches, especially on the MPI Sintel benchmark, where an AEPE improvement
of 0.53px–5.42px is achieved on the Sintel Clean benchmark. We also use the KITTI Flow 2015
benchmark to record the average inference time of our CoT-AMFlow. The results in Table 1 show
that our approach can still run in real time with the state-of-the-art performance. One exciting fact
is that our unsupervised CoT-AMFlow can achieve considerable performance when compared with
supervised approaches. Specifically, on the MPI Sintel Clean benchmark, our CoT-AMFlow out-
performs some classic networks such as PWC-Net [6] and LiteFlowNet [7], while achieving only a
slightly inferior performance compared with LiteFlowNet2 [22], which demonstrates the effective-
ness of our adaptive modulation network and co-teaching strategy. Fig. 3 illustrates examples of the
three public benchmarks, where we can obviously see that our CoT-AMFlow yields more robust and
accurate results.

4.3 Generalization Analysis across Datasets

We employ the CoT-AMFlow trained on the MPI Sintel benchmark directly on the Middlebury Flow
benchmark to test the generalization ability of our approach. Table 2 shows the online leaderboard
of the Middlebury Flow benchmark4. Note that our CoT-AMFlow has not been fine-tuned on the
benchmark. We can observe that our CoT-AMFlow significantly outperforms the unsupervised Un-
Flow [9] and even presents superior performance over supervised approaches such as PWC-Net [6]
and LiteFlowNet [7]. The results strongly verify that our CoT-AMFlow has an excellent generaliza-
tion ability.

1http://sintel.is.tue.mpg.de/results
2http://www.cvlibs.net/datasets/kitti/eval_stereo_flow.php?benchmark=flow
3http://cvlibs.net/datasets/kitti/eval_scene_flow.php?benchmark=flow
4https://vision.middlebury.edu/flow/eval/results/results-e1.php

7

http://sintel.is.tue.mpg.de/results
http://www.cvlibs.net/datasets/kitti/eval_stereo_flow.php?benchmark=flow
http://cvlibs.net/datasets/kitti/eval_scene_flow.php?benchmark=flow
https://vision.middlebury.edu/flow/eval/results/results-e1.php


Table 2: Evaluation results on the Middlebury Flow benchmark. “S” denotes supervised approaches.
Note that our CoT-AMFlow has not been fine-tuned on the benchmark. Best results for supervised
and unsupervised approaches are both shown in bold font.

Metric PWC-Net [6] LiteFlowNet [7] UnFlow [9] CoT-AMFlow (Ours)
S 3 3 – –
AEPE (px) 0.33 0.40 0.76 0.26

(a)

(b)

(a)

(b)

KITTI Flow 2012
Benchmark

KITTI Flow 2015
Benchmark

(1) (2) (3)

(a)

(b)MPI Sintel Clean 
Benchmark

Figure 3: Examples of the MPI Sintel Clean, KITTI Flow 2012 and KITTI Flow 2015 benchmarks,
where rows (a) and (b) on columns (1)–(3) show the flow estimations and the corresponding error
maps of (1) ARFlow-mv [13], (2) SelFlow [12] and (3) our CoT-AMFlow, respectively. Significantly
improved regions are highlighted with green dashed boxes.

5 Conclusion

In this paper, we proposed CoT-AMFlow, an adaptive modulation network with a co-teaching strat-
egy for unsupervised optical flow estimation. Our CoT-AMFlow presents three major contributions:
1) a flow modulation module (FMM), which can refine the flow initialization from the preceding
pyramid level to address the issue of accumulated errors; 2) a cost volume modulation module
(CMM), which can explicitly reduce outliers in the cost volume to improve the accuracy of optical
flow estimation; and 3) a co-teaching strategy for unsupervised training, which employs two net-
works to teach each other about challenging regions to improve robustness against outliers for unsu-
pervised optical flow estimation. Extensive experiments have demonstrated that our CoT-AMFlow
achieves the state-of-the-art performance for unsupervised optical flow estimation with an impres-
sive generalization ability, while still running in real time. We believe that our CoT-AMFlow can
be directly used in many mobile robot tasks, such as SLAM and robot navigation, to improve their
performance. It is also promising to employ the co-teaching strategy in other unsupervised tasks,
such as unsupervised disparity or scene flow estimation.
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Appendix
This appendix first provides a glossary of notations used in the paper to help readers better follow,
as presented in Section A. Then, we present the experimental results of our ablation studies. Specif-
ically, we first split the original MPI Sintel training set [14] into a new training set and a validation
set. Then, all models in our ablation studies are trained on the new training set and evaluated on
the validation set. In addition, we adopt the average end-point error (AEPE) [14] as the evaluation
metric.

In our ablation studies, we first explore the impact of different Tk and τ in the proposed co-teaching
strategy on the performance, as presented in Section B. Then, we verify the effectiveness of our
flow modulation module (FMM) and cost volume modulation module (CMM) in Section C. We also
demonstrate the superiority of our AMFlow over other network architectures and the superiority
of our co-teaching (CoT) strategy over other strategies for unsupervised training, as presented in
Section D and Section E, respectively.

A Glossary of Notations

The glossary of notations used in the paper is presented in Table 3.

B Impact of Different Tk and τ

In our co-teaching strategy, Tk and τ controls the filtering speed and filtering range of the pixels with
high occlusion probability, respectively. We consider three values of Tk , Tk = {0.05 · Tmax, 0.10 ·
Tmax, 0.15 · Tmax } and five values of τ, τ = {0.70, 0.75, 0.80, 0.85, 0.90}. We also test the train-
ing schemes that adopt a constant τ. The results of our CoT-AMFlow are shown in Table 4. We
can observe that the dynamic threshold scheme can effectively improve the performance and our
CoT-AMFlow is robust on different choices of Tk . Moreover, τ has a significant impact on the per-
formance. Specifically, a higher τ indicates that more pixels will be filtered out. We can see that
the performance can be improved when τ increases. However, when too many pixels are filtered
out, i.e., τ = 0.85 or τ = 0.90, the performance can deteriorate because the networks cannot get
sufficient training data. Note that we set Tk = 0.10 · Tmax and τ = 0.80 in the rest of our ablation
studies.

C Effectiveness of Our FMM and CMM

Table 5 shows the evaluation results of variants of our CoT-AMFlow with some of the proposed
modules disabled. We can observe that our FMM and CMM can effectively improve the optical
flow accuracy, especially for the pixels with large movements. This is because our FMM can refine
the flow initialization from the preceding pyramid level to address the issue of accumulated errors
by using local flow consistency, while our CMM can explicitly reduce outliers in the cost volume to
improve the accuracy of optical flow estimation by using a flexible and efficient sparse point-based
scheme. In addition, the best performance is achieved by integrating our FMM and CMM, which
demonstrates the effectiveness of our proposed modules.

D Superiority of Our AMFlow over Other Network Architectures

To further demonstrate the superiority of our AMFlow over other network architectures, we compare
the performance of different combinations of unsupervised network architectures and unsupervised
training strategies. The results are shown in Table 6. From rows a)–d), we can observe that for each
existing unsupervised approach, the performance can be significantly improved when the network
architecture is changed from the original one to our AMFlow, which strongly demonstrates the
effectiveness of our architecture. The reason why our AMFlow performs better is that it can address
the issues of accumulated errors and reduce outliers in the cost volume to improve the optical flow
accuracy by using our FMMs and CMMs. Moreover, from row e), we can see that, compared with
other network architectures, our AMFlow achieves the best performance when equipped with the
same training strategy, i.e., our co-teaching strategy, which further demonstrates the superiority of
our AMFlow over other network architectures.
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Table 3: A glossary of notations used in the paper.
Notation Meaning

Section 3.1

I1 and I2 The input images
Il1 and Il2 The downsampled input images at level l
xl1 and xl2 The feature maps of input images at level l

Fl
12 The forward flow estimation at level l

Fl+1
12 The upsampled forward flow estimation at level l + 1

F̂l+1
12 The modulated forward flow generated via our FMM at level l + 1

Ml The confidence map used in our FMM at level l
Cl

s The self-cost volume used in our FMM at level l
Dl The displacement map used in our FMM at level l
Cl The cost volume at level l
Ĉl The modulated cost volume generated via our CMM at level l

Section 3.2 and 3.3

I1 and I2 The input images
F12 The forward flow estimation
F21 The backward flow estimation
O12 The occlusion map

Timg
θ , Tflo

θ and Tocc
θ The transformations employed on I1, I2, F12 and O12, respectively [13]

Ĩ1, Ĩ2, F̃12 and Õ12 The samples augmented via the above-mentioned transformations
F̃∗12 The forward flow prediction based on Ĩ1 and Ĩ2

Table 4: AEPE (px) results of our CoT-AMFlow with different Tk and τ in the proposed co-teaching
strategy. The best result is shown in bold font.

τ = 0.70 τ = 0.75 τ = 0.80 τ = 0.85 τ = 0.90
Constant τ 4.31 4.10 3.95 4.34 4.89
Tk = 0.05 · Tmax 4.22 3.98 3.83 4.16 4.65
Tk = 0.10 · Tmax 4.27 4.05 3.79 4.02 4.64
Tk = 0.15 · Tmax 4.29 3.92 3.85 4.13 4.51

Table 5: AEPE (px) results of variants of our CoT-AMFlow with some of the proposed modules
disabled, where “All” denotes the AEPE over all pixels, and “s0 − 10”, “s10 − 40” and “s40+”
denote the AEPE over pixels that move less than 10 pixels, between 10 and 40 pixels and more than
40 pixels, respectively. Best results are shown in bold font.

FMM CMM All s0 − 10 s10 − 40 s40+
– – 4.73 0.82 2.46 29.75
3 – 4.12 0.79 2.32 25.12
– 3 4.23 0.73 2.23 26.49
3 3 3.79 0.76 2.07 23.10

E Superiority of Our Co-Teaching Strategy over Other Strategies for
Unsupervised Training

From columns 1)–4) in Table 6, we can observe that for each existing unsupervised approach, the
performance can be significantly improved when the training strategy is changed from the original
one to our co-teaching strategy, which strongly demonstrates the effectiveness of our strategy. The
reason why our co-teaching strategy performs better is that it can improve robustness against out-
liers for unsupervised optical flow estimation by employing two networks to teach each other about
challenging regions simultaneously. Moreover, from column 5), we can see that, compared with
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Table 6: AEPE (px) results of different combinations of unsupervised network architectures and un-
supervised training strategies. Note that XXXNet and XXXStrat denote the corresponding network
architecture and unsupervised training strategy used in XXX, respectively. † indicates the network
using more than two frames. The best result is shown in bold font.
```````````Strategy

Network 1)UnFlow-
Net [9]

2)DDFlow-
Net [11]

3)SelFlow-
Net† [12]

4)ARFlow-
Net [13]

5)AMFlow
(Ours)

a) UnFlowStrat [9] 8.87 – – – 6.61
b) DDFlowStrat [11] – 5.95 – – 5.59
c) SelFlowStrat [12] – – 5.22 – 4.98
d) ARFlowStrat [13] – – – 4.67 4.36
e) Co-Teaching (Ours) 5.65 4.73 3.94 4.29 3.79

other training strategies, our co-teaching strategy achieves the best performance when employed in
the same network architecture, i.e., our AMFlow, which further demonstrates the superiority of our
co-teaching strategy over other strategies for unsupervised training.
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