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Abstract

Inferring the 3D structure of a scene from a single image is
an ill-posed and challenging problem in the field of vision-
centric autonomous driving. Existing methods usually em-
ploy neural radiance fields to produce voxelized 3D occu-
pancy, lacking instance-level semantic reasoning and tem-
poral photometric consistency. In this paper, we propose
ViPOcc, which leverages the visual priors from vision foun-
dation models (VFMs) for fine-grained 3D occupancy predic-
tion. Unlike previous works that solely employ volume ren-
dering for RGB and depth image reconstruction, we intro-
duce a metric depth estimation branch, in which an inverse
depth alignment module is proposed to bridge the domain
gap in depth distribution between VFM predictions and the
ground truth. The recovered metric depth is then utilized in
temporal photometric alignment and spatial geometric align-
ment to ensure accurate and consistent 3D occupancy predic-
tion. Additionally, we also propose a semantic-guided non-
overlapping Gaussian mixture sampler for efficient, instance-
aware ray sampling, which addresses the redundant and im-
balanced sampling issue that still exists in previous state-of-
the-art methods. Extensive experiments demonstrate the su-
perior performance of ViPOcc in both 3D occupancy predic-
tion and depth estimation tasks on diverse public datasets.

Code — https://mias.group/ViPOcc

Introduction
As a key ingredient of environmental perception in au-
tonomous driving, 3D occupancy prediction has garnered
considerable attention in recent years (Wei et al. 2023;
Huang et al. 2024; Tian et al. 2024). Early efforts tackle
this problem through supervised learning, which requires
extensive 3D human-labeled annotations and depth ground
truth acquired using additional range sensors (Huang et al.
2023). More recently, neural radiance field (NeRF)-based
approaches have emerged as promising techniques for unsu-
pervised single-view 3D occupancy prediction (Wimbauer
et al. 2023; Li et al. 2024), noted for their capability to ren-
der photorealistic images from novel viewpoints.

*Corresponding author: Rui Fan.
Copyright © 2025, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.
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Figure 1: Single-view 3D scene reconstruction results.
KYN (Li et al. 2024) struggles to recover clear object bound-
aries (green boxes) and exhibits poor reconstruction perfor-
mance for distant objects (blue circles). ViPOcc outperforms
KYN in both monocular depth estimation and 3D occupancy
prediction tasks.

As a pioneering work, BTS (Wimbauer et al. 2023) esti-
mates a 3D density field from a single view, relying solely on
photometric consistency constraints across multiple views
during training. Subsequent studies (Han et al. 2024; Li
et al. 2024) adopt the same training strategy for 3D scene
reconstruction but often underexploit temporal photometric
and geometric constraints, resulting in inconsistent 3D oc-
cupancy predictions across adjacent frames.

Another growing trend is to unleash the potential of vision
foundation models (VFMs) for comprehensive 3D scene
representation. As a notable example, KYN (Li et al. 2024)
leverages a large vision-language model to enrich 3D fea-
tures with semantic information. However, as illustrated in
Fig. 1, challenges remain, particularly with the frequent
omission of critical instances, due to the indiscriminate ran-
dom ray sampling process. SC-DepthV3 (Sun et al. 2024)
uses predictions from LeReS (Yin et al. 2021) as pseudo
depth for robust unsupervised depth estimation. Neverthe-
less, current VFMs generally produce monocular depth pre-
dictions with inherent scale ambiguity (Yang et al. 2024),
which are not directly applicable to temporal photometric
alignment. The recently proposed VFM, Depth Anything V2
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(L. Yang et al. 2024), demonstrates exceptional zero-shot
performance in metric depth estimation with fine-grained
details. However, it experiences a significant performance
decline due to domain discrepancies between the training
and test data.

To address the aforementioned challenges, we introduce
ViPOcc, a novel approach that leverages visual priors from
VFMs for fine-grained, instance-aware 3D scene reconstruc-
tion. Unlike previous state-of-the-art (SoTA) methods that
solely utilize photometric discrepancies as supervisory sig-
nals, our method incorporates a depth prediction branch,
which fully exploits inter-frame photometric consistency
and intra-frame geometric reconstruction consistency, en-
abling self-supervised training with spatial-temporal consis-
tency constraints.

Specifically, we design an inverse depth alignment mod-
ule that mitigates the discrepancies between VFM predic-
tions and depth ground truth, leading to compelling metric
depth estimation results. To further enhance both the effi-
ciency and accuracy of 3D occupancy prediction, we de-
velop a semantic-guided, non-overlapping Gaussian mixture
(SNOG) sampler, which effectively addresses issues such as
redundant ray sampling and the overlooking of crucial in-
stances prevalent in previous methods. Additionally, we pro-
pose a temporal alignment loss and a reconstruction consis-
tency loss, which further improve the quality of both met-
ric depth and 3D occupancy predictions. Extensive experi-
ments on the KITTI-360 and KITTI Raw datasets validate
the effectiveness of each developed component and further
demonstrate ViPOcc’s superior performance over all exist-
ing SoTA methods.

In a nutshell, we present the following key contributions:

1. We propose ViPOcc, a single-view 3D Occupancy pre-
diction framework that incorporates Visual Priors from
VFMs, achieving SoTA performance in both monocular
depth estimation and 3d occupancy prediction tasks.

2. We introduce an inverse depth alignment module that ef-
fectively recovers the scale of the VFM’s depth predic-
tions while preserving their local visual details.

3. We present a SNOG sampler that guides the framework
to focus more on crucial instances and avoid overlapping
patches during ray sampling.

4. We establish a novel training paradigm that couples the
unsupervised training of 3D occupancy prediction and
monocular depth estimation using the proposed tempo-
ral alignment and reconstruction consistency losses.

Related Work
Single-View 3D Occupancy Prediction
Deriving voxelized 3D occupancy of a scene from a single
image is a promising technique for achieving fine-grained
geometric representation and comprehensive environmen-
tal understanding in 3D space (Zhang et al. 2024). As a
pioneering work, MonoScene (Cao and De Charette 2022)
leverages voxel features generated through view projection
for occupancy regression. However, this method is not suit-
able for real-time multi-view 3D reconstruction due to the

inefficiency of voxel representations. TPVFormer (Huang
et al. 2023) extends it to a multi-camera setup by incorporat-
ing tri-perspective view representations. Despite their com-
pelling performance, these supervised methods necessitate
data with 3D ground truth, which requires labor-intensive
human annotation. Recently, the study (Wimbauer et al.
2023) introduced BTS, a fully unsupervised method that
uses perspective and fisheye video sequences to reconstruct
driving scenes with NeRF-based volume rendering tech-
niques. Following this work, KYN (Li et al. 2024) leverages
meaningful semantic and spatial context for fine-grained 3D
scene reconstruction. MVBTS (Han et al. 2024) combines
density fields from multi-view images through knowledge
distillation, achieving SoTA performance in handling oc-
cluded regions. Different from existing NeRF-based frame-
works, we incorporate an additional depth prediction branch
for spatial-temporal 3D occupancy alignment.

Visual Priors for 3D Scene Reconstruction
Previous studies (Li et al. 2024; Zhang et al. 2023a) have
integrated visual priors from pre-trained VFMs into depth
estimation and NeRF-based 3D scene reconstruction frame-
works. Existing depth estimation methods typically utilize
pre-inferred semantics for fine-grained feature representa-
tion and fusion (Guizilini et al. 2020b; Jung et al. 2021; Chen
et al. 2023). Other studies (Kerr et al. 2023; Peng et al. 2023)
leverage 2D visual priors for 3D feature representation and
registration. KYN (Li et al. 2024) incorporates a pre-trained
vision-language network for robust 3D feature representa-
tion, significantly improving 3D shape recovery. MonoOcc
(Zheng et al. 2024) employs a pre-trained InternImage-XL
(Wang et al. 2023) as its backbone for visual feature extrac-
tion and distillation. OccNeRF (Zhang et al. 2023a) utilizes
frozen VFMs for 2D semantic supervision but faces chal-
lenges in detecting small instances due to the limitations
of open-vocabulary models in capturing fine details. While
these methods have successfully leveraged the strengths of
VFMs for feature extraction, the informative visual priors
from VFMs remain underutilized. In this paper, we lever-
ages semantic priors from Grounded-SAM (Ren et al. 2024)
and spatial priors from Depth Anything V2 (L. Yang et al.
2024) for efficient ray sampling and spatial-temporal 3D oc-
cupancy alignment.

Unsupervised Monocular Depth Estimation
Existing frameworks typically maximize photometric con-
sistency across video sequences or stereo image pairs to es-
timate scale-invariant depth maps. SfMLearner (Zhou et al.
2017), the first reported study in this field, jointly esti-
mates depth maps and camera poses between successive
video frames by minimizing a photometric reprojection loss.
Building on this method, Monodepth2 (Godard et al. 2019)
introduces a minimum reprojection loss to address occlu-
sion issues and an automasking loss to exclude moving
objects that appear stationary relative to the camera. Sub-
sequent studies mainly explored various network architec-
tures (Wang et al. 2024; Watson et al. 2021), dynamic ob-
ject filtering strategies (Sun and Hariharan 2024; Yin and
Shi 2018), and additional constraints (Guizilini et al. 2020b;
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Figure 2: An illustration of our proposed ViPOcc framework. Unlike previous approaches that rely solely on NeRF for 3D scene
reconstruction, ViPOcc introduces an additional depth prediction branch and an instance-aware SNOG sampler for temporal
photometric alignment and spatial geometric alignment.

Schmied et al. 2023). Other NeRF-based frameworks (Wim-
bauer et al. 2023; Han et al. 2024) estimate metric depth
maps through discrete volume rendering. However, their
predictions often lack accuracy and fail to preserve clear
object contours. In contrast, our proposed ViPOcc utilizes
visual priors from VFMs to enable instance-aware ray sam-
pling and fine-grained metric depth estimation.

Methodology
Problem Setup
Given an input RGB image I and its corresponding intrinsic
matrix K, we aim to reconstruct the 3D geometry of the
entire scene with the voxelized density:

σp = R(p, I,K,Θ), (1)

where p denotes a 3D point in the reconstructed scene, and
R(·) represents the neural radiance field with learnable pa-
rameters Θ. σp can be further employed to produce a ren-
dered RGB image Îr and a rendered distance map D̂r using
the following expressions:

Îr(pi) =
M∑
i=1

Tiαicpi
, D̂r(pi) =

M∑
i=1

Tiαidi, (2)

where αi = 1 − exp (−σpi
||pi+1 − pi||2) denotes the

probability that the ray ends between pi and pi+1, Ti =∏i−1
j=1(1−αj) represents the accumulated transmittance, cpi

denotes the sampled RGB value from other viewpoints, and
di represents the distance between pi and the ray origin.

Architecture Overview
As illustrated in Fig. 2, ViPOcc takes stereo image pairs
It,t+1
0,1 and rectified fisheye images It,t+1

2,3 captured at times-
tamps t and t + 1 as input. It

0 is regarded as the principal

frame, from which spatial features F s and reconstruction
features F r are extracted using parallel encoders and task-
specific decoders. During training, ViPOcc simultaneously
generates 2D depth maps and 3D density fields from two
separate branches. In the depth estimation branch, an inverse
depth alignment module is designed to mitigate the domain
discrepancy between depth priors from a VFM and the depth
ground truth. The refined depth maps D̂ and the correspond-
ing RGB images are then fed into our developed SNOG sam-
pler for efficient ray sampling, producing instance-aware
and non-overlapping patches. On the other hand, in the 3D
occupancy prediction branch, F r combined with positional
embeddings F p is passed through an MLP to predict a 3D
density field, which is then utilized in volume rendering to
generate depth and RGB patches. By enforcing reconstruc-
tion consistency across sampled RGB and depth patches, as
well as temporal photometric consistency between adjacent
principal frames, we achieve improved performance in both
3D occupancy prediction and metric depth estimation.

Inverse Depth Alignment
Unlike prior arts (Wimbauer et al. 2023; Han et al. 2024)
that rely solely on NeRF-based reconstruction consistency
to supervise framework training, we incorporate inter-frame
photometric consistency and depth rendering consistency
through a VFM-driven depth estimation branch. Pseudo
depth maps Dp are first obtained from off-the-shelf VFMs
like Depth Anything V2 (L. Yang et al. 2024). Nevertheless,
as demonstrated in our experiments, the residuals between
pseudo and ground-truth depth data exhibit dramatically de-
viated distributions. These deviations arise from significant
domain gaps between real-world scenarios and the data on
which VFMs are initially trained. Therefore, it is imperative
to refine depth before utilizing it to introduce additional con-
straints for temporal photometric alignment. As discussed in
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(He et al. 2016), neural networks often struggle to converge
or maintain accuracy when fitting large ranges of numerical
variations. It is thus plausible to fit residual inverse depth
in our task, expressed as F(x) := 1

D̂(x)
− 1

Dp(x)
, where

F(·) denotes the residual inverse depth function, D̂ repre-
sents the refined depth map, and x denotes a given 2D pixel.
This function can be effectively fitted using spatial features
F s by formulating it as F(x) = f(F s,θ), where f(·) de-
notes a convolutional layer with learnable parameters θ. The
refined depth map can therefore be yielded as follows:

D̂(x) =
1

1
Dp(x)

+ f(F s,θ) + ϵ
, (3)

where ϵ is a small constant used to prevent the denominator
from being zero. D̂ can then be used to ensure inter-frame
photometric consistency and depth rendering consistency.

Semantic-Guided Non-Overlapping Gaussian
Mixture Sampler
Focusing on individual instances rather than the entire scene
can lead to more detailed and fine-grained 3D scene recon-
struction. However, as shown in Fig. 3, previous SoTA ap-
proaches (Wimbauer et al. 2023; Li et al. 2024) typically
adopt a random patch sampler for uniform ray sampling
across the entire scene, leading to redundant samples and
overlooked instances. In contrast, our proposed SNOG sam-
pler leverages informative visual priors from the pre-trained
open-vocabulary model Grounded-SAM (Ren et al. 2024) (a
combination of Grounding DINO (Liu et al. 2025) and SAM
(Kirillov et al. 2023)) to optimize the allocation of compu-
tational resources while enhancing the awareness of crucial
instances.

Specifically, we utilize the semantic labels from the
Cityscapes dataset (Cordts et al. 2016) as prompts for
Grounding DINO. After obtaining instance-level bounding
boxes, we employ SAM to generate precise segmentation
masks. Consequently, for the k-th instance, we acquire its
metadata Mk = {lk, bk, sk}, where lk denotes the center
location of its bounding box, bk stores half of the height and
width of its bounding box, and sk indicates the semantic area
of the instance. Subsequently, we use Gaussian mixture dis-
tribution combined with background uniform distribution to
achieve instance-aware and non-overlapping ray sampling,
the probability density function (PDF) p(x) of which can be
formulated as follows:

p(x) = (1− γ)
K∑

k=1

πkN (x | µk,Σk) + γU (x | s) , (4)

where N (x | µk,Σk) denotes the PDF of the bivariate nor-
mal distribution with mean vector µk and covariance matrix
Σk, U(x | s) denotes the PDF of a 2D uniform distribu-
tion within the area s, and γ and πk denote the weights of
the background sampling and independent Gaussian distri-
butions, respectively.

For the Gaussian distribution of the k-th instance, our ob-
jectives are to 1) locate µk at the center of its bounding box
and 2) ensure that approximately 95.5% of the samples fall
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Figure 3: An illustration of our proposed SNOG sampler.

within the bounding box. We can therefore initialize the pa-
rameters in (4) as follows:{

µk = lk, Σk = diag
(
bk◦bk

4

)
πk = log sk

log
∏K

k=1 sk

, for k = 1, ...,K, (5)

where ◦ denotes the Hardmard product operation, and πk

is normalized in logarithmic space to prevent the sampling
probability of smaller instances from approaching zero, es-
pecially when the semantic areas vary significantly among
different instances.

Additionally, to address the redundant sampling issue, we
incorporate constraints between the sampling PDF and ex-
isting samples, and formulate the final conditioned sampling
PDF as follows:

P (x | X ) =

{
0, if ∃ xi ∈ X , ||x− xi||22 < 2l2

p(x), otherwise
(6)

where l is the patch size, and X is an anchor set storing ex-
isting samples. With the final PDF, we randomly sample a
collection of well-distributed and non-overlapping patches
for image rendering and depth reconstruction. More details
on the parameter initialization and the mathematical deriva-
tions of the PDF are given in our supplement.

Loss Formulation
A reference image can be warped to the target view using
camera intrinsic parameters and differentiable grid sampling
when its per-pixel depth is known. The original target im-
age and the warped reference image should exhibit tempo-
ral photometric consistency. Furthermore, when performing
volume rendering on a given frame, the rendered RGB and
depth images should be respectively consistent with the orig-
inal RGB image and the predicted metric depth map, thereby
satisfying spatial reconstruction consistency. Therefore, we
formulate a novel loss function as follows:

L = λ1Lta + λ2(Ld
rc + Lrgb

rc ), (7)
where Lta denotes the temporal alignment loss, Ld

rc and
Lrgb
rc represent the reconstruction consistency losses for
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depth and RGB image rendering, respectively, and λ1 and
λ2 are parameters used to balance these two types of losses.

Temporal Alignment Loss The homogeneous coordi-
nates x̃t and x̃t+1 in adjacent principal frames It

0 and It+1
0

are related as follows:

x̃t+1 = D̂
t
(x)KTK−1x̃t, (8)

where T denotes the relative camera pose. Therefore, we can
warp It+1

0 into the pixel grid of It
0 using differentiable grid

sampling, producing a synthesized image Î
t

0. The temporal
alignment loss, expressed as follows:

Lta =
1

N

∑
x

M(x)
∣∣∣It

0(x)− Î
t

0(x)
∣∣∣ , (9)

can be computed to enforce photometric similarity across
adjacent frames, where M represents the weight mask de-
tailed in (Bian et al. 2019) and N denotes the number of
valid pixels for loss computation.

Reconstruction Consistency Loss It is common prelim-
inaries that D(x)x̃ = Kp and ||p||2 = D̂r(x). We can
therefore use these relations to establish criteria for depth
reconstruction consistency as follows:

Ld
rc =

1

M

∑
x

∣∣∣∣∣ D̂r(x)

||K−1x̃||2
− D̂(x)

∣∣∣∣∣ , (10)

where M denotes the number of valid pixels for loss com-
putation. In addition, to enforce the consistency between the
original and rendered RGB patches, we adopt the same ren-
dering loss as detailed in (Wimbauer et al. 2023):

Lrgb
rc = β1 SSIM

(
I, Îr

)
+ β2

∣∣∣∣∣∣I − Îr

∣∣∣∣∣∣
1
, (11)

where β1 = 0.85 and β2 = 0.15 are the empirical parame-
ters used in (Wimbauer et al. 2023).

Experiments
Datasets, Metrics, and Implementation Details
The 3D reconstruction performance of our proposed method
is evaluated on the KITTI-360 dataset (Liao et al. 2022) and
the KITTI Raw dataset (Geiger et al. 2013), both providing
time-stamped stereo images along with ground-truth camera
poses for the evaluation of scene perception algorithms. All
images are resized to the resolution of 192×640 pixels, and
the depth range is capped at 80m in both datasets. Following
(Wimbauer et al. 2023), we split KITTI-360 dataset into a
training set of 98,008 images, a validation set of 11,451 im-
ages, and a test set of 446 images for the 3D occupancy pre-
diction task. We adopt the Eigen split (Godard et al. 2019)
for depth estimation on the KITTI Raw dataset. Moreover,
we use the DDAD dataset (Guizilini et al. 2020a) to evalu-
ate our model’s zero-shot generalizability using the weights
obtained on the KITTI-360 dataset. The input images, with
the original resolution of 1,216×1,936 pixels, are center-
cropped and resized to 192×640 pixels for fair comparison.

Method Os
acc ↑ IEs

acc ↑ IEs
rec ↑

Monodepth2 (Godard et al. 2019) 0.90 N/A N/A
Monodepth2 + 4m 0.90 0.59 0.66
PixelNeRF (Yu et al. 2021) 0.89 0.62 0.60
BTS (Wimbauer et al. 2023) 0.92 0.69 0.64
KYN (Li et al. 2024) 0.92 0.70 0.66

ViPOcc (Ours) 0.93 0.71 0.69

Table 1: Comparison of scene reconstruction performance
on the KITTI-360 dataset.

Method Oo
acc ↑ IEo

acc ↑ IEo
rec ↑

Monodepth2 (Godard et al. 2019) 0.69 N/A N/A
Monodepth2 + 4m 0.70 0.53 0.52
PixelNeRF (Yu et al. 2021) 0.67 0.53 0.49
BTS (Wimbauer et al. 2023) 0.79 0.69 0.60
KYN (Li et al. 2024) 0.79 0.69 0.61

ViPOcc (Ours) 0.79 0.69 0.64

Table 2: Comparison of object reconstruction performance
on the KITTI-360 dataset.

Following the experimental protocols established in pre-
vious works (Wimbauer et al. 2023; Li et al. 2024), we
quantify the 3D occupancy prediction performance of the
model using the following metrics: scene occupancy accu-
racy Os

acc, invisible scene accuracy IEs
acc, invisible scene

recall IEs
rec, object occupancy accuracy Oo

acc, invisible ob-
ject accuracy IEo

acc, and invisible object recall IEo
rec. Fur-

thermore, we use the mean absolute relative error (Abs Rel),
mean squared relative error (Sq Rel), root mean squared er-
ror (RMSE), root mean squared log error (RMSE log), and
accuracy under thresholds (δi < 1.25i, i = 1, 2, 3) to quan-
tify the model’s monocular depth estimation performance.

The proposed method is trained on an NVIDIA RTX 4090
GPU using the Adam optimizer for 25 epochs, with an initial
learning rate of 1e-4, which is reduced by a factor of 10 dur-
ing the final 10 epochs. We use BTS (Wimbauer et al. 2023)
as our baseline network and adopt the metric depth predic-
tions from Depth Anything V2 (Yang et al. 2024) as pseudo
depth. We use Grounded-SAM (Ren et al. 2024) to generate
instance-level semantic masks and bounding boxes.

Comparisons with State-of-The-Art Methods
3D Occupancy Prediction Following the experimental
protocols detailed in the study (Wimbauer et al. 2023),
we compare ViPOcc with a representative self-supervised
monocular depth estimation network Monodepth2 (Godard
et al. 2019) and other NeRF-based SoTA methods in terms
of 3D occupancy prediction performance, as presented in
Tables 1 and 2. Specifically, when evaluating Monodepth2’s
3D occupancy prediction performance, all points behind vis-
ible pixels in the image are considered occupied. This is pri-
marily due to the infeasibility of inferring the true 3D geom-
etry of points that are invisible in the image. Furthermore,
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Figure 4: Qualitative comparison of 3D occupancy predic-
tion on the KITTI-360 dataset: (a) input RGB images; (b)
BTS results; (c) KYN results; (d) our results. A darker voxel
color indicates a lower altitude.

Method Abs Rel RMSE log δ < 1.25

Pseudo depth (no scaling) 0.586 0.477 0.071
Pseudo depth (median scaling) 0.142 0.209 0.832
BTS (Wimbauer et al. 2023) 0.103 0.194 0.891
KYN (Li et al. 2024) 0.107 0.197 0.880

ViPOcc (Ours) 0.097 0.188 0.886

Table 3: Comparison of metric depth estimation perfor-
mance on the KITTI-360 dataset.

we also follow prior studies (Wimbauer et al. 2023) to quan-
tify the model’s performance by considering points within a
distance of up to 4m from visible points as occupied.

It can be observed that ViPOcc achieves SoTA perfor-
mance across all metrics in 3D occupancy prediction for
both scene and object reconstruction. Notably, Os

acc, Os
rec,

and Oo
rec increase by 1.1-3.4%, 4.6-15.0%, and 4.9-30.6%,

respectively. It is also worth noting that Monodepth2 + 4m
can deliver competitive performance in Os

acc. However, it re-
lies on hand-crafted criteria rather than directly learning the
3D structure from a single view (Li et al. 2024).

Qualitative comparisons are presented in Fig. 4, where the
predicted occupancy grids are viewed from the right side of
the scene. It is evident that our method significantly out-
performs both BTS and KYN in 3D geometry reconstruc-
tion, particularly for crucial instances, and effectively re-
duces trailing effects. These results demonstrate the efficacy
of ViPOcc in reasoning about occluded regions against in-
herent ambiguities.

Metric Depth Estimation Table 3 shows the comparison
of metric depth estimation performance among VFM, previ-
ous SoTA methods, and our proposed ViPOcc on the KITTI-
360 dataset. It is evident that the depth predictions from
Depth Anything V2 are unsatisfactory, regardless of whether
median scaling is used to align the depth distribution. No-
tably, ViPOcc demonstrates superior performance compared

Method Abs Rel Sq Rel δ < 1.25

Monodepth2 (Godard et al. 2019) 0.106 0.818 0.874
SwinDepth (Shim and Kim 2023) 0.106 0.739 0.890
Lite-Mono (Zhang et al. 2023b) 0.107 0.765 0.886
BTS (Wimbauer et al. 2023) 0.102 0.755 0.882
MVBTS (Han et al. 2024) 0.105 0.757 0.873
KDBTS (Han et al. 2024) 0.105 0.761 0.873

ViPOcc (Ours) 0.096 0.652 0.890

Table 4: Comparison of depth estimation performance on the
KITTI Raw dataset using the Eigen split.
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Figure 5: Depth distribution comparison.

(a)

(c)

(d)

(b)

Figure 6: Comparison of metric depth estimation on the
KITTI-360 dataset: (a) input RGB images; (b) BTS results;
(c) KYN results; (d) our results.

to existing NeRF-based unsupervised methods, achieving a
decrease of 5.8% in Abs Rel. Moreover, we compare depth
distributions among ground-truth depth, pseudo depth, and
our predictions. As illustrated in Fig. 5, significant discrep-
ancies among these distributions not only underscore the in-
feasibility of directly using pseudo depth to generate super-
visory signals, but also validate the effectiveness of our pro-
posed inverse depth alignment module in refining depth.

As presented in Fig. 6, the qualitative comparison with
prior SoTA methods on the KITTI-360 dataset demonstrates
ViPOcc’s exceptional metric depth estimation performance.
Our method exhibits superior depth consistency in continu-
ous regions, as shown on the vehicle’s glass, and preserves

3009



Configuration Os
acc ↑ IEs

acc ↑ IEs
rec ↑

Baseline (Wimbauer et al. 2023) 0.91 0.65 0.64

Depth
estimation

+ Depth 0.91 0.64 0.64
+ Pseudo depth 0.86 0.60 0.61
+ Inverse pseudo depth 0.92 0.65 0.66

Ray
sampling

+ Random sampler 0.91 0.65 0.64
+ SNOG sampler 0.92 0.67 0.67

Loss
+ Lta 0.91 0.66 0.64
+ Lrc 0.89 0.64 0.60
+ Lta, Lrc 0.92 0.69 0.67

Full implementation 0.93 0.71 0.69

Table 5: Ablation studies of ViPOcc inner designs on the
KITTI-360 dataset.

clear object boundaries, as shown on the pedestrian. These
improvements can be attributed to the spatial reconstruc-
tion consistency constraint we incorporated between ren-
dered and predicted depth maps, which also preserves the
local differential properties of VFM predictions to enable
fine-grained depth estimation.

Moreover, as presented in Table 4, ViPOcc also demon-
strates superior depth estimation performance compared to
all existing self-supervised methods on the KITTI Raw
dataset. Specifically, it achieves a decrease of 5.9% in Abs
Rel and 11.8% in Sq Rel compared to previous SoTA ap-
proaches. Surprisingly, ViPOcc significantly outperforms its
counterparts trained with the same NeRF-based architec-
tures, such as BTS (Wimbauer et al. 2023), MVBTS (Han
et al. 2024), and KDBTS (Han et al. 2024). It achieves an
average error reduction of 9.5% in Abs Rel and an average
performance gain of 1.3% in δ1. These experimental results
underscore the effectiveness of our proposed ViPOcc frame-
work for monocular depth estimation across different sce-
narios with distinct experimental setups.

Ablation Studies
We validate the rationality and efficacy of ViPOcc through
extensive ablation studies, specifically focusing on depth es-
timation methods, ray sampling strategies, and loss function
designs, as presented in Table 5.

We first adopt an individual depth prediction branch with-
out VFM’s visual priors incorporated for depth estimation,
resulting in performance similar to that of the baseline.
We attribute this phenomenon to a performance bottleneck
within the depth prediction network, due to its estimations
not being sufficiently accurate, which in turn limits improve-
ments in 3D occupancy prediction. We then investigate the
effectiveness of aligning VFM’s depth priors based on depth
residuals. As discussed earlier, neural networks struggle to
converge or maintain accuracy when fitting depth residuals,
which typically exhibit a large range of numerical variations.
Consequently, a drastic performance drop occurs, falling
within our expectations. When employing our proposed in-
verse depth alignment module, a notable performance im-
provement in 3D occupancy prediction is achieved, demon-

Method Abs Rel RMSE log δ < 1.25

BTS (Wimbauer et al. 2023) 0.182 0.290 0.746
KYN (Li et al. 2024) 0.190 0.286 0.749

ViPOcc (Ours) 0.175 0.282 0.749

Table 6: Zero-shot depth estimation performance compari-
son on the DDAD dataset.

strating its effectiveness.
Moreover, as observed, the SNOG sampler leads to im-

proved performance, particularly in invisible scene accuracy
and recall, which increase by 3.1-4.7%. This validates the
effectiveness of our proposed ray sampling strategy. Addi-
tional comparisons between random and SNOG samplers
regarding their efficiency are provided in our supplement.

In addition, it is evident that relying solely on temporal
alignment loss yields limited performance improvements,
whereas using only the reconstruction consistency loss actu-
ally degrades the framework’s performance. However, com-
bining both losses significantly enhances 3D occupancy
prediction performance, leading to an increase of approxi-
mately 4.7-6.2% in invisible scene accuracy and recall.

Zero-Shot Depth Estimation
To further evaluate the generalizability of ViPOcc, we con-
duct a zero-shot test on the DDAD dataset (Guizilini et al.
2020a) using the pre-trained weights obtained from the
KITTI-360 dataset. As presented in Table 6, ViPOcc outper-
forms other SoTA methods in zero-shot depth estimation,
demonstrating its exceptional generalizability.

Conclusion
This paper introduced ViPOcc, a novel framework that
effectively leverages VFM’s visual priors for single-view
3D occupancy prediction. ViPOcc consists of two coupled
branches: one estimates highly accurate metric depth by
aligning the inverse depth output from Depth Anything
V2, while the other one predicts 3D occupancy with a
Grounded-SAM-guided Gaussian mixture sampler incorpo-
rated to achieve efficient and instance-aware ray sampling.
These two branches are effectively coupled through a tem-
poral photometric alignment loss and a spatial geometric
consistency loss. Extensive experiments and comprehensive
analyses validate the effectiveness of our novel contributions
and the superior performance of ViPOcc compared to pre-
vious SoTA methods. In the future, we aim to achieve a
tighter coupling of these two branches and develop a more
lightweight 3D occupancy prediction framework.
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